

HOCHGENAUIGKEITSLAGER

BRANDS OF **NSK EUROPE**

SETTING THE FUTURE IN MOTION

Als einer der weltweit führenden Hersteller von Wälzlagern, lineartechnischen Komponenten und Lenksystemen sind wir mit Produktionsstätten, Vertriebsniederlassungen und Technologiezentren auf fast allen Kontinenten vertreten – denn unsere Kunden schätzen kurze Entscheidungswege, prompte Lieferungen und Service vor Ort.

Das Unternehmen NSK

Bereits 1916 startete NSK seine Geschäfte als erster japanischer Hersteller von Wälzlagern. Seitdem haben wir nicht nur unsere Produktpalette, sondern auch unsere Serviceleistungen für verschiedene Industriebereiche kontinuierlich ausgebaut und verbessert. Zu diesem Zweck sind unsere Forschungs- und Produktionszentren innerhalb eines globalen Netzwerks verbunden. Hier konzentrieren wir uns nicht nur auf die Entwicklung neuer Technologien, sondern auch auf die kontinuierliche Optimierung der Qualität – auf jeder Prozessstufe. Zu unseren Forschungsaktivitäten gehören unter anderem Produktdesign, Simulationsanwendungen unter Einsatz unterschiedlichster Analysesysteme und die Entwicklung verschiedener Stähle und Schmierstoffe für Wälzlager.

Trademarks: Alle Namen von NSK Podukten und Dienstleistungen, die in diesem Katalog genannt werden, sind Marken oder eingetragene Marken von NSK Ltd.

UNSER WICHTIGSTES PRODUKT: DIE ZUFRIEDENHEIT UNSERER KUNDEN

Was uns antreibt, ist unser Bestreben, die Zuverlässigkeit Ihrer Fahrzeuge und Ihrer technischen Ausrüstung zu erhöhen – nicht nur durch hervorragende Produkte, sondern vor allem durch hervorragenden Service. Unsere erfahrenen Ingenieure verfügen über fundierte Kenntnisse von technischen Systemen und arbeiten gemeinsam mit Ihnen an der Optimierung von Produkten und Prozessen und der Entwicklung von Lösungen für die Zukunft. Bei unserer täglichen Arbeit haben wir stets ein wichtiges Ziel vor Augen: die langfristige Sicherung Ihrer Wettbewerbsfähigkeit.

Weitere Informationen über NSK finden Sie auf www.nskeurope.de

Inhalt

Kap. 1		3. Axial-Schrägkugellager		
NSK Hochgenauigkeitslager		Axial-Schrägkugellager	S132-143	
Globale Unterstützung	S8	Eigenschaften		
Forschung und Entwicklung	S10	Bezeichnungssystem		
Qualität und Fertigung bei NSK	S12	Lagertabellen		
		Hochgeschwindigkeits-Axial-Schrägkugellager		
Kap. 2		(NSKROBUST Serie)		
Eigenschaften von Hochgenauigkeitslage	ern	Axial-Schrägkugellager		
Höhere Lebensdauer durch innovative Stähle	S16	(NSKTAC F Serie)		
Wälzkörper aus Keramik S18		Zweiseitig wirkende Axial-Schrägkugellager		
Käfige	S20	(NSKTAC D Serie)		
Lager-Komponenten	S22			
Leistungsmerkmale der verschiedenen Lagertypen		4. Lager für Kugelgewindetriebe		
Leistungsmerkmate der verschiedenen Lagertypen	324	NSKHPS Axial-Schrägkugellager für		
I/ 0		Kugelgewindetriebe	S144-155	
Kap. 3.		Eigenschaften		
Auswahl des richtigen Lagers		Bezeichnungssystem		
Lagerauswahl	S38	Lagertabellen		
Anwendungsbeispiele Hochgeschwindigkeitsspindelr	n S40	Anwendung mit hoher Steifigkeit (NSKT)	AC C Serie)	
Weitere Anwendungsbeispiele	S42	Anwendungen mit hoher Last (NSKTAC	03 Serie)	
Eigenschaften von Schrägkugellagern	S46	BSBD Serie		
Eigenschaften von Zylinderrollenlagern	S48	Lagereinheiten für Kugelgewindetriebe	S156-157	
		Eigenschaften		
Kap. 4.		Bezeichnungssystem		
Lagertypen		Tabellenübersicht für Lagereinheitens		
1. Schrägkugellager				
	2-109	5. Kegelrollenlager		
Bezeichnungssystem		Kegelrollenlager	S160-163	
Lagertabellen		Eigenschaften		
Hochgenauigkeits-Schrägkugellager		Bezeichnungssystem		
(Standard Serie)		Lagertabellen		
Schrägkugellager für höchste Drehzahlen				
(NSKROBUST Serie)		6. Axiallager		
(Axiallager	S166-177	
2. Zylinderrollenlager		Eigenschaften		
	2-129	Bezeichnungssystem		
Eigenschaften	2 127	Lagertabellen		
Bezeichnungssystem		Einseitig wirkende Axiallager		
Lagertabellen		Axiale Zylinderrollenlager		
Zylinderrollenlager - einreihig		Axiale Zylinderrollenlager für vertikale		
(Standard Serie)		Bearbeitungszentren		
Zylinderrollenlagern - einreihig für höchste Dr	ohzahlan	ROBUSTSLIM	S176-177	
(NSKROBUST Serie)	enzanten	Eigenschaften		
Zylinderrollenlagern - einreihig für höchste Dr	ahzahlan	Bezeichnungssystem		
(geringe Wäremeerzeugung)	enzanten	Lagertabellen		
Zylinderrollenlager -zweireihig		Hochgenauigkeits-Dünnringlager		
(hohe Steifigkeit)		(ROBUSTSLIM Serie)		
(none Sterrigkert)				

Zylinderrollenlager -zweireihig (geringe Wäremeerzeugung)

Kapitel 1

7. Zubehör		Kap. 6.	
Messgeräte / Lehren	S180-183	Handhabung von Lagern	
Lehren GR		1. Lagermontage	S246-267
Eigenschaften		1. Reinigung der Lager und der Anschlu	ıßteile
Maße Lehren		2. Überprüfung der Maßgenauigkeit der	
Lehren GN		3. Lagermontage	
Eigenschaften		4. Kontrolle nach der Montage	
Maße Lehren			
Induktives Anwärmgerät	S184-185	2. Inspektion im Betrieb	S268-269
Fett-Nachschmiersystem - FINE-LUB II	S186-187		
Hochgeschwindigkeits-Motorspindel	S188-189	3. Einlauf-Vorgang	S270-271
Kap. 5.		Kap. 7.	
Technische Informationen		Diagnose von Lagerausfällen	
1. Lebensdauer	S192-199	1. Lagerausfälle und Abhilfemaßnahmen	S274-279
		2. Untersuchung mittels Geräusch- und	
 Ermüdungslebensdauer im Wälzkontakt und nominelle Tragzahl 	unu	Frequenzanalyse	S280-281
· Neue Lebensdauertheorie		,	
· Neue Lebellsdadel theorie		Kap. 8.	
2. Statische Tragzahl und statisch		Anhang	
äquivalente Lagerbelastung	S200-201	1. Toleranzen für Wellendurchmesser	S284-285
aquivatente Lager betastung	3200-201	2. Toleranzen für die Gehäusebohrung	S286-287
3. Gepaarte Schrägkugellager	S202-207	3. ISO-Toleranzreihe	S288-289
· Eigenschaften der Kombinationen	3202-207	4. Umwertungstabelle für Härtewerte	S290
· Handhabung von Lagersätzen		5. Physikalische und mechanische	
· Universelle Paarungen		Eigenschaften der Lagerwerkstoffe	S291-292
· Offiver Sette Faar ungen		6. Anfrage zur Lageruntersuchung	S293
4. Vorspannung und und Steifigkeit	S208-217	7. Kundenlastenheft	S294
4. voi spainiung und dila Steingkeit	3200-217	7. Nanderikasteriniert	3274
5. Drehzahlgrenzen	S218-219		
6. Schmierung	S220-223		
7. Toleranzen	S224-233		
· Toleranzen · Toleranzen für Radiallager	3224-233		
· Toleranzen für kadiattagei · Toleranzen für kegelige Bohrungen			
· Toleranzen für Axial-Schrägkugellager			
· Toleranzen für Kegelrollenlager			
· Toleranzen für Axiallager			
· Toter anzen fur Axiattager			
8. Ausführung von Welle und Gehäuse	S234-238		
· Wellen- und Gehäusepassungen			
· Toleranzen von Wellen und Gehäusen			
· Anschlußmasse			
9. Zwischenringe	S239-243		

· Abmessungen der Zwischenringe

· Position der Schmierdüse

HOCHGENAUIG-KEITSLAGER

Inhalt

Kapitel 1

NSK Hochgenauigkeitslager

Globale Unterstützung	. 8
Forschung und Entwicklung	10
Qualität und Fertigung bei NSK	12

Globale Unterstützung

NSK hat sich der Herstellung und dem weltweiten Vertrieb von Produkten in gleichbleibender hoher Qualität unter der Führung seiner Technologiezentren auf den vier global wichtigsten Märkten verschrieben. Unsere Experten arbeiten kontinuierlich daran, den sich weiterentwickelnden Bedürfnissen unserer Kunden gerecht zu werden. Die Vertriebsniederlassungen von NSK fördern ein globales Netzwerkmanagement, das unsere Technologiezentren und Produktionsstandorte einbezieht.

NSK ist in der Lage, schnell und effektiv auf die unterschiedlichen Anforderungen seiner Kunden zu reagieren, und unterstützt sie in allen Regionen dabei, ihre Geschäfte auszubauen.

Globales Netzwerk

NSK hat ein hochentwickeltes Informationsnetzwerk geschaffen, das auf Technologiezentren in den vier wichtigsten Märkten der Welt aufbaut – Europa, den USA, Asien und Japan. Mit diesem Netzwerk sind wir in der Lage, Informationen zu Veränderungen und Trends in jedem Markt der Welt in Echtzeit zu erfassen. So können wir schnell auf sich ändernde Kundenanforderungen reagieren und optimale hochwertige Produkte liefern.

Technologiezentren

Unsere mehr als 20 Technologiezentren sind in 11 Ländern der Welt vertreten. Sie bieten technische Unterstützung und die Informationen, mit denen unsere Kunden die Produkte von NSK unter idealen Bedingungen nutzen können, um bestmögliche Leistungen zu erzielen.

Maßgeschneiderte Produkte

Dank unserer ausgezeichneten Entwicklungs- und Bearbeitungskapazitäten beeindrucken die Produkte von NSK sowohl mit ihrer Qualität als auch im Hinblick auf die Kosten.

Unser umfgangreiches Produktangebot ermöglicht es uns, maßgeschneiderte Lösungen für hoch spezialisierte Kunden anzubieten.

Globales Support-Netzwerk

Mit unserem weltweiten Netzwerk sind wir in der Lage, überall auf der Welt Bestellungen entgegenzunehmen und Produkte an jeden Ort der Welt zu liefern. Die Vertriebspartner von NSK sind weltweit vertreten und halten alle kritischen Produkte in jedem wichtigen Markt und an jedem größeren Standort vor, sodass unsere Kunden ohne Verzögerung beliefert werden können. NSK bietet darüber hinaus weltweit technische Unterstützung, um Kunden bei der Auswahl des geeigneten Wälzlagers für ihre Anwendung zu helfen, schnell Antworten auf Fragen zu geben und Probleme auf Kundenseite schnellstmöglich zu lösen.

Forschung und Entwicklung

Seit der Gründung von NSK in Japan im Jahr 1916 das erste Wälzlager herstellte, haben wir unterschiedlichste Wälzlagertypen entwickelt.

Auf der Grundlage unseres im Laufe der Jahrzehnte aufgebauten technischen Know-hows haben wir unsere Aktivitäten auf Präzisionskomponenten und Teile für den Bereich Automotive erweitert. NSK setzt konsequent auf innovative Technologien und die kontinuierliche Verbesserung der Produktqualität, um zu einer sichereren und besseren Gesellschaft beizutragen und die globale Umwelt im Einklang mit seiner Unternehmensphilosophie zu schützen.

NSK ist weltweit führend in den Bereichen Wälzlager, Automobilkomponenten sowie Präzisionsmaschinen und -teile.

Die Geschäftsaktivitäten von NSK in Europa begannen in den frühen 1960er-Jahren. Heute gibt es ein weltweites Netzwerk aus Produktionsstätten, Vertriebsniederlassungen und Technologiezentren in 30 Ländern. Dadurch können wir mit speziell entwickelten und regional hergestellten Produkten schnell auf Kundenanfragen und spezifische Anforderungen in jedem Teil der Welt reagieren.

Die Grundlage dieser Produktbereiche bilden die vier Kerntechnologien von NSK – Tribologie (Reibungslehre), Werkstoffe, numerische Simulation und Mechatronik.

Sie werden ergänzt und zusätzlich geprägt durch die Fertigungstechnik, die eine weitere wichtige Kompetenz von NSK darstellt. Die Systeme und Produkte, die wir auf der Grundlage unserer vier Kerntechnologien und der Fertigungstechnik geschaffen haben, tragen zur Entwicklung der Branche und zum Wohlstand der Menschen in aller Welt bei.

Wir nennen es +1. Das bedeutet ein Plus an Effizienz, Sicherheit und Nachhaltigkeit in unseren Produktionsprozessen.

In den kommenden Jahren wird NSK seine Arbeit im Bereich der Spitzentechnologie fortsetzen und hochfunktionale, hochwertige Produkte anbieten, die den Anforderungen des Marktes gerecht werden.

Das technologische Fundament von NSK

Die vier Kerntechnologien +1

Tribologie

Tribologie ist die Wissenschaft von Reibung und Verschleiß an Kontaktflächen in Relativbewegung, wie z. B. von rotierenden Bauteilen. Dabei ist eine gute Schmierwirkung unabdingbar, um diese metallische Oberflächen mittels eines dünnen Ölfilms auch bei hohen Kräfte sicher voneinander zu trennen. Dank verbesserter Schmiermittelformeln und optimierter Methoden der Oberflächenbearbeitung sind wir in der Lage, schnellere, ruhiger laufende und langlebigere Wälzlager zu entwickeln, die selbst schwersten Belastungen standhalten.

Bereiche

- Schmiermittel (Öl, Fett, Additive)
- Reibungskontrolle
- Herstellung von Funktionsflächen

Numerische Simulation

Im Rahmen unserer Produktentwicklung spielen Computersimulationen eine wesentliche Rolle im Prozess. Mit ihrer Hilfe können wir nicht nur die Leistung unserer Produkte unter extremen Bedingungen beurteilen, sondern auch wertvolle Erkenntnisse im Hinblick auf das Produktdesign und die Endbearbeitungsprozesse gewinnen.

Bereiche

- Bewegungs- und Reibungsanalyse
- Makro-/Nanoschmierungsanalyse
- Simulation von Maschinensystemen

Werkstoffe

Materialforschung und -entwicklung beeinflussen nahezu jeden Aspekt der Produktleistung. Durch sorgfältige Auswahl der Materialzusammensetzung, Wärmebehandlung und Keramikmaterialien ermöglicht NSK die Optimierung der Anwendungsleistung. Dies kann aus Verbesserungen der Funktion, Lebensdauer oder Zuverlässigkeit oder aus Fortschritten bei der Kosteneffizienz oder Produktionseffizienz resultieren.

Bereiche

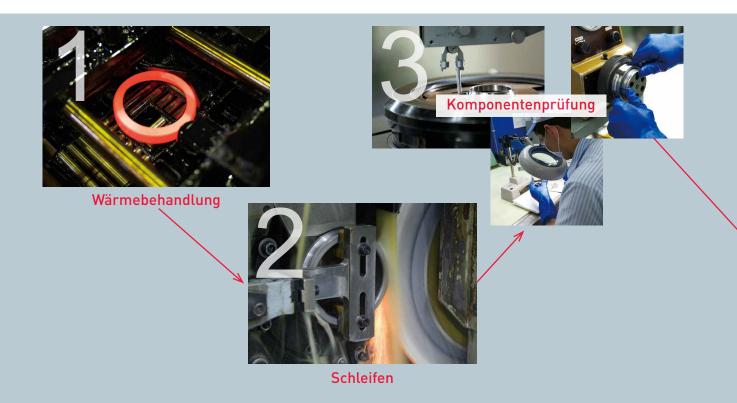
- Hochfeste Materialien (Stahl, Kunstharz, Keramik)
- Wärmebehandlung, Materialermüdung

Mechatronik

Durch die Kombination von Mechanik und Elektronik lassen sich wesentliche Fortschritte bei Hochleistungsmotoren, Steuerungstechnologien, hochpräzisen Sensortechnologien und biomedizinischen mikroelektromechanischen Systemen erzielen. Die Mechatronik spielt auch eine wichtige Rolle bei Anwendungen im Bereich von Montagetechnologien, bei denen hohe Temperaturen sowie eine hohe Leistungsdichte und Zuverlässigkeit gefordert sind.

Bereiche

- Motor-, Schaltungs- und Steuerungstechnik
- Sensorik
- Verpackungstechnik
- Bio-MEMS-Technologie (biomedizinische mikroelektromechanische Systeme)

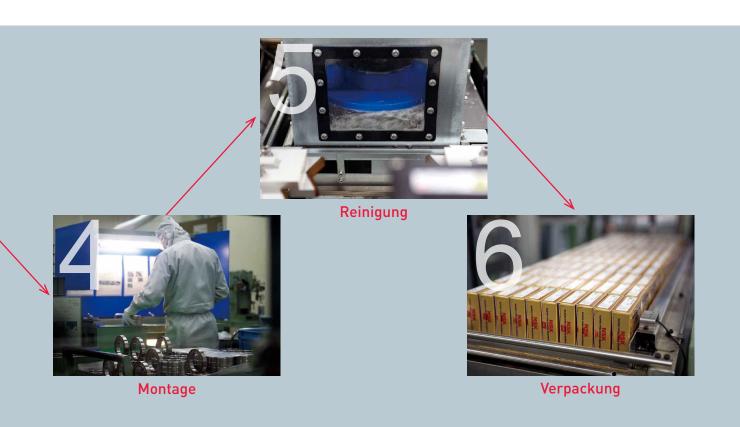

Fertigungstechnik

Um einen Beitrag zum Umweltschutz zu leisten und die Sicherheit mithilfe unserer vier Kerntechnologien zu erhöhen, müssen diese Technologien mit einer weiteren Zutat mit Leben erfüllt werden. NSK setzt bei seinen Einrichtungen KI ein und nutzt das IoT. Auf diese Weise optimiert das Unternehmen seine übergeordnete Produktionsstruktur und hat sich zum Ziel gesetzt, smarte Fabriken zu schaffen, die Platz und Energie sparen und einen geringeren Personalaufwand erfordern.

Qualitätskontrolle und Produktionskapazitäten

Hochgenauigkeitslager von NSK bieten höchste Präzision. Sie werden auf unseren Produktionslinien mit hochmoderner Ausrüstung und unserer einzigartigen Produktionstechnologie gefertigt. Zum Tragen kommt dabei außerdem unser Anspruch, auf jeder Ebene des Produktionsprozesses in jedem NSK Werk die gleichen strengen Qualitätskontrollverfahren umzusetzen.

An unseren globalen Produktionsstandorten in Japan und England konzentrieren wir bei NSK unsere Aktivitäten darauf, hochpräzise Produkte anzubieten, mit denen wir die unterschiedlichsten Anforderungen von Kunden auf der ganzen Welt schnell erfüllen können.


Hochpräzise Fertigung

Hochgenauigkeitslager von NSK werden im Nanometerbereich auf Maßhaltigkeit geprüft. Dank unserer herausragenden Fertigungstechnologien sind wir in der Lage, die weltweit präzisesten Produkte zu liefern.

Globale Produktionsstandorte in England und Japan

Die Hochgenauigkeitslager von NSK werden sowohl in England als auch in Japan gefertigt. Durch die Kombination der Kompetenzen und Standorte dieser Produktionseinrichtungen können wir schnell auf Kundenanfragen reagieren.

Qualitätskontrolle und Verantwortung für die Umwelt

Als Mitglieder eines nach ISO 9001 zertifizierten Unternehmens halten sämtliche Werke von NSK strenge internationale Standards bei der Qualitätskontrolle ein. NSK unternimmt zudem umfassende unternehmensweite Anstrengungen, um Umweltbelange mit höchster Priorität zu behandeln.

NSK Verpackung

Die goldene Verpackung garantiert höchste Präzision von NSK.

Höchstleistung für eine neue Generation

NSK gibt sich mit dem Erreichten nicht zufrieden, sondern sucht immer neue Wege. In der Qualität unserer Produkte lassen wir uns nicht auf Kompromisse ein, sondern entwickeln neue Techniken für neue Systemlösungen. Dank modernster Werkstoffe und Berechnungsverfahren entwerfen und fertigen wir herausragende und extrem leistungsfähige Hochgenauigkeitslager.

NSK ist stets bestrebt, die Qualität und Leistungsfähigkeit zu bieten, die man von einem Lager der nächsten Generation erwartet.

Inhalt Kapitel 2

Eigenschaften von Hochgenauigkeitslagern

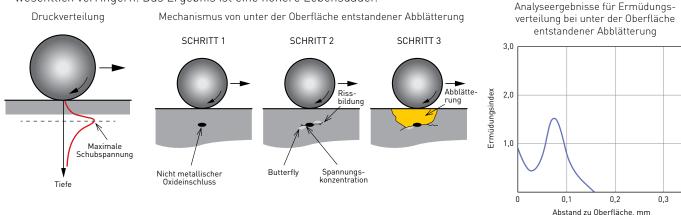
Höhere Lebensdauer durch innovative Stähle	16
Wälzkörper aus Keramik	18
Käfige	20
Produktsortiment	22
Leistungsmerkmale der verschiedenen Lagertypen	24

Höhere Lebensdauer durch innovative Stähle

Zwei verschiedene Stahlwerkstoffe für lange Lebensdauer und bestes Betriebsverhalten von NSK-Hochgenauigkeitslagern

NSK hat bahnbrechende Nachweis- und Bewertungsmethoden für Einschlüsse in Stahl und daraus resultierende Stahlerzeugungsverfahren etabliert. Dadurch konnten Stähle für Wälzlager mit langer Lebensdauer, hoher Drehzahl und hoher Last entwickelt werden. Zwei Stahlwerkstoffe, SHX-Stahl für Anwendungen mit extremer Drehzahl und Z-Stahl für verlängerte Lebensdauer im Normalbetrieb, werden für NSK-Hochgenauigkeitslager verwendet.

Z-Stahl als Standard-Werkstoff für Hochgenauigkeitslager


Z-Stahl

Werkstoff mit standardmäßig langer Lebensdauer Stahl mit langer Lebensdauer und minimalen nicht metallischen Oxideinschlüssen

Die Wälzermüdung von Wälzlagern wird signifikant von nicht metallischen Einschlüssen beeinflusst. Nicht metallische Oxideinschlüsse wirken sich besonders nachteilig aus. Z-Stahl ist der Wälzlagerwerkstoff, der dieses Problem löst.

Eigenschaften von Z-Stahl

In reinen Umgebungen, in denen Hochgenauigkeitslager zum Einsatz kommen, lässt sich die Lagerlebensdauer in Anwendungen erhöhen, bei denen Abblätterungen unter der Oberfläche entstehen, indem man den Anteil nicht metallischer Oxideinschlüsse im Stahl reduziert. Mithilfe der Technologie von NSK zum Auswerten der Reinheit von Stahlwerkstoffen lässt sich der Sauerstoffgehalt minimieren und der Anteil von Verunreinigungen wie Ti oder S wesentlich verringern. Das Ergebnis ist eine höhere Lebensdauer.

Ermittlung des Ursprungs von Abblätterung

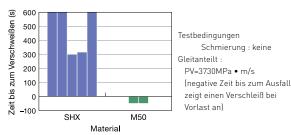
Produkte aus Z-Stahl

NSK verwendet als Werkstoff standardmäßig Z-Stahl

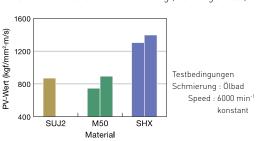
SHX-Stahl für Anwendungen mit extremen Drehzahlen

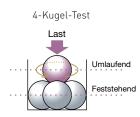
SHX-Stahl

Besser verschleißbeständiger SHX-Stahl für hohe Temperaturen und Anwendungen mit hohen Drehzahlen 4-mal höhere Ermüdungslebensdauer und 20 % höhere Drehzahl als bei SUJ2 Z Stahl

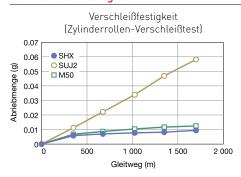

SHX-Stahl ist durch das spezielle Wärmebehandlungsverfahren von NSK besonders wärmebeständig.

• Eigenschaften von SHX-Stahl

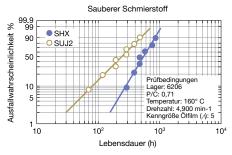

Die Verschleißfestigkeit von SHX-Stahl übertrifft die von hitzebeständigem M50-Stahl, das für Lager an der Hauptwelle von Flugzeugtriebwerken verwendet wird von Flugzeugtriebwerken verwendet. Diese Wärmebeständigkeit sowie die geringere Reibung und die höhere zulässige Flächenpressung machen den SHX-Stahl zum optimalen Werkstoff für Werkzeugmaschinenlager für höchste Drehzahlen. Patent Nr. 2961768JP


Verschleißfestigkeit

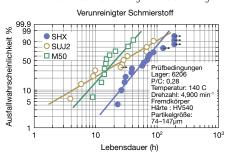
Verschweißverhalten ohne Schmierung (Vier-Kugel-Test)



Verschleißfestigkeit



Zylinderrollen-Verschleißtest



• Ermüdungslebensdauer

Unter der Oberfläche beginnende Pittings

An der Oberfläche beginnende Pittings

Lager aus SHX-Stahl

Lager für höchste Drehzahlen – NSKROBUST Serie – für Werkzeugmaschinen Spindeln

Wälzkörper aus Keramik

Hohe Drehzahl, geringe Wärmeentwicklung, hohe Steifigkeit und hohe Zuverlässigkeit

Herausragende Leistungsmerkmale wie Wärmebeständigkeit, lange Lebensdauer, geringes Gewicht, geringe Wärmedehnung und elektrische Isolierung zeichnen Lager mit Keramikkugeln aus. Als Lager einer neuen Generation sind sie für unterschiedlichste Anwendungen die beste Wahl. NSK verwendet den keramischen Werkstoff Siliziumnitrid (Si3N4) für die Wälzkörper in Hybridlagern. Sie haben sich in Anwendungen mit höchsten Drehzahlen und in Kombination mit höchster Genauigkeit bewährt, in den Anwendungen, in denen Lager mit Stahlkugeln an ihre Grenzen stoßen.

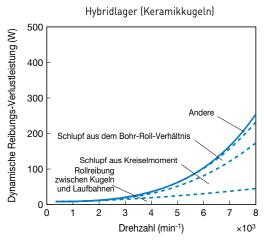
Hohe Drehzahlen und geringe Wärmeerzeugung

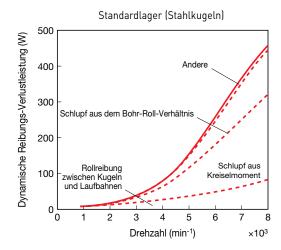
- Geringes Gewicht

Keramik hat 40% der Dichte von Stahl und daher entstehen bei Wälzkörpern aus Keramik auch geringere Zentrifugalkräfte, was eine längere Lagerlebensdauer möglich macht.

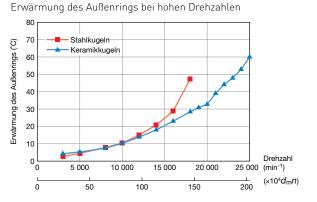
- Geringe Maßänderung durch Temperatureinfluss

Keramik hat einen geringen Wärmedehnungskoeffizienten. Selbst bei hohen Betriebstemperaturen, die bei hohen Drehzahlen auftreten, dehnen sich die Wälzkörper weniger aus. Eine Erhöhung der Vorspannung und die daraus resultierende erneute Temperaturerhöhung werden vermindert.



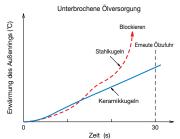

Wärmeerzeugung ermöglicht extreme Drehzahlen

Geringe Reibung


Die geringere Reibung der Wälzkörper im Betrieb bedeutet geringere Wärmeentwicklung.

Rechnerisches Ergebnis der Erwärmung

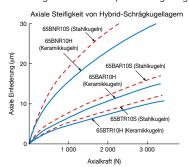
NSK Spindel erzielt ein n x d_m von 4 Millionen mit Keramikkugeln



Keramikkugeln

Geringe Blockierneigung

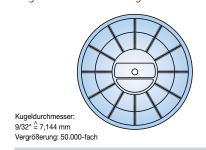
Bei Keramikkugeln ist die Gefahr des Blockierens geringer als bei Stahlkugeln.

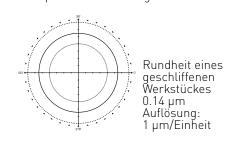

Zerspanung mit einer NSK-Spindel die mit Keramikkugeln ausgerüstet ist

Fräser: Ø16 Werkstoff: A5052 Drehzahl: 20 000 min⁻¹ 2 500 cm³/min

Hohe Steifigkeit

Der Elastizitätsmodul von keramischen Kugeln ist um ca. 50% höher als der von Stahl. Sie sind daher ideal für Lager in Werkzeugmaschinenspindeln geeignet, bei denen eine hohe Steifigkeit gefordert ist.

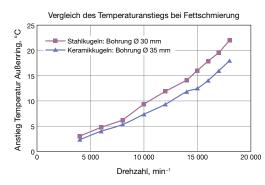

Zerspanung mit NSK-Spindel die mit Keramikkugeln ausgerüstet ist

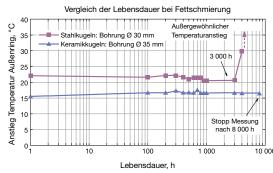


Stirnfräser: Ø80 Werkstoff: S50C Drehzahl: 1 200 min⁻¹ 504 cm³/min

Hohe Genauigkeit

Die Erfahrung von NSK bei der Fertigung von Wälzkörpern in Verbindung mit einem optimierten Sinterprozess und verbesserten Werkstoffen ergeben Kugeln und Rollen mit größerer Genauigkeit. Lager mit diesen hochgenauen Keramikwälzkörpern sind für hochgenaue Maschinen wie geschaffen.





Rundheitsmessgerät mit hoher Vergrößerung (200 000-fach)

Längere Schmiermittelgebrauchsdauer

Eine geringe Wärmeentwicklung und hohe Verschleißfestigkeit ergeben eine verlängerte Lagerlebensdauer bei Fettschmierung.

Vorspannung: 147 N (Feder) Verwendetes Fett: ISOFLEX NBU15 Max. Drehzahl: n = 18 000 min⁻¹

Käfige

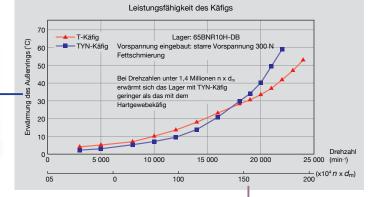
Kunststoffkäfige für hohe Drehzahlen

Kunststoffe werden wegen ihres geringen Gewichts (nur 1/6 der Dichte von Messing), der guten Formbarkeit und hohen Korrosionsbeständigkeit häufig für Wälzlagerkäfige eingesetzt. Kunststoffe lassen sich in der Zusammensetzung so verändern, dass gezielt geringere Reibung und Wärmeentwicklung und dadurch eine bessere Drehzahleignung erzielt wird. Spezielle verschleißarme Kunststoffe bewirken eine längere Fettgebrauchsdauer. Kunststoffkäfige sind daher besonders für Lager in Werkzeugmaschinenspindeln eine gute Wahl.

Schrägkugellager

Kugelgeführter Polyamidkäfig (TYN)

Geräuscharm


- Dieser Käfiqtyp zeichnet sich durch geringere Reibung und geringe Laufgeräusche aus.
- Der Käfig ist besonders für Fettschmierung geeignet. Der freie Raum im Lagerinneren ist größer als bei einem außenringgeführten Käfig, so dass mehr Schmierfett Platz findet.
- Bei Fettschmierung braucht das Lager mit Polyamidkäfig keine so lange Einlaufzeit

Produkte:

Schrägkugellager für höchste Drehzahlen, ROBUST Serie

Außenringgeführter Hartgewebekäfig — (T, TR, TA)

 Bei extrem hohen Drehzahlen hat der außenringgeführte Käfig ein stabileres Laufverhalten als der Polyamidkäfig.

Produkte:

Standard-Schrägkugellager, STANDARD Serie Schrägkugellager für höchste Drehzahlen, ROBUST Serie

Außenringgeführter PPS SURSAVE Käfig - (TSR) Teilkristalliner Thermoplast, technisches Polymer

Ultrahohe Drehzahlen

Allzweck

Höchste Drehzahl

- Speziell für Öl-Luft-Schmierung entwickelt, bis 3,0 Millionen dmn bei hohen Drehzahlen
- Hochleistungskäfig, reduziert NRRO (nicht wiederholbare Rundlaufabweichungen), zeichnet sich durch geringen Temperaturanstieg aus

Produkte

Schrägkugellager der NSKROBUST-Serie für ultrahohe Drehzahlen

Kugelgeführter Messingkäfig - (MY)

- Dieser Käfig zeichnet sich durch hohe Temperaturbeständigkeit, hohe Festigkeit und hohe Steifigkeit aus
- Speziell für große Wälzlager geeignet

Produkte:

Hochgenaue Schrägkugellager, Standardserie Schrägkugellager der NSKROBUST-Serie für ultrahohe Drehzahlen

Zylinderrollenlagern

Käfig bei einreihigen Zylinderrollenlagern

${\bf Außenringgef \"{u}hrter\ PEEK-K\"{a}fig\ (Polyetheretherketon)\ temperaturbest\"{a}ndig-(TP)}$

Höchste Drehzahl

- Maßstabil, nur geringe Verformung bei hohen Drehzahlen
- Temperaturbeständig bis 240 °C

- Außerordentlich verschleißfest, für Öl-Minimalschmierung geeignet

 Große Festigkeit, Zähigkeit, Verschleißund Ermüdungsfestigkeit

Produkte

Einreihiges Zylinderrollenlager für höchste Drehzahlen, Robust Serie

Rollengeführter Messingmassivkäfig — (MR)

Normale Anwendung

- Dieser Käfig weist hohe Temperaturbeständigkeit, Festigkeit und Steifigkeit auf.

Produkte:

Einreihige Zylinderrollenlager

Käfig bei 2-reihigen Zylinderrollenlagern

Rollengeführter PPS-Käfig (Polyphenylensulfid) mit hoher Steifigkeit — (TB)

Hohe Steifigkeit

- Beständig gegen die meisten sauren, basischen und organischen Lösungen
- Größere Festigkeit, Zähigkeit und Ermüdungsfestigkeit als herkömmliche Polyamid-Käfigwerkstoffe

Produkte:

Zweireihiges Zylinderrollenlager Lagerbauform mit hoher Steifigkeit

Rollengeführter Messingkäfig - (MB)

Allzweck

 Dieser Käfig zeichnet sich durch hohe Temperaturbeständigkeit, hohe Festigkeit und hohe Steifigkeit aus

Produkte:

Zweireihige Zylinderrollenlager Produktserien mit hoher Steifigkeit

Produktsortiment

NSK fertigt Hochgenauigkeitslager in verschiedenen Bauformen, z.B. die Hochleistungslager der ROBUST Serie, die Sonderlager für besondere, kundenspezifische Anwendungen und die Lager der Standardreihe.

Hochgenauigkeits-Schrägkugellager

NSKHPS

Hohe dynamische Tragzahl, optimal für Anwendungen mit niedrigen bis mittleren Drehzahlen und hohen externen Lasten geeignet.

- Serien 70xx, 72xx, 79xx
- Drei Druckwinkel: 15° (C), 25° (A5), 30° (A)
- Zwei K\u00e4figausf\u00fchrungen: Hartgewebe (TR) oder Polyamid (TYN) f\u00fcr unterschiedliche Anforderungen oder kugelgef\u00fchrter Messingk\u00e4fig (MY) abh\u00e4ngig von Anwendung und Gr\u00f6\u00dfe

Auch in abgedichteter Ausführung verfügbar

Schrägkugellager für höchste Drehzahlen (BNR, BER)

NSKROBLIST

Hochleistungslager – entwickelt für eine geringe Erwärmung bei hohen Drehzahlen. Für Präzisionsbearbeitung und höchste Drehzahlen ausgelegt.

- Zwei Druckwinkel: 18° (BNR), 25° (BER)
- Zwei Kugelwerkstoffe: Stahl (Bauform S), Keramik (Bauform H und X)
- Zwei K\u00e4figausf\u00fchrungen: Hartgewebe (TR) oder Polyamid (TYN) f\u00fcr unterschiedliche Anforderungen
- Die ROBUST Serien sind auch für Anwendungen mit höchsten Drehzahlen (über 3 Millionen n x d_m) geeignet.

Axial-Schrägkugellager für hohe Drehzahlen

NSKROBUST

Hochleistungslager für Drehbänke und sonstige Anwendungen, bei denen hohe Drehzahlen und eine hohe axiale Steifigkeit gefordert sind.

NSKROBUST Serie (BAR, BTR)

- Zwei Druckwinkel: 30°(BAR), 40°(BTR)
- Drei Kugelwerkstoffe (S), Ultra Long Life Wälzkörper (E), und Keramik (H)

NSKTAC Serie (TAC2xF, TAC2xD)

- Druckwinkel: 50°(TAC-F), 60°(TAC-D)

Schrägkugellager höchster Genauigkeit (BSR)

NSKROBUST

Hochleistungslager für Hochfrequenzspindeln, kleine schnelllaufende Spindeln und ähnliche Anwendungen.

- Serien 19, 10 und 02
- Bohrungsdurchmesser: Ø6-25mm, Druckwinkel: 15°
- Zwei Kugelwerkstoffe: Stahl (S) und Keramik (H, X)
- Selbsthaltendes Lager
- Verfügbar auch mit nichtschleifender Dichtung

Einreihige Zylinderrollenlager für höchste Drehzahlen

NSKROBUST

Hochleistungs-Zylinderrollenlager für Anwendungen mit höchsten Drehzahlen, z.B. für Spindeln in Bearbeitungszentren.

- Zwei Käfigwerkstoffe: Messing (MR)^[1] und PEEK-Kunststoff (TP)
- Drei Werkstoffe für Wälzkörper: Wälzlagerstahl, SHX-Stahl, Keramik
- Lager der ROBUST Serie RXH für höchste Drehzahlen, sind für Drehzahlen bis 2,2 Millionen n ${\bf x}$ d geeignet

[1] Standardreihe mit Käfig MR

NSKHPS Zylinderrollenlager

APTSURF

NSKHPS

Die hochgenauen Zylinderrollenlager wurden als NSKHPS-Serie neu eingeführt. Dank der optimierten Innenkonstruktion der Wälzlager und einer verbesserten Fertigungstechnologie konnte die Lagerlebensdauer im Vergleich zu herkömmlichen Wälzlagern um 60 % gesteigert werden. Wälzlager mit Genauigkeit P4 und höher sorgen für geringere rotationsbedingte Vibrationen (APTSURF).

Einreihige Zylinderrollenlager (N10xx)

Höhere Lebensdauer und hohe Steifigkeit bei kompakter Bauweise

Zweireihige Zylinderrollenlager (NN30xx)

Zweireihige Zylinderrollenlager für Anwendungen mit hohen Drehzahlen, bei denen eine hohe Steifigkeit erforderlich ist, z. B. Spindeln von Drehbänken

- Zwei Käfigwerkstoffe: Messing (MB) oder PPS Kunststoff (TB)
- Standardspezifikation E44: Nachschmiernut und -bohrungen im Außenring

Axial-Schrägkugellager zur Lagerung von Kugelgewindetrieben (NSKTACxxC)

NSKHPS

Speziell für Anwendungen als Stützlager für Kugelgewindetriebe in Werkzeugmaschinen entwickelte, hochsteife Axiallager.

- Druckwinkel: 60°
- Universal paarbar zur Erzielung der erforderlichen Steifigkeit oder Lebensdauer
- Auch befettet erhältlich
- Auch mit berührenden, staubdichten Dichtscheiben lieferbar

Axial-Schrägkugellager zur Lagerung von Kugelgewindetrieben (NSKTAC0xD, NSKTACxx-3)

NSKHPS

Die Lager mit hoher Tragfähigkeit erreichen eine fünfmal so lange Lebensdauer wie Lager derselben Größe zur Lagerung von Kugelgewindetrieben in Werkzeugmaschinen.

- Druckwinkel: 55°
- Als Stützlager für Kugelgewindetriebe in großen Werkzeugmaschinen geeignet
- Leichtere Handhabung als bei Kegelrollenlagern oder Axial-Pendelrollenlagern dank nicht zerlegbarer Konstruktion
- Universelle Kombination: kann universell auf beliebige Lastbedingungen abgestimmt werden

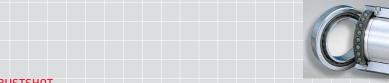
Hochgenaue Schrägkugellager mit flachem Profil (ROBUSTSLIM [BRSA])

Sonderreiher

Speziell entwickelte Schrägkugellager zum Schwenken (Drehen/Neigen) von Spindelköpfen und für Dreh-/Kipptische in Werkzeugmaschinen.

- Geringeres Drehmoment als bei Rollenlagern
- Mit dem BRSA130 konnte eine NRRO (nicht wiederholbare Rundlaufabweichung) von weniger als 0,5 μm erzielt werden
- Bietet die gleiche hohe Steifigkeit gegenüber Momenten wie Kreuzrollenlager
- Im Vergleich zu Standardwälzlagern um 35 % oder mehr verringerte Wälzlagerbreite

Schrägkugellager für höchste Drehzahlen


NSKROBUST

Für hohe Drehzahlen bei gleichzeitig geringer Eigenerwärmung – NSKROBUST- Serie

Produktvorteile

- 1 Geringe Eigenerwärmung
- 2 Geringe Blockierneigung
- 3 Unempfindlich bei Temperaturänderungen Robust
- 4 Stabiles Laufverhalten bei hohen Drehzahlen

Hohe Leistungsfähigkeit

Spinshot II - XE-Type Hochleistungslager

Hochleistungslager mit großer Verschleißfestigkeit für höchste Drehzahlen, besonders geräuscharm durch spezielle Luft-Öl-Schmierung

- Werkstoff der Lagerringe: wärmebeständiger SHX-Stahl
- Wälzkörper aus Keramik

ROBUSTSHOT

Hochleistungslager mit hochzuverlässiger Schmiermittelversorgung durch Öl-Luft-Schmierung in Kombination mit platzsparender Konstruktion

- Material Lagerringe: SUJ2 Wälzlagerstahl
- Keramikkugeln

NSKROBUST-Serie - X-Type

Hochleistungslager mit hoher Verschleißfestigkeit und Sicherheit gegen Heißlaufschäden bei hohen Drehzahlen

- Werkstoff der Lagerringe: wärmebeständiger SHX-Stahl
- Wälzkörper aus Keramik

NSKROBUST-Serie - H-Type

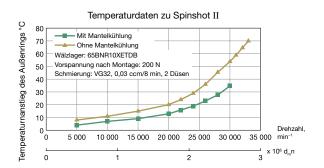
Hochleistungslager mit geringer Erwärmung bei hohen Drehzahlen

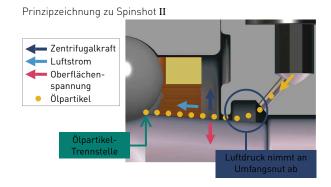
- Werkstoff der Lagerringe: Wälzlagerstahl SUJ2
- Wälzkörper aus Keramik

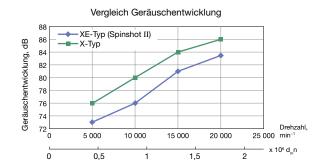
NSKROBUST-Serie - E-Type

Stahlkugellager mit verbessertem Widerstand gegen Ausfall und höherer Lebensdauer

- Werkstoff der Lagerringe: Wälzlagerstahl SUJ2
- Wälzlagerkörper mit ultralanger Lebensdauer

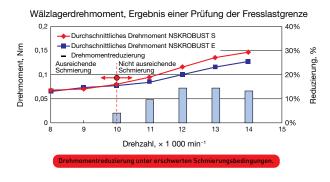

NSKROBUST-Serie - S-Type


- Werkstoff der Lagerringe: Wälzlagerstahl SIII?
- Wälzkörper aus Wälzlagerstahl

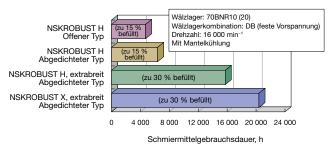

Hohe Drehzahlen

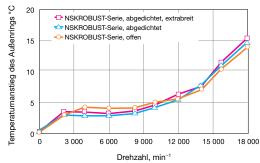
Spinshot - Eigenschaften XE-Type

- Hohe Drehzahleignung (mit starrer Vorspannung)
 Bei starrer Vorspannung Drehzahlen bis 2,5 Mio n x d_m
 mit Gehäusekühlung (max. 2,7 Mio n x d_m ohne Kühlung)
- Geräuscharmer Lauf Um 3 bis 5 dB leiser als herkömmliche Öl-Luft-Schmiersysteme
- Einbaulage
 Stabiler Lauf in vertikaler oder horizontaler Einbaulage
 Geringer Luftverbrauch
 - Der Luftverbrauch kann um 1/3 gegenüber der herkömmlichen Öl-Luft-Schmierung reduziert werden.



NSKROBUST-Serie - Eigenschaften E-Type


Höhere Fresslastgrenze und höhere Lebensdauer dank robusterem Werkstoff.



Schrägkugellager abgedichtet - Eigenschaften

Vergleich der Schmiermittelgebrauchsdauer verschiedener Wälzlagertypen

Vergleich des Temperaturanstiegs bei offenen vs. abgedichteten Wälzlagern

Hochleistungs-Zylinderrollenlager

APTSURF

Entwickelt für hohe Drehzahlen und hohe Steifigkeiten

Produktvorteile

- Geringe Eigenerwärmung
- Geringere Blockierneigung
- Stabiles Laufverhalten bei höchsten Drehzahlen
- Geringe Vibrationen

Hohe Leistungsfähigkeit

Ultra High Speed Einreihige Zylinderrollenlager **NSKROBUST RX Type**

Hochleistungslager mit hoher Verschleißfestigkeit und Sicherheit gegen Heißlaufschäden bei höchsten

- Werkstoff der Lagerringe und Wälzkörper: Wärmebeständiger SHX-Stahl für hohe Drehzahlen
- Außenringgeführter PEEK-Käfig

Ultra High Speed Einreihige Zylinderrollenlager NSKROBUST RS Type

Hochgeschwindigkeitsserie mit ausgezeichneter

- Werkstoff der Lagerringe / Wälzkörper: SUJ2 Wälzlagerstahl
- Außenringgeführter PEEK-Käfig

Zweireihiges Zylinderrollenlager Geringe Wärmeentwicklung NN-Z Serie

Serie mit geringer Wärmeent-wicklung, speziell für Loslager

- Werkstoff der Lagerringe / Rollen: SUJ2 Wälzlagerstahl
- Rollengeführter PPS Käfig

Hohe Lebensdauer

Zweireihige Zylinderrollenlager mit hoher Steifigkeit - MB Serie

- Werkstoff der Lagerringe / Rollen: SUJ2 Wälzlagerstahl
- Polymer Käfig - Werkstoff der Lagerringe /Rollen:
- SUJ2 Wälzlagerstahl
- Rollengeführter Messingkäfig Rollengeführter PPS-Käfig

Einreihige Zylinderrollenlager mit Messingkäfig - Werkstoff der Lagerringe /Rollen:

- SUJ2 Wälzlagerstahl
- Rollengeführter Messingkäfig

Hohe Lebensdauer und geringe Vibration

Hohe

Drehzahlen

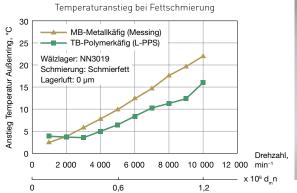
Eigenschaften der hochpräzisen leistungsstarken Zylinderrollenlager vom Typ APTSURF

- Geringe Vibrationen (APTSURF)

Durch eine noch präzisere Fertigung von Wälzlagerteilen ist es uns gelungen, die Vibrationen während der Drehung zu verringern. Erhältlich für Wälzlager mit Genauigkeit P4 oder höher und einem Außendurchmesser von bis zu 360 mm.

- Mit verlängerter Lebensdauer (NSKHPS)

Dank der optimierten Innenkonstruktion der Wälzlager und einer verbesserten Fertigungstechnologie konnte die Lagerlebensdauer im Vergleich zu herkömmlichen Wälzlagern um 60 % gesteigert werden. Erhältlich für Wälzlager mit Genauigkeit P5 oder höher und einem Außendurchmesser von bis zu 360 mm.


Eigenschaften von hochsteifen zweireihigen Zylinderrollenlagern

- Mit verlängerter Lebensdauer

Der hochsteife Käfig aus PPS zeichnet sich durch eine hervorragende Verschleißfestigkeit aus. Dadurch kommt es beim Anlaufen zu geringerem Verschleiß und das Schmierfett hat eine längere Lebensdauer.

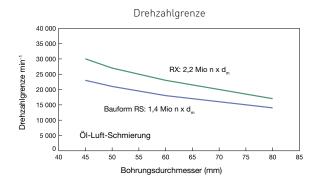
 Für Anwendungen mit hohen Drehzahlen erhältlich

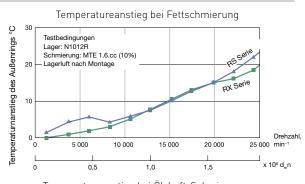
Die NN-Z-Serie von NSK mit geringer Wärmeentwicklung ist speziell für Loslager konzipiert.

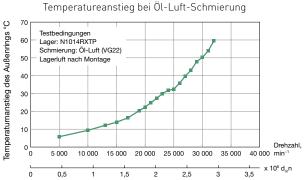
NN-Z-Serie

Eigenschaften der einreihigen Zylinderrollenlager der NSKROBUST-Serie für ultrahohe Drehzahlen

- Geringe Wärmeentwicklung


Dank der Innenkonstruktion und des modernen Käfigwerkstoffs kommt es nur zu geringer Wärmeentwicklung.


- Fresslastgrenze


Der RX-Typ besteht aus SHX-Stahl, was sich in einer optimierten Fresslastgrenze bemerkbar macht.

- Auslegung auf hohe Drehzahlen

Alle Typen verfügen über Käfige aus wärmebeständigem und hochsteifem PEEK für den Betrieb bei hohen Drehzahlen.

Hochgeschwindigkeits-Axial-Schrägkugellager

NSKROBUST

Hochleistungslager mit hervorragender Drehzahleignung und großer Steifigkeit – die ROBUST Serie

Produktvorteile

- 1 Hohe Genauigkeit
- 2 Geringe Eigenerwärmung

Hochgeschwindigkeits-Axial-Schrägkugellager BAR10-Serie

Druckwinkel 30°, Eignung für höhere Drehzahlen. Austauschbar mit Lagern der Serien BTR und TAC

Hochgeschwindigkeits-Axial-Schrägkugellager BTR10-Serie

Druckwinkel 40°, hohe axiale Steifigkeit, geringe Eigenerwärmung. Austauschbar mit Lagern der Serie TAC

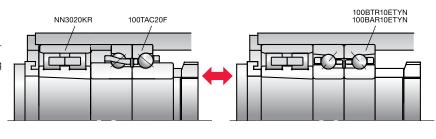
Zweireihige Axial-Schrägkugellager NSKTAC-F-Serie

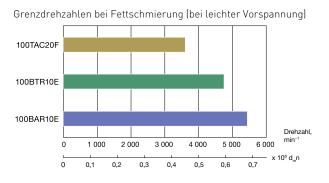
50°-Druckwinkel mit höherer axialer Steifigkeit.

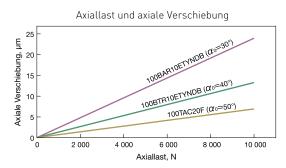
Zweireihige Axial-Schrägkugellager NSKTAC-D-Serie

6Druckwinkel 60°, sehr große axiale Steifigkeit

Eigenschaften von Axial-Schrägkugellagern für Drehmaschinen Spindel


Austauschbarkeit NSKTAC


BAR, BTR


BAR und BTR haben besondere Breitenmaße

und Außendurchmesser Toleranzen.

Durch den Austausch von NSKTAC durch BAR oder BTR lassen sich eine geringere Wärmeentwicklung und höhere Drehzahlen realisieren. Entsprechend führt ein Austausch von BAR oder BTR durch NSKTAC zu einer höheren Steifigkeit (siehe Abbildung rechts).

Hochgenauigkeits-Schrägkugellager

NSKROBUST

Geringe Wärmeentwicklung bei hoher Steifigkeit, für Spindeln mit ultrahohen Drehzahlen – NSKROBUST Serie (BSR)

1 Optimierte Innenkonstruktion

Produktvorteile

- 2 Nicht teilbar, dadurch einfache Handhabung
- 3 Beliebige Lagersätze durch Universalausführung möglich

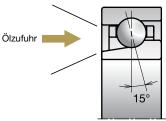
Eigenschaften der BSR-Serie

- Optimierte Konstruktion

Der optimierte außenringgeführte Käfig bewirkt eine bessere Schmierstoffversorgung. Durch den zurückgesetzten Bord am Innenring wird der Schmierstoff besser durch das Lager geführt.

- Lange Lebensdauer

Der wärmebeständige SHX-Stahl bringt eine längere Lebensdauer.


- Einfache Handhabung


Nicht teilbar, dadurch einfacher Ein- und Ausbau.

- Geringe Wartung

Erhältlich als abgedichtetes Lager, was den Wartungsaufwand reduziert.

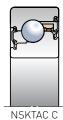
abgedichtet

Axial-Schrägkugellager zur Lagerung von Kugelgewindetrieben

Hochleistungslager mit hoher Steifigkeit-NSKTAC C-Serie

Produktvorteile

- Längere Lebensdauer
- 2 Geringeres Anlaufreibmoment
- Einfache Handhabung
- Hohe Genauigkeit


Eigenschaften der NSKTAC C Serie


Anwendungen: Stützlager für Kugelgewindetriebe in Vorschubantrieben von Werkzeugmaschinen, Kugelgewindetriebe für den Transport usw.

- Designed für hohe Leistung bei den oben genannten Anwendungen 60° Kontaktwinkel und mehr Kugeln sorgen für hohe Steifigkeit
- Kontaktdichtung für hohe Zuverlässigkeit und hohe Abdichtung Die Lager dieser Serie sind standardmäßig mit berührenden Dichtungen versehen; das sorgt für eine hohe Staubdichtheit und verhindert Fettaustritt. Leichter Kontakt der Dichtlippe für geringes Drehmoment und geringe Wärmeentwicklung. Die Farbe der Dichtung ist auf der Vorder- und Rückseite unterschiedlich, damit die Druckrichtung der Laufbahnen leicht zu erkennen ist. Für einige Lager dieser Serie ist eine Nichtberührende Dichtung erhältlich.
- Wählen Sie Ihre Lagerung:

Die universelle Kombination ist bei dieser Serie Standard und erlaubt die freie Wahl der Anordnung in 2, 3 oder 4 Reihen.

gedichtet

NSKTAC C

Axial-Schrägkugellager für Stützlager von Kugelgewindetrieben (zweireihig)

Sonderserie

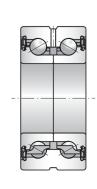
Spezielle Hochleistungslager mit einfachem Außenring und Montagebohrungen – BSBD-Serie

Produktvorteile

- 1 Leichte Handhabung
- 2 Höhere Zuverlässigkeit
- 3 Vereinfachte Montage

Eigenschaften der NSKHPS BSBD Serie

- Leichtere Handhabung


Zweireihige Axial-Schrägkugellager in Back-to-Back-Anordnung (DB) mit einteiligem Außenring. Die Lager dieser Serie sind berührungslos abgedichtet und vorgefettet für einfache Handhabung.

- Höhere Zuverlässigkeit

Ausgestattet mit einer Kontaktdichtung mit minimalen Auswirkungen auf Reibungsverluste und Wärmeentwicklung.

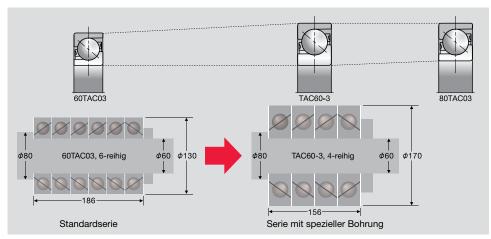
- Vereinfachte Montage (BSF Type)

BSF-Lager sind mit Befestigungsbohrung für den direkten Einbau in das Gehäuse ausgestattet. Der Außenring ist mit einer Abziehnut versehen, die den Ausbau aus dem Gehäuse erleichtert.

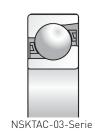
Axial-Schrägkugellager für Stützlager von Kugelgewindetrieben (für Anwendungen mit hochbelasteten Antrieben)

NSKHPS

Spezielle Hochleistungslager vereinfachen die Maschinenkonstruktion und reduzieren die Kosten-NSKTAC 03 Serie


Produktvorteile

- 1 Lange Lebensdauer
- 2 Höhere maximale axiale Belastung
- 3 Leichte Handhabung



Eigenschaften der NSKHPS TAC 03 Serie

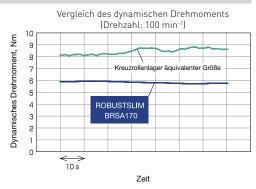
- Höhere Lebensdauer
 Größere Kugeln und ein Kontaktwinkel von 55° sorgen für eine längere Lebensdauer der Lager.
- Höhere maximale axiale Belastung
 Die optimierte Innenkonstruktion der Lager führt zu einer höheren axialen Belastbarkeit.
- Serie mit spezieller Bohrung für höhere Tragzahl bei unverändertem Wellendurchmesser
 Bei der Serie mit spezieller Bohrung handelt es sich um Wälzlager der Standardserie der nächstgrößeren
 Größe, bei denen lediglich die Bohrung verkleinert ist, sodass sich eine höhere Tragzahl bei identischem
 Wellendurchmesser sowie kürzere Spindelenden erzielen lassen.

Hochgenaue Schrägkugellager mit kleinerem Querschnitt ROBUSTSLIM

Sonderserie

Die speziell entwickelten Schrägkugellager verringern Energieverluste bei schwenkbaren (sich drehenden/neigenden) Spindelköpfen und bei Dreh-/Kipptischen

Produktvorteile


- 1 Niedriges Drehmoment
- 2 NRRO-Genauigkeit: 0,5 µm oder besser
- 3 Hohe Momentensteifigkeit
- 4 Platzsparend

Eigenschaften der hochgenauen Schrägkugellager mit flachem Profil ROBUSTSLIM

- Niedriges Drehmoment Niedrigeres Drehmoment durch Kugellagerung
- Hohe Präzision
 Mit dem BRSA130 konnte eine NRRO (nicht wiederholbare
 Rundlaufabweichung) von weniger als 0,5 μm erzielt werden
- Hohe Steifigkeit Hohe Momentensteifigkeit wie bei Kreuzrollenlagern
- Platzsparend
 Um mindestens 35 % schmaleres Profil als standardmäßiges Schrägkugellager

Hochleistungs-Schmierfette für Werkzeugmaschinenspindeln

Sonderserien

MTS, MTE

Leistungsmerkmale

MTS Enthält einen Polyharnstoff-Verdicker dadurch weiter Temperatureinsatzbereich. Empfehlung für Werkzeugmaschinenspindeln mit höchsten Drehzahlen.

MTE Auslegung für höhere Belastungen. Empfehlung für schnelllaufende Werkzeugmaschinenspindeln.

Die Eigenschaften der Fette

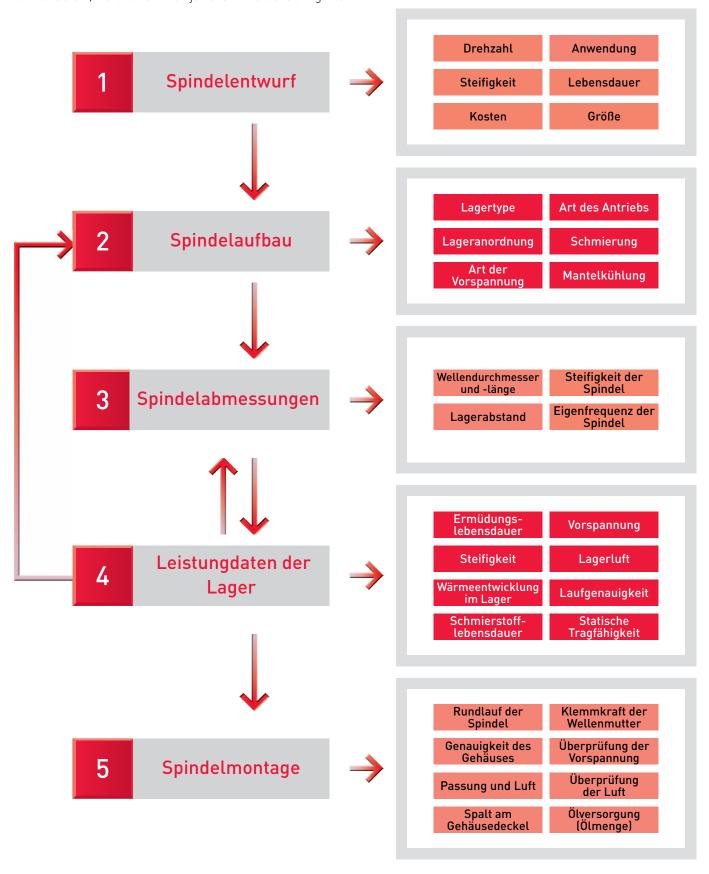
Eigenschaft	Prüfbedingungen	MTS	MTE	Prüfverfahren
Verdicker	_	Polyharnstoff	Bariumkomplex	-
Grundöl	-	Gemisch aus Synthetikölen	Esteröl	-
kinematische Viskosität des Grundöls (mm²/s)	40°C	22	23	JIS K2283
Walkpenetration NLGI	25°C, 60 W	2-3	2	JIS K2220 (7)
Tropfpunkt (°C)	-	> 220	>260	JIS K2220 (8)
Verdampfungsverlust (Massenanteil %)	99°C × 22 H	0,3	0,2	JIS K2220 (10)
Ölabscheidung (Massenanteil %)	100°C × 24 H	0,4	1,0	JIS K2220 (11)
Verpackungseinheiten	-	100 gr Tube 1 kg Dose	100 gr Tube 1 kg Dose	-

Die Auswahl des richtigen Lagers ist entscheidend.

Hochgenauigkeitslager sind für hohe Drehzahlen, Steifigkeiten und Genauigkeiten ausgelegt, die anspruchsvolle Werkzeugmaschinenanwendungen erfordern. So wie jede Anwendung eigene Anforderungen stellt, hat auch jede Lagerbauart ihre speziellen Eigenschaften. Daher ist es entscheidend, das passende Lager für die jeweilige Anwendung auszuwählen. NSK unterstützt Konstrukteure und Anwender bei der Auswahl des geeigneten Lagers, das in der jeweiligen Anwendung die optimale Leistung bringt.

Bei der Konstruktion einer neuen Spindel sowohl für höchste Drehzahlen als auch bei speziellen kundenspezifischen Anwendungen sowie bei der Lagerauswahl helfen wir Ihnen gerne. Wir verfügen über die Erfahrung und die Kompetenz auf dem neuesten Stand der Technik von Hochgeschwindigkeits-Hauptspindeln, die Ihnen helfen, die besten Lager für Ihre Anwendung zu finden. Wenn Sie weitere Informationen zur neuesten NSK Technolgie wünschen, besuchen Sie uns im Internet oder rufen Sie einfach an.

Inhalt Kapitel 3


Auswahl des richtigen Lagers

Lagerauswahl	. 38
Anwendungsbeispiele typischer Hochgeschwindigkeitsspindeln	40
Weitere Anwendungsbeispiele	42
Eigenschaften von Schrägkugellagern	46
Figenschaften von Zylinderrollenlagern	48

Lagerauswahl

Das unten stehende Diagramm zeigt die fünf Schritte bei der Auswahl eines Lagers für eine Hochgeschwindigkeitsspindel und erläutert, welche Faktoren jeweils zu berücksichtigen sind.

NSK hilft Ihnen gerne. Ob Sie eine vollkommen neue Spindel, eine Spindel für höchste Drehzahlen oder eine Spindel für eine spezielle Anwendung konstruieren. Unsere Erfahrung und unser technisches Fachwissen stehen unseren Kunden zur Verfügung.

Für die Auslegung einer Hauptspindel sollte als Erstes das Anforderungsprofil festgelegt werden, welches die Spindel erfüllen muss. Viele Eigenschaften verhalten sich konträr zueinander, deshalb muss entschieden werden, welche Anforderungen am wichtigsten sind. Eine Spindel für höchste Drehzahlen kann zum Beispiel nur verwirklicht werden, wenn Abstriche bezüglich der Steifigkeit akzeptiert werden.

Im nächsten Schritt ist der beste Aufbau der Spindel zu finden. Dies erfordert die Betrachtung jedes einzelnen Bauteils der Spindel d.h.: Lagerbauform (Schrägkugellager oder Rollenlager), Lageranordnung (Anzahl der Lagerreihen), Art des Antriebs (Riementrieb, Direktantrieb oder Motorspindel) und Art der Schmierung (Fettschmierung, Öl-Luft-Schmierung oder Öleinspritzschmierung). Nehmen Sie bitte das Diagramm auf den Seiten 40/41 zu Hilfe. Es zeigt Ihnen den Zusammenhang zwischen Spindelaufbau, Drehzahleignung und Steifigkeit.

Kap. 3

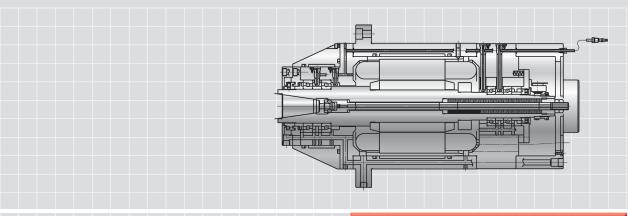
Als Nächstes werden die geometrischen Abmessungen wie Spindeldurchmesser, -länge und Lagerabstand festgelegt. Die Größe der Spindel bestimmt somit die maximale Drehzahl der Lager, die Steifigkeit und die Eigenfrequenz der Spindel. Da ausgewählte Lagerbauform, Lagerreihe und Lageranordnung in Verbindung mit der vorgesehenen Art der Schmierung die maximale Drehzahl der Spindel festlegen, nehmen Sie bitte Kapitel 4 und 5 zu Hilfe, bevor Sie eine endgültige Auswahl treffen.

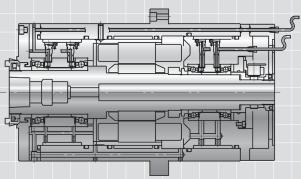
Kap. 5

Nach der Festlegung der Lagerbauform und Größe erfolgt die Festlegung der vollständigen Lagerspezifikation. Für die Auswahl der Lagerluft oder Vorspannung ist es notwendig, die Größen wie Ermüdungslebensdauer, axiale und radiale Steifigkeiten sowie die Erwärmung der Lager zu bestimmen. Die Luft oder die Vorspannung der Lager muss besonders sorgfältig festgelegt werden, da sie den größten Einfluss – besonders bei hohen Drehzahlen – auf das Laufverhalten der Spindel hat. Wird die Vorspannung falsch festgelegt, sind vorzeitige Ausfälle oder ein Blockieren der Lager zu erwarten. Manchmal ist es notwendig, Schritt 3 oder sogar ab Schritt 2 zu wiederholen, bis eine fehlerfreie Spindelkonstruktion erreicht wird.

Kap. 4

Kan. 5




Im letzten Schritt wird die Montage der Spindel festgelegt. Das Einhalten der erforderlichen Genauigkeiten für die Lagersitzstellen ist unbedingt notwendig. Die Passungen für die Lagersitze sind sorgfältig auszuwählen, die richtige Klemmkraft für die Lagermontage ist zu verwenden. Es muß überprüft werden, ob die Erhöhung der Vorspannung nach dem Lagereinbau zulässig ist.

Kap. 6

Anwendungsbeispiele üblicher Hochgeschwindigkeitsspindeln

Lageranordnung II

Vordere Lagerstelle: Schrägkugellager für ultrahohe

Drehzahlen, Duplex-Paar (DB)

Hintere Lagerstelle: Schrägkugellager für ultrahohe Drehzahlen, Duplex-Paar (DB)

(Konstante Vorspannung gilt bei

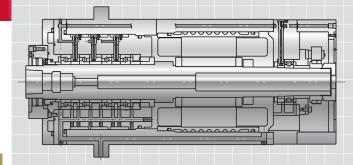
Schrägkugellagern)

Spindeln mit dieser Lagerung erreichen bei starrer Vorspannung hohe Drehzahlen und eine höhere radiale und axiale Steifigkeit als Lageranordnung I. Die Steifigkeit ist geringer als bei Lageranordnung III, diese Anordnung eignet sich jedoch für den Betrieb bei hohen Drehzahlen und für leichte Fräsarbeiten. Zudem gestaltet sich die Montage relativ einfach.

Anwendungen: Bearbeitungszentren usw.

Lageranordnung IV

Vordere Lagerstelle: Schrägkugellager für höchste Drehzahlen


im Vierersatz (DBB)

Hintere Lagerstelle: Einreihiges Zylinderrollenlager für höchste Drehzahlen (bei Verwendung von Schrägkugellagern ist eine starre Vorspannung oder eine Federvorspannung möglich)

Spindeln mit dieser Lagerung erreichen niedrigere Drehzahlen, dafür aber höhere radiale und axiale Steifigkeiten als Lageranordung II.

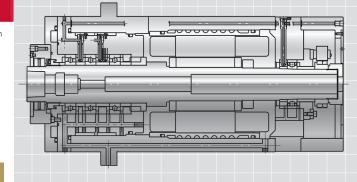
Anwendungen: NC-Drehmaschinen, NC-Fräsmaschinen, Bearbeitungszentren usw

Lageranordnung VI

Vordere Lagerstelle: Schrägkugellager für höchste Drehzahlen

im Dreiersatz (DBD)

Einreihiges Zylinderrollenlager für höchste Drehzahlen (bei Verwendung von Hintere Lagerstelle:


Schrägkugellagern ist eine starre

Vorspannung oder eine Federvorspannung möglich)

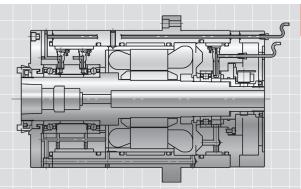
Spindeln mit dieser Lagerung erreichen niedrigere Drehzahlen, dafür aber höhere radiale und axiale Steifigkeiten als Lageranordnung II , sowie niedrigere Drehzahlen und Steifigkeiten als Spindeln mit Lageranordnung III und IV.

Anwendungen: NC-Drehmaschinen, NC-Fräsmaschinen,

(Drehzahlkennwert über n x d 700.000)

Lageranordnung I

Vordere Lagerstelle: Schrägkugellager für höchste Drehzahlen


im Zweiersatz (DT)

Hintere Lagerstelle: Schrägkugellager für höchste Drehzahlen im Zweiersatz (DT)

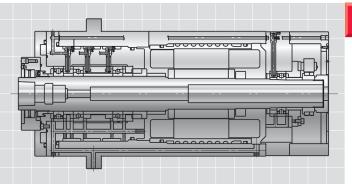
Spindeln mit dieser Lagerung sind für den Betrieb bei höchsten Drehzahlen ausgelegt. Es wird eine Federvorspannung verwendet. Diese Spindel hat zwar eine geringere Steifigkeit als eine Spindel mit starrer Vorspannung, kann aber bei geringerer Erwärmung mit höheren Drehzahlen laufen.

Anwendungen: Bearbeitungszentren, Schleifmaschinen, Hochfrequenzspindeln usw.

Lageranordnung III

Vordere Lagerstelle: Schrägkugellager für ultrahohe

Drehzahlen, Duplex-Paar (DB)


Hintere Lagerstelle: einreihiges Zylinderrollenlager für

ultrahohe Drehzahlen

Spindeln mit dieser Lagerung erreichen bei starrer Vorspannung hohe Drehzahlen und eine höhere radiale und axiale Steifigkeit als Lageranordnung I. Unter Berücksichtigung der Wärmeausdehnung der Welle wird an der hinteren Lagerstelle ein Zylinderrollenlager verwendet werden, um für den Axialspiel Ausgleich zu sorgen.

Anwendungen: Bearbeitungszentren usw.

Lageranordnung V

Vordere Lagerstelle: Einreihiges Zylinderrollenlager für höchste

Drehzahlen und Schrägkugellager im Zweiersatz (DB)

Einreihiges Zylinderrollenlager für höchste Hintere Lagerstelle:

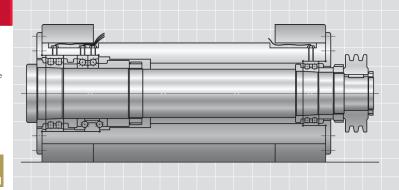
Drehzahlen (bei Verwendung von Schräg-kugellagern ist eine starre Vorspannung oder

eine Federvorspannung möglich

Spindeln mit dieser Lagerung sind, wie auch Spindeln mit Lageranordnung ${
m III}$, für hohe Drehzahlen geeignet. Durch das Zylinderrollenlager in der vorderen Lagerposition ist die radiale Steifigkeit hoch, so dass eine solche Spindel sowohl für hohe Drehzahlen als auch für hohe Belastungen geeignet ist

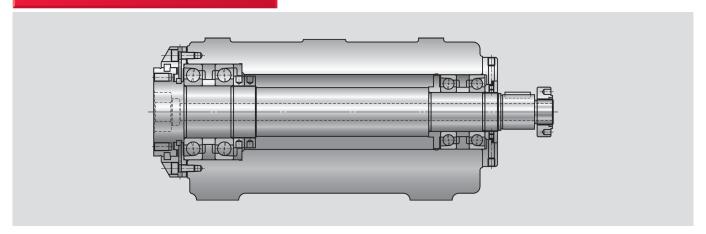
Anwendungen: NC-Drehmaschinen, NC-Fräsmaschinen Bearbeitungszentren usw

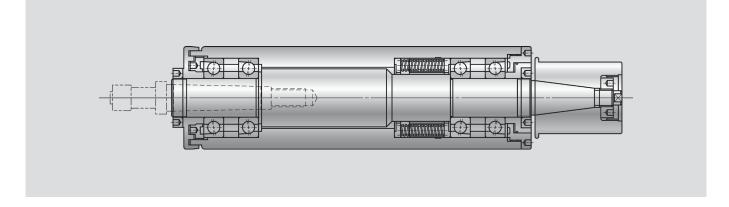
Lageranordnung VII


Vordere Lagerstelle: Zweireihiges Zylinderrollenlager und ein Schrägkugellager-Zweiersatz (DB)

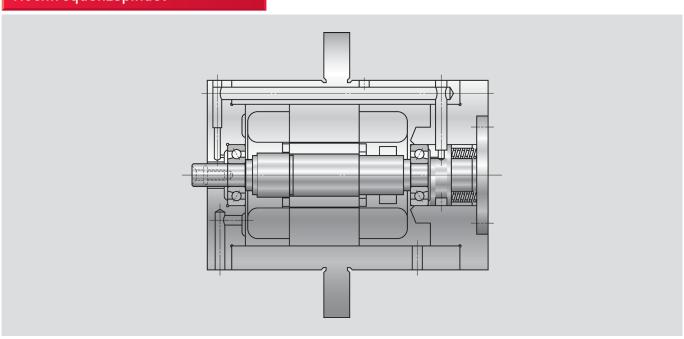
Hintere Lagerstelle: Zweireihiges Zylinderrollenlager

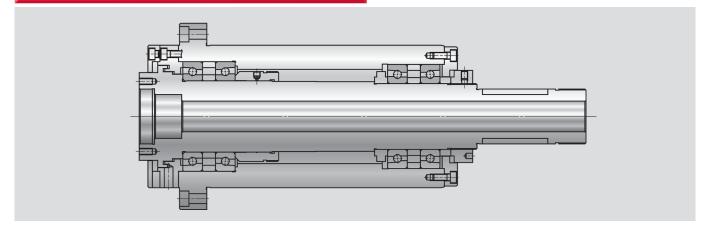
Spindeln mit dieser Lagerung weisen von allen Anwendungsbeispielen die kleinste Drehzahleignung auf, haben aber dafür die höchste radiale und axiale Steifigkeit

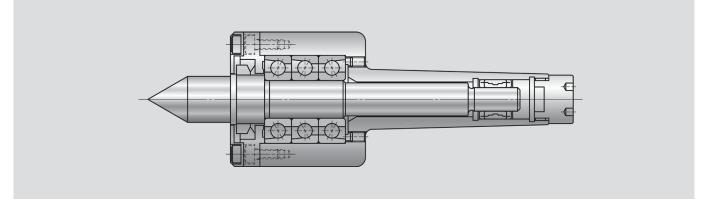

Anwendungen: NC-Drehmaschinen, NC-Fräsmaschinen, Bearbeitungszentren usw.

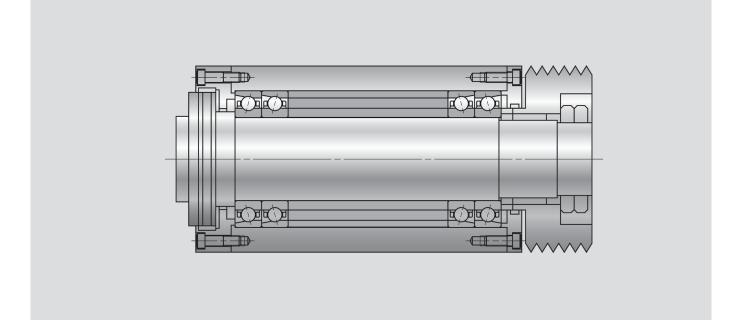


Weitere Anwendungsbeispiele

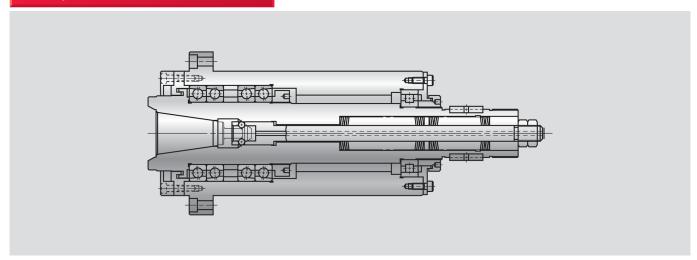

Bohreinheit


Schleifspindel

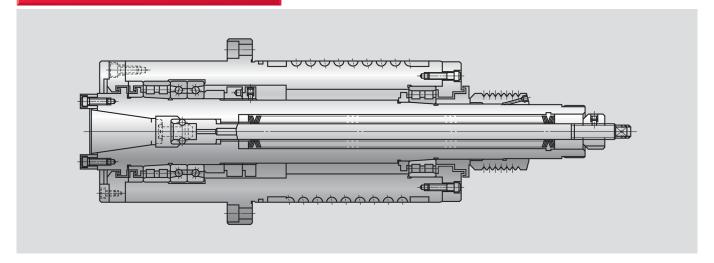

Hochfrequenzspindel


Spindeleinheit einer Präzisionsdrehmaschine

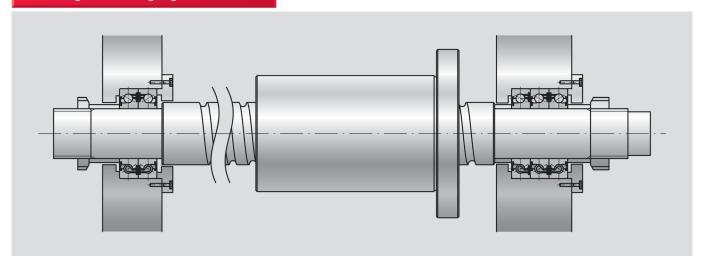
Mitlaufende Körnerspitze

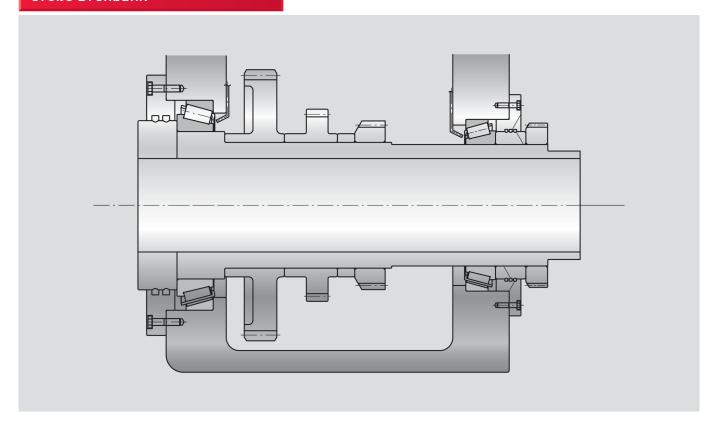


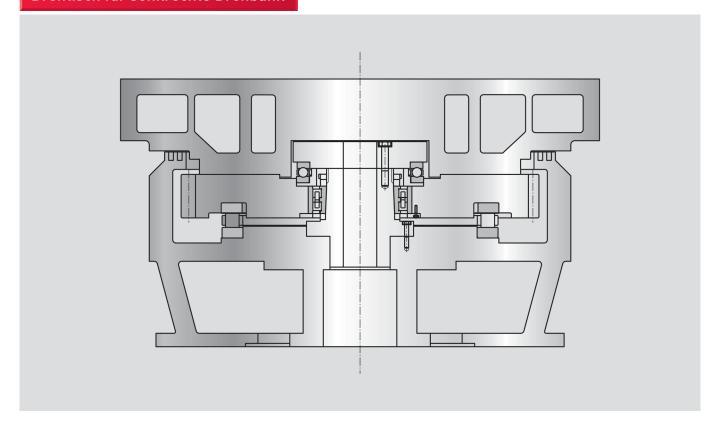
Spindeleinheit



Weitere Anwendungsbeispiele


Frässpindel


Hochsteife Spindel

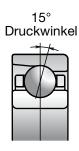

Stützlager für Kugelgewindetrieb

Große Drehbank

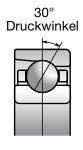
Drehtisch für senkrechte Drehbank

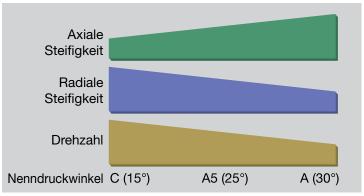
Eigenschaften von Schrägkugellagern

Die Haupteigenschaften des Schrägkugellagers

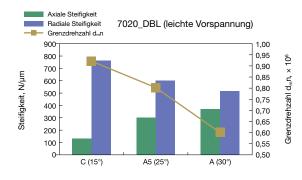

Vordefinierter Druckwinkel
 Auswahl der Vorspannung
 Mehrere Kombinationen aus Lageranordnungen sind möglich

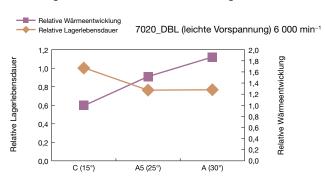
Bei der Auswahl von Schrägkugellagern sind die drei links aufgeführten Eigenschaften zu berücksichtigen.

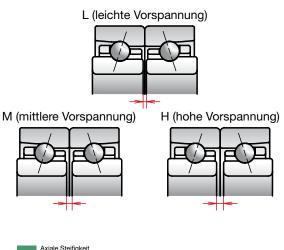

Damit unsere Kunden das optimale Wälzlager für ihre jeweilige Anwendung auswählen können, enthält dieser Abschnitt grundlegende Informationen zu Druckwinkel, Vorspannung und Lageranordnung.

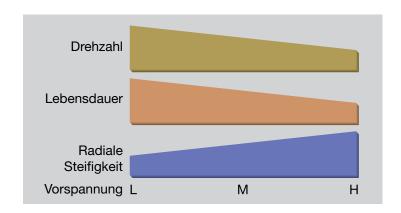

Auswirkung des Druckwinkels

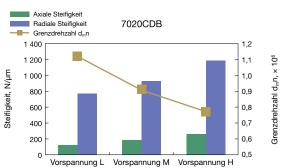
Ein größerer Druckwinkel bedeutet, dass das Wälzlager höhere axiale Lasten aufnehmen kann. Kleinere Druckwinkel können zwar nur geringere Axiallasten aufnehmen, eignen sich aber besser für Anwendungen mit hohen Drehzahlen und hohen Radiallasten.

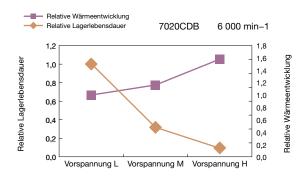




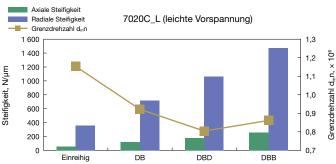

Die nachstehenden Diagramme zeigen die Steifigkeit, die Grenzdrehzahl und die Wärmeentwicklung eines Schrägkugellagers vom Typ 7020 bei unterschiedlichen Nenndruckwinkeln: C (15°), A5 (25°) und A (30°). Bei identischer leichter Vorspannung (L) weist das Wälzlager mit dem Winkel A die höchste axiale Steifigkeit auf, und zwar etwa die dreifache axiale Steifigkeit im Vergleich zum Winkel C, jedoch bei geringerer Grenzdrehzahl. Das Wälzlager mit dem Winkel C übertrifft das Wälzlager mit dem Winkel A hinsichtlich der radialen Steifigkeit und der Wärmeentwicklung.






Auswirkung der Vorspannung

Die Vorspannung wirkt sich sehr ähnlich wie ein Druckwinkel auf die Leistung von Schrägkugellagern aus. NSK hat die Standardvorspannungen Extraleicht (EL), Leicht (L), Mittel (M) und Hoch (H) definiert. In den Abbildungen ist die Leistung einer Wälzlagerkombination vom Typ 7020CDB bei unterschiedlichen Vorspannungen zu sehen. Bei beliebigem Druckwinkel lassen sich sowohl die radiale als auch die axiale Steifigkeit durch Steigern der Vorspannung erhöhen; dadurch kommt es allerdings gleichzeitig zu einer größeren Wärmeentwicklung, außerdem verringern sich die Lagerlebensdauer und die Grenzdrehzahl. Eine höhere Steifigkeit lässt sich durch eine Auslegung auf niedrigere Drehzahlen erreichen, was wiederum bedeutet, dass sich höhere Drehzahlen bis zu einem gewissen Grad durch eine geringere Steifigkeit erzielen lassen. Es ist Vorsicht geboten, denn bei gleichzeitig zu hoher Vorspannung und hohen Drehzahlen besteht immer die Gefahr, dass die Lager blockieren.

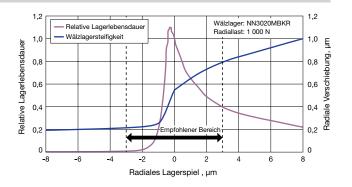


Der Einfluss der Lageranordnung

Schrägkugellager können als Einzellager oder als Kombination aus zwei oder mehreren Schrägkugellagern genutzt werden. Es gibt drei Arten von Anordnungen: O-Anordnung (DB), X-Anordnung (DF) und Tandem-Anordnung (DT). Hinsichtlich der Anzahl der Reihen gibt es keine Begrenzung.

Am häufigsten werden zwei-, drei- und vierreihige Lagersätze verwendet. Wird ausschließlich die gleiche Kombination verwendet (in diesem Beispiel die O-Anordnung), erhöhen sich mit jeder Reihe zwar die Steifigkeit und die Tragzahl, allerdings geht dies auf Kosten der Grenzdrehzahl.

Eigenschaften von Zylinderrollenlagern

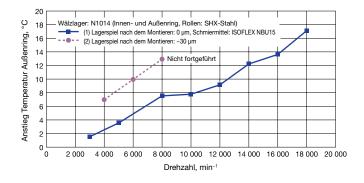

Zylinderrollenlager sind nur auf radiale Belastung ausgelegt, bieten jedoch den Vorteil einer im Vergleich zu Schrägkugellagern höheren radialen Tragfähigkeit. Es sind hier zweireihige Zylinderrollenlager (Typen NN und NNU) und einreihige Zylinderrollenlager (Typ N) erhältlich.

Zweireihige Zylinderrollenlager kommen in der Regel bei Anwendungen zum Einsatz, bei denen eine hohe radiale Steifigkeit gefordert ist, beispielsweise in Drehmaschinen. Einreihige Zylinderrollenlager werden hingegen bei Anwendungen mit hohen Drehzahlen verwendet, z. B. in Bearbeitungszentren. Die nachstehenden Diagramme zeigen die Abhängigkeit der Leistung von Zylinderrollenlagern von der radialen Lagerluft.

Auswirkung der radialen Lagerluft

Die Leistung von Zylinderrollenlagern wird von der radialen Lagerluft beeinflusst, die nach dem Montieren verbleibt. Dem Diagramm ist zu entnehmen, dass eine Lagerspiel von 0 μ m bis leicht in den negativen Bereich hinein optimal hinsichtlich Steifigkeit und Lagerlebensdauer ist.

Um eine hohe Steifigkeit bei Festlagern zu erreichen, legt man für das Lagerspiel einen Wert von etwas unter null fest. Eine Verringerung des Lagerspiels auf Werte von unter –3 µm führt allerdings zu keiner weiteren Steigerung der Steifigkeit, vielmehr verkürzt sich dadurch die Lagerlebensdauer erheblich. Ein positives Lagerspiel von etwa +3 µm wird üblicherweise bei Loslagern verwendet. Je nach Wälzlagergröße und Drehzahl kann jedoch eine genauere Untersuchung erforderlich sein. Das Lagerspiel verringert sich während des Betriebs. Dies muss beim Einstellen des Lagerspiels während der Montage berücksichtigt werden. Das gilt insbesondere für Anwendungen mit hohen Drehzahlen.


Beziehung zwischen Radialspiel und Temperaturanstieg

In der Abbildung rechts sind Versuchsergebnisse zum Temperaturanstieg in Zylinderrollenlagern dargestellt. Radialspiel nach Montage:

Wälzlager (1): 0 µm

Wälzlager (2) –30 µm

Bei Wälzlager (2), das nach dem Montieren ein sogenannt negatives Spiel von –30 µm aufweist, zeigt sich ein starker Temperaturanstieg und ein Abfall der Grenzdrehzahl. Hier wird deutlich, dass die Montage eines Wälzlagers mit einer zu hohen Einschnürung der Lagerluft bewirkt, dass das Lager ständig unter hoher (Grund-)Last betrieben wird, auch wenn keine äußere Last anliegt.

Radiale Lagerluft durch Montage anpassen

Unterschiede beim Herstellen der Lagerluft von zylindrischen Bohrungen im Vergleich zu kegeligen Bohrungen

Bei Wälzlagern mit zylindrischer Bohrung müssen Welle und Gehäuse auf die tatsächliche Bohrung und den Außendurchmesser des Wälzlagers abgestimmt werden, um das gewünschte Lagerspiel zu erzielen. Bei Wälzlagern mit kegeliger Bohrung hängt die Aufweitung des Innenrings davon ab, wie weit das Wälzlager auf der Welle

aufgeschoben wird. Die nach dem Montieren verbleibende Radialluft lässt sich somit einfacher einstellen.

Zylindrische Bohrung

Abhängig von der Wellenpassung und der Gehäusepassung ändert sich die radiale Lagerluft von Δr zu Δr'. Eine weitere Anpassung der radialen Lagerluft ist nicht möglich.

Kegelige Bohrung

Die radiale Lagerluft ändert sich durch das Verschieben des Innenrings auf der Welle von Δr zu $\Delta r'$ zu $\Delta r''$. Das gewünschte Lagerspiel lässt sich dadurch einfach erzielen.

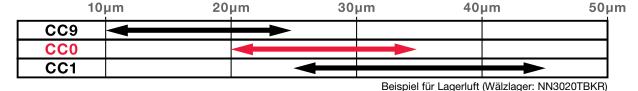
- In den ISO-Standards ist für kegelige Bohrungen mit einem Verhältnis von 1:12 ein vergleichsweise großer Toleranzbereich für den Kegelwinkel angegeben. Für hochgenaue Zylinderrollenlager hat NSK daher eigene engere Toleranzen festgelegt:
 - 1) Der Toleranzbereich für KR ist sehr eng und liegt an der unteren Grenze des standardmäßigen ISO-Bereichs. Die enge Toleranz der kegeligen Bohrungen KR ist darauf ausgelegt, die Lagerluft während des Montierens leichter einstellen zu können. Bei NSK gilt die Toleranz KR als Standard für Bohrungsdurchmesser von bis zu 400 mm.
 - 2) Die Toleranz K liegt im mittleren Bereich des ISO-Standards. Die Maßtoleranzen der Bohrungen entsprechen denen des ISO-Standards. Bei NSK gilt die Toleranz K für Bohrungsdurchmesser von über 400 mm.

Gehäusepassung

Wellenpassung

Ar

Wellenpassung


Kegelige Bohrung

Zylindrische Bohrung

Angaben zu Toleranzen für Kegelwinkel finden Sie auf Seite 228.

Klassen radialer Lagerluft

Bei Wälzlagern mit kegeligen Bohrungen sind drei Klassen radialer Lagerluft weitverbreitet: CC9, CC0 und CC1. Welche Klasse am besten geeignet ist, hängt von den jeweiligen Betriebsbedingungen ab. NSK hat sich dazu entschieden, CC0, eine ausgewogene Lagerluft, als Standardklasse für die radiale Lagerluft zu verwenden. Ausschlaggebend für diese Entscheidung waren die Vorteile in den Bereichen Montagefreundlichkeit und Genauigkeit des Spindellaufs.

Von NSK empfohlene Lagerluft

- CCO

Werden die oberen Bereiche von CC1 und die unteren Bereiche von CC9 weggelassen, bietet diese Klasse eine mittlere Radialluft. Ihr Bereich ist zudem kleiner als der von CC1. Da sie für Kunden, die diesen Bereich benötigen, die am einfachsten zu verwendende Klasse ist, wird sie als Lagerluft für Zylinderrollenlager mit kegeliger Bohrung empfohlen.

- Lagerluft CC9

Lagerluftbereich kleiner CCO. Diese Lagerluft verhindert eine mögliche Verformung von Innenring oder Welle, da nur eine geringe Aufweitung des Innenrings notwendig ist um das korrekte Lagerspiel einzustellen. Dadurch ergeben sich aber nur geringe Überdeckungen an Innenring und Spindel. Und liegen die Ist-Lagerluftwerte an der unteren Toleranzgrenze, kann nur ein geringer Festsitz optimal realisiert werden und bei hohen Drehzahlen kann es eher zu einem Mitdrehen des Innenrings auf der Spindel kommen.

- Lagerluft CC1

Lagerluftbereich größer CCO. Dieser Lagerluftbereich wird in der Praxis am meisten verwendet da höhere Leistungsdichten immer stärkere Pressverbände benötigen. Liegt die Ist-Lagerluft jedoch an der oberen Toleranzgrenze und für ein optimales Lagerspiel eine engere Passung ausgewählt werden muss, kann es zu einer zu starken Aufweitung und Verformung des Innenrings kommen. Zudem können so auch dünnwandige Wellen ebenfalls zu sehr verformt werden.

Hochgenauigkeits-Schrägkugellager

Standard Serie

Schrägkugellager für höchste Drehzahlen

NSKROBUST Serie

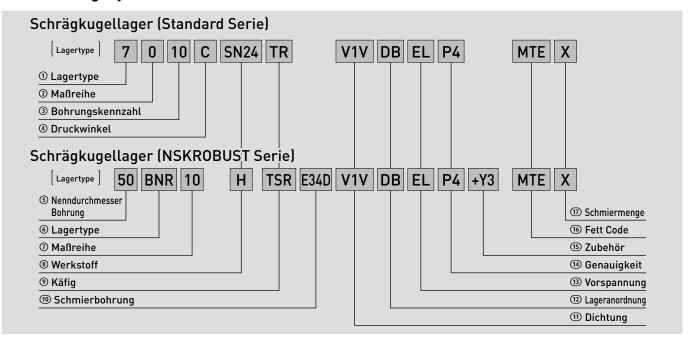
Spinshot II

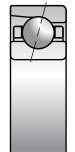
ROBUSTSHOT

NSKROBUST BSR Serie

Kapitel 4

Schrägkugellager.....52-109


Bezeichnungssystem


Lagertabellen

Hochgenauigkeits-Schrägkugellager (Standard Serie)

Ultra-Hochgeschwindigkeits-Schrägkugellager (NSKROBUST Serie)

Bezeichnungssystem

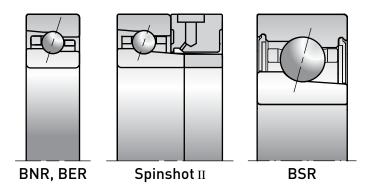
106 Lagertyp

Seite 22, 24-25

1 7: Hochgenauigkeits-Schrägkugellager (Standardserie)

Die leistungsstarken Wälzlager der NSKHPS-Standardserie weisen eine hohe dynamische Tragzahl auf und eignen sich für den Betrieb bei niedrigen bis mittleren Drehzahlen und für Anwendungen mit hohen Lasten. Die von NSK entwickelte Technologie zum Bewerten von Werkstoffen stellt sicher, dass bei der Produktion ausschließlich hochreine Werkstoffe verwendet werden. Dieser Faktor wirkt sich am stärksten auf die Lagerlebensdauer aus. Dank der Verwendung hochwertiger Stahlwerkstoffe konnte die Wälzermüdungslebensdauer um 15 % gesteigert werden.

6 BNR, BER, BSR: Schrägkugellager für hohe Drehzahlen (NSKROBUST-Serie)


Leistungsstarke Schrägkugellager mit hoher Steifigkeit und geringer Wärmeentwicklung. Der Schlupf der Wälzkörper wurde durch Simulationen des Temperaturanstiegs evaluiert. Die Ergebnisse dieser Simulationen sind in die Optimierung der Konstruktion dieser Serie einaeflossen.

Die NSKROBUST-Wälzlager sind in den Ausführungen S, E, H und X in unterschiedlichen Werkstoffkombinationen erhältlich. Verfügbar sind unter anderem hochgenaue Keramikkugeln und hitzebeständiger SHX-Stahl für hohe Drehzahlen. Unsere Kunden haben somit die Möglichkeit, das optimale Wälzlager für ihre jeweilige Anwendung auszuwählen.

Abgedichtete Wälzlager sind hauptsächlich bis zu einem Bohrungsdurchmesser von 120 mm erhältlich.

Dank optimiertem Raum zwischen Dichtung und Käfig und minimierter Spaltdichtung wird verhindert, dass Fett austritt. Die extrabreiten Serien (Serie 29 und 20) wurden mit dem Ziel entwickelt, mehr Fett im Inneren des Wälzlagers zu halten. Dadurch bleibt der Temperaturanstieg gering und die

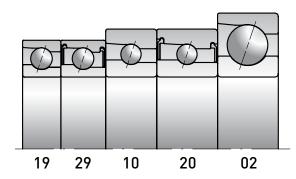
Schmiermittelgebrauchsdauer verlängert sich.

Verfügbare Größen

	BNR, BER	BSR
Serie 19	30BxR19 ~ 200BxR19	10BSR19 ~ 25BSR19
Serie 10	30BxR10 ~ 160BxR10	6BSR10 ~ 25BSR10
Serie 02	~	10BSR02 ~ 25BSR02

Der Typ Spinshot wurde mit dem Ziel einer geringeren Geräuschentwicklung und einer höheren Zuverlässigkeit der Öl-Luft-Schmierung während des Betriebs bei ultrahohen Drehzahlen entwickelt.

Die hohe radiale Steifigkeit der Wälzlager der BSR-Serie bleibt auch bei Betrieb mit hohen Drehzahlen und Vorspannung mit konstantem Druck erhalten. Dadurch eignen sie sich ideal für Schleifmaschinen und ähnliche Anwendungen. BNR: Druckwinkel 18° BER: Druckwinkel 25° BSR: Druckwinkel 15°


27 Maßreihen

② Standardserie

9: Serie 19, 0: Serie 10, 2: Serie 02

7 NSKROBUST-Serie

19: Serie 19, 29: Serie 29, 10: Serie 10, 20: Serie 20, 02: Serie 02

Wie in der vorstehenden Abbildung zu sehen, erhöhen sich die Außendurchmesser und Breiten der Wälzlager bei identischen Bohrungsdurchmessern in der Reihenfolge 19 - 29 - 10 - 20 - 02 entsprechend der Maßreihen.

Bitte beachten Sie, dass die Maßenreihen 29 und 20 nur als abgedichtete Schrägkugellager für utrahohe Drehzahlen der NSKROBUST-Serie erhältlich sind.

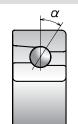
③ Bohrungskennzahl ⑤ Nenndurchmesser Bohrung

③ Standardserie

Bis zu 3: Bohrungsdurchmesser 00: 10mm, 01: 12mm,

02: 15mm, 03: 17mm

4 und höher: Bohrungsdurchmesser =


Bohrungskennzahl × 5 (mm)

⑤ NSKROBUST-Serie

Nenndurchmesser Bohrung = Bohrungsmaß (mm)

4 Druckwinkel 6 Lagertyp

Seite 46-47

4 Standardserie

C: 15° A5: 25° A: 30°

BNR: 18° BER: 25° BSR: 15°

® Werkstoff

Seite 16-19, 24


Standardserie

Kein Symbol: Stahlkugel SN24: Keramikkugel

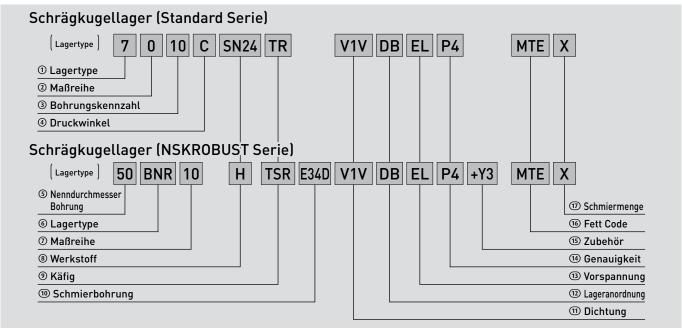
NSKROBUST-Serie

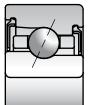
Typ	Werkstoff							
Тур	Innen- und Außenring	Kugeln						
S	Wälzlagerstahl (SUJ2)	Wälzlagerstahl (SUJ2)						
Е	Wälzlagerstahl (SUJ2)	Wälzkörper mit ultralanger Lebensdauer (EQTF)						
Н	Wälzlagerstahl (SUJ2)	Keramik (Si ₃ N ₄)						
X	Hitzebeständiger Stahl für Betrieb bei hohen Drehzahlen (SHX)	Keramik (Si ₃ N ₄)						
XE (Spinshot II)	Hitzebeständiger Stahl für Betrieb bei hohen Drehzahlen (SHX)	Keramik (Si ₃ N ₄)						

Seite 24

10 NSKROBUST-Serie

E34, E34D: Wälzlager mit Direktschmierung Platzsparende Wälzlager, speziell für Öl-Luft-Schmierung, mit Schmiernut, Schmierbohrungen und O-Ring-Nut am Außenring.

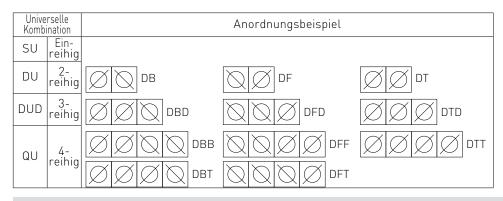

Ausschließlich für NSKROBUST-Serie


erhältlich.

 Käfig Seite 20

		Symbol	Werkstoff	Führung	Merkmale	Grenzdrehzahl (d _m n Wert)	Erhältlich für
		TYN	Polyamid- Kunststoff	Kugel- geführt	Hervorragende Verschleiß- und Geräuscheigenschaften, besonders effektiv bei Fettschmierung	Öl: 1,4 Millionen Fett: 1,2 Millionen	· Standardserie · NSKROBUST-Serie (nicht für abgedichteten Typ der Serie 19 erhältlich)
		Т	Phenol- harz	Außen- ring- geführt	Stabiler Käfigumlauf bei Betrieb mit hohen Drehzahlen	2,8 Millionen	TR: Standardserie T: NSKROBUST-Serie TA: BSR-Serie (abgedichteter Typ)
		TSR	PPS- Kunststoff	Außen- ring- geführt	Höhere Laufgenauigkeit des Lagers. Geringer Temperaturanstieg bei ultrahohen Drehzahlen dank einzigartiger Konstruktion mit verbessertem Ölablauf.	3,0 Millionen	· NSKROBUST-Serie
The state of the s	The state of the s	MY	Messing	Kugel- geführt	Hervorragende Eigenschaften hinsichtlich Geräuschentwicklung und Temperaturanstieg. Längere Schmiermittelgebrauchsdauer.	Öl: 0,8 Millionen Fett: 0,7 Millionen	· Standardserie · NSKROBUST-Serie Ausschließlich für große Wälzlager, die nicht mit TYN-Käfigen ausgestattet sind

Bezeichnungssystem

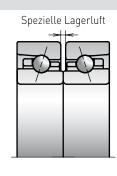

11 Dichtung Kein Symbol: offene Ausführung V1V: nicht schleifende Gummidichtung

Seite 25

Nicht schleifende Gummidichtungen auf beiden Seiten des Wälzlagers minimiert ein Eindringen von Fremdkörpern und ein Herausdrücken von Fett. Dadurch werden eine hohe Zuverlässigkeit und eine längere Schmiermittelgebrauchsdauer sichergestellt.

12 Lageranordnung

Seite 207


Die universellen Kombinationswälzlager SU, DU, DUD und QU werden während der Herstellung geprüft, um sicherzustellen, dass die überstehenden Stirnseiten auf beiden Seiten des Lagers gleich ausgeführt sind.

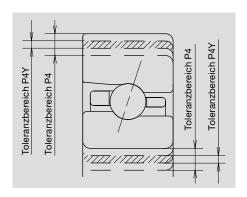
Wenn die Wälzlagernummer auf zwei oder mehr Reihen hinweist (DU, DUD oder QU), wird außerdem die Abweichung der Toleranz von Bohrung und Außendurchmesser je Wälzlagersatz geprüft.

(13) Vorspannung

Seite 208-214

EL: extraleichte Vorspannung

M: mittlere Vorspannung

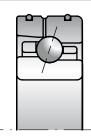

CP: spezielle Vorspannung

L: leichte Vorspannung

H: hohe Vorspannung

CA: spezielle Lagerluft

(14) Genauigkeit Seite 224-227


P2: ISO-Klasse 2 P4: ISO-Klasse 4 P5: ISO-Klasse 5

P3: spezielle Klasse (Maßgenauigkeit gemäß ISO-Klasse 4,

Rundlaufgenauigkeit gemäß ISO-Klasse 2)

P4Y: spezielle Klasse (die Maßgenauigkeit der Bohrung und des Außenrings entsprechen exklusiven Vorgaben von NSK; alle anderen entsprechen ISO-Klasse 4 – siehe Abbildung links)

15 Zubehör

+Y3: O-Ring an Außenseite des Wälzlagers Ausschließlich für NSKROBUST-Wälzlager mit Direktschmierung (E34, E34D) erhältlich.

16 Fettcode Seite 221

Üblicherweise in Spindeln von Werkzeugmaschinen verwendetes Schmierfett: MTE: MTE-Schmierstoff MTS: MTS-Schmierstoff YL2: Lubcon L252 Schmierfett

17 Schmiermittelmenge

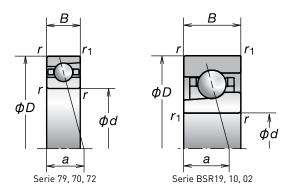
Seite 258

X: 15 % des Innenraums K: 20 % des Innenraums

L: 30 % des Innenraums

Welche Spezifikation ist für welches Wälzlager erhältlich?

Standardserie

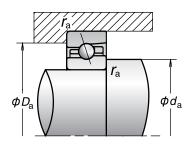

	① Lagertyp	® Werkstoff	9 K	äfig	① Dichtung
	NSKHPS	SN24	TYN	TR	V1V
Serie 19	7900 ~ 7952	7900 ~ 7948	7900 ~ 7928, 7932, 7938	7903 ~ 7960	7906 ~ 7920
Serie 10	7000 ~ 7040	7000 ~ 7032	7000 ~ 7028	7000 ~ 7048	7006 ~ 7018, 7020 ~ 7021
Serie 02	7200 ~ 7230	7200 ~ 7219	7200 ~ 7224	7200 ~ 7230	~

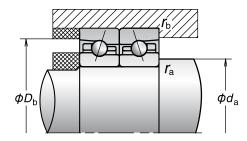
NSKROBUST-Serie

		® Werkstoff		Ø Käfig						
	Keramik- kugeln	Wälzkörper mit ultralanger Lebensdauer	TYN	Т	TSR	TA	V1V			
Serie 19	10BxR19 ~200BxR19	55BxR19 ~ 140BxR19 (ohne Bohrungsdurchmesser 120 mm)	30BxR19~140BxR19 160BxR19, 190BxR19		~	10BSR19 (V1V) ~25BSR19 (V1V)	10BxR19~90BxR19, 100BxR19, 110BxR19			
Serie 10	6BxR10 ~160BxR10	45BxR10~140BxR10	30BxR10~160BxR10	6BxR10 ~160BxR10	30BxR10~90BxR10 100BxR10, 110BxR10	6BSR10 (V1V) ~25BSR10 (V1V)	6BxR10~90BxR10, 100BxR10, 120BxR10			
Serie 02	10BSR02 ~25BSR02	~	~	10BSR02 ~25BSR02	~	10BSR02 (V1V) ~25BSR02 (V1V)	10BSR02~25BSR02			

Für Angaben zu Wälzlagernummern, die nicht in den Tabellen aufgeführt sind, wenden Sie sich bitte an NSK.

Bohrungsdurchmesser 5-10 mm




Lagerbe- zeichnung (1)		Hai	•	messunge mm)	en		ahlen N)	Zulässige Axiallast (²)	Druck- winkel	Faktor f _o	Last- angriffs- punkt		hzahlen (³) in ⁻¹)
Zereimang ()	d	D	В	r (min.)	r ₁ (min.)	C _r (dynamisch)	C_{or} (statisch)	(kN)	(Grad)	10	(mm) a	Fett	Öl
725C	5	16	5	0,3	0,15	1,70	0,660	0,545	15	12,6	3,9	110 000	167 000
725A	5	16	5	0,3	0,15	1,61	0,620	0,665	30	_	5,5	72 000	96 000
706C	6	17	6	0,3	0,15	2,15	0,845	0,765	15	12,4	4,5	100 000	153 000
706A	6	17	6	0,3	0,15	2,03	0,795	0,725	30	_	6,3	66 000	87 000
* 6BSR10S	6	17	6	0,3	0,15	1,35	0,445	0,525	15	6,6	4,5	140 000	192 000
* 6BSR10H	6	17	6	0,3	0,15	1,35	0,425	0,345	15	6,6	4,5	166 000	244 000
* 6BSR10X	6	17	6	0,3	0,15	1,35	0,425	0,345	15	6,6	4,5	192 000	261 000
726C	6	19	6	0,3	0,15	2,39	1,00	0,835	15	12,8	4,7	92 000	140 000
_726A	6	19	6	0,3	0,15	2,24	0,940	0,395	30	_	6,6	60 000	80 000
707C	7	19	6	0,3	0,15	2,39	1,00	0,835	15	12,8	4,7	89 000	135 000
707A	7	19	6	0,3	0,15	2,24	0,940	0,375	30	_	6,6	58 000	77 000
* 7BSR10S	7	19	6	0,3	0,15	1,57	0,570	0,675	15	7,1	4,7	124 000	170 000
* 7BSR10H	7	19	6	0,3	0,15	1,57	0,545	0,440	15	7,1	4,7	147 000	216 000
* 7BSR10X	7	19	6	0,3	0,15	1,57	0,545	0,440	15	7,1	4,7	170 000	231 000
708C	8	22	7	0,3	0,15	3,55	1,54	1,30	15	12,7	5,5	77 000	117 000
708A	8	22	7	0,3	0,15	3,35	1,45	1,02	30	_	7,8	50 000	67 000
* 8BSR10S	8	22	7	0,3	0,15	2,31	0,835	1,01	15	7,0	5,5	107 000	147 000
* 8BSR10H	8	22	7	0,3	0,15	2,31	0,800	0,660	15	7,0	5,5	127 000	187 000
* 8BSR10X	8	22	7	0,3	0,15	2,31	0,800	0,660	15	7,0	5,5	147 000	200 000
728C	8	24	8	0,3	0,15	3,60	1,58	1,33	15	13,1	6,1	72 000	110 000
728A	8	24	8	0,3	0,15	3,35	1,48	0,610	30	_	8,6	47 000	63 000
7900C	10	22	6	0,3	0,15	3,15	1,52	1,23	15	14,1	5,1	71 900	109 000
7900CSN24	10	22	6	0,3	0,15	3,05	1,46	1,42	15	14,1	5,1	93 800	143 000
7900A5	10	22	6	0,3	0,15	3,00	1,45	1,44	25	_	6,7	62 500	93 800
7900A5SN24	10	22	6	0,3	0,15	2,90	1,40	1,71	25	_	6,7	81 300	122 000
* 10BSR19S	10	22	6	0,3	0,15	1,78	0,715	0,855	15	7,4	5,1	100 000	138 000
* 10BSR19H	10	22	6	0,3	0,15	1,78	0,685	0,560	15	7,4	5,1	119 000	175 000
* 10BSR19X	10	22	6	0,3	0,15	1,78	0,685	0,560	15	7,4	5,1	138 000	188 000
7000C	10	26	8	0,3	0,15	5,60	2,49	2,16	15	12,6	6,4	63 900	97 300
7000CSN24	10	26	8	0,3	0,15	5,25	2,33	2,36	15	12,6	6,4	83 400	127 000
7000A5	10	26	8	0,3	0,15	5,40	2,41	2,48	25	_	8,2	55 600	83 400
7000A5SN24	10	26	8	0,3	0,15	5,05	2,25	2,94	25	_	8,2	72 300	108 000
7000A	10	26	8	0,3	0,15	5,25	2,34	1,91	30	_	9,2	41 700	55 600
* 10BSR10S	10	26	8	0,3	0,15	3,00	1,18	1,44	15	7,1	6,4	88 900	123 000
* 10BSR10H	10	26	8	0,3	0,15	3,00	1,13	0,94	15	7,1	6,4	106 000	156 000
* 10BSR10X	10	26	8	0,3	0,15	3,00	1,13	0,94	15	7,1	6,4	123 000	167 000
7200C	10	30	9	0,6	0,3	5,65	2,61	2,16	15	13,2	7,2	57 500	87 500
7200CSN24	10	30	9	0,6	0,3	5,30	2,44	2,48	15	13,2	7,2	75 000	114 000
7200A5	10	30	9	0,6	0,3	5,45	2,51	2,49	25	_	9,2	50 000	75 000
7200A5SN24	10	30	9	0,6	0,3	5,10	2,35	2,96	25	_	9,2	65 000	97 500
7200A	10	30	9	0,6	0,3	5,30	2,44	1,92	30	_	10,3	37 500	50 000
* 10BSR02S	10	30	9	0,6	0,3	3,85	1,48	1,81	15	6,7	7,2	80 000	110 000
* 10BSR02H	10	30	9	0,6	0,3	3,85	1,41	1,18	15	6,7	7,2	95 000	140 000
* 10BSR02X	10	30	9	0,6	0,3	3,85	1,41	1,18	15	6,7	7,2	110 000	150 000

[[]¹] Mit einem Sternchen (*) gekennzeichnete Wälzlager sind als abgedichtete Wälzlager erhältlich.

⁽²) Angaben zur zulässigen Axiallast siehe Seite 201.

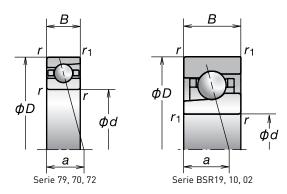
 $[\]left[^{3}\right]$ Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218.

	Ansch	lußmaße		Vorspannung (Anordnung DB und DF) (N)				Axiale Steifigkeit (Anordnung DB und DF) (N/µm)				Gemessene Axialluft (µm)				Gewicht (kg)	
d _a (min.)	D _a (max.)	D _b (max.)	r _a (max.)	r _b (max.)	EL	L	М	Н	EL	L	М	Н	EL	L	М	Н	(ca.)
7,5	13,5	_	0,3	_	1,2	5,5	12	25	4,0	7,3	10	14	10	7	4	0	0,005
7,5	13,5	_	0,3	_	5	10	25	53	19	24	33	43	3	2	0	-3	0,005
8,5	14,5	_	0,3	_	1,5	7,9	15	32	4,3	8,3	11	15	10	6	3	-2	0,006
8,5	14,5	_	0,3	_	4,9	17	25	53	19	29	33	42	3	1	0	-3	0,006
8,5	14,5	-	0,3	_	3,4	6,7	16	_	5,7	7,5	11	_	9	7	3	_	0,007
8,5	14,5	_	0,3	_	2,1	5,4	15	_	5,4	7,6	11	_	9	7	3	_	0,006
8,5	14,5		0,3		2,1	5,4	15		5,4	7,6	11	_	9	7	3		0,006
8,5	16,5	_	0,3	_	1,8	9,2	18	37	5	10	13	28	9	5	2	-3	0,008
8,5	16,5		0,3	_	3,7	16	34	69	18	31	40	52	3	1	-1	-4	0,008
9,5	16,5	_	0,3	_	1,8	9,2	18	37	5,1	10	13	18	9	5	2	-3	0,007
9,5	16,5	_	0,3	_	3,7	16	34	69	18	31	40	52	3	1	-1	-4	0,007
9,5	16,5	_	0,3	_	5,2	9,5	18	_	7,7	9,7	12	_	7	5	2	_	0,009
9,5	16,5	_	0,3	_	3,8	8,2	17	_	7,6	10	14	_	7	5	2	_	0,008
9,5	16,5	_	0,3	_	3,8	8,2	17	_	7,6	10	14	-	7	5	2	_	0,008
10,5	19,5	_	0,3	_	4,2	14	29	59	7,5	12	17	23	7	3	-1 -2	-7	0,012
10,5	19,5	_	0,3	_	8,1	25	46	88	26	39	49	63	2	4	- <u>Z</u>	-5 —	0,012
10,5	19,5	_	0,3	_	7,3 5,9	12 11	21 21	_	8,7 9.0	11	13 15	_	6	4	1		0,013
10,5 10,5	19,5 19.5	_	0,3	_	5,9	11	21	_	9,0	11	15	_	6	4	1	_	0,012 0,012
10,5	21,5	_	0,3	_	4,2	14	29	59	7,5	12	17	23	7	3	-1	<u>-</u> 7	0,012
10,5	21,5	_	0,3	_	8,1	25	46	88	26	39	49	63	2	0	-2	-7 -5	0,016
12,5	19,5	20.8	0,3	0.15	7,0	16	29	58	10	15	19	27	5	2	-1	-6	0,018
12,5	17,5	20,8	0,3	0,15	5.7	16	30	62	11	16	21	30	5	2	-1	-6	0,007
12,5	19,5	20,8	0,3	0,15	9,8	17	55	94	24	29	46	58	2	1	-3	-6	0,000
12,5	19,5	20.8	0,3	0,15	8,5	16	59	103	26	32	53	66	2	1	-3	-6	0,008
12,5	19,5	20,8	0,3	0,15	5,9	14	21	_	8.9	12	15	_	6	3	1	_	0,000
12,5	19,5	20,8	0.3	0,15	4,5	13	20	_	9.0	13	16	_	6	3	1	_	0,010
12,5	19,5	20,8	0,3	0,15	4,5	13	20	_	9,0	13	16	_	6	3	1	_	0,010
12,5	23,5	24,8	0,3	0,15	13	25	49	96	13	17	23	31	3	0	-5	-12	0,019
12,5	23,5	24,8	0,3	0,15	12	25	52	106	14	19	26	36	3	0	-5	-12	0,017
12,5	23,5	24,8	0.3	0,15	17	43	78	153	29	41	52	68	1	-2	-5	-10	0,019
12,5	23,5	24,8	0,3	0,15	16	46	86	172	32	47	59	78	1	-2	-5	-10	0,017
12,5	23,5	24,8	0,3	0,15	25	97	202	333	44	72	94	115	0	-5	-10	-15	0,019
12,5	23,5	24,8	0,3	0,15	8,4	17	37	_	10	13	18	_	5	2	-3	_	0,021
12,5	23,5	24,8	0,3	0,15	7,1	17	39	_	11	15	21	_	5	2	-3	_	0,019
12,5	23,5	24,8	0,3	0,15	7,1	17	39	_	11	15	21	_	5	2	-3	_	0,019
15	25	27,5	0,6	0,3	13	29	68	150	13	18	26	39	3	-1	-8	-18	0,032
15	25	27,5	0,6	0,3	12	29	73	167	14	20	30	45	3	-1	-8	-18	0,030
15	25	27,5	0,6	0,3	17	43	106	188	29	41	58	74	1	-2	-7	-12	0,031
15	25	27,5	0,6	0,3	16	46	117	213	32	47	67	86	1	-2	-7	-12	0,029
15	25	27,5	0,6	0,3	25	97	202	_	44	72	95	_	0	-5	-10	_	0,032
15	25	27,5	0,6	0,3	11	25	51	_	11	15	20	_	4	0	-6	-	0,032
15	25	27,5	0,6	0,3	10	25	54	_	12	17	23	_	4	0	-6	_	0,030
15	25	27,5	0,6	0,3	10	25	54	_	12	17	23	_	4	0	-6	_	0,030

Tabelle $oldsymbol{\mathsf{A}}$

	EL	L	М	Н
15°	6,5	6,0	5,0	4,5
25°		2	,0	
30°		1	4	

Tabelle ${f B}$

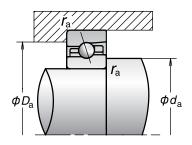

		DBD	DBB
Vorspannu	ngsfaktor	1,36	2
Axiale St	eifigkeit	1,48	2
Radiale St	eifigkeit	1,54	2

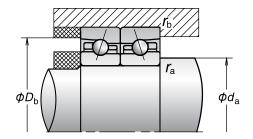
Für weitere Informationen:

•	Dvnar	nisch	äauiv	alente	e La	aaer	belast	ung	S.	193
	- ,					- J		5		
_	C1-1:-	-1- 2-				-11	l = = 4 · · · · ·	-	_	200

- \bullet Statisch äquivalente Lagerbelastung------ S. 200

Bohrungsdurchmesser 12, 15 mm




Lagerbe- zeichnung (1)		Hau		nessunge im)	'n		ahlen N)	Zulässige Axiallast (²)	Druck- winkel	Faktor	Last- angriffs- punkt		hzahlen (³) in-¹)
zeleillang ()	d	D	В	r (min.)	r ₁ (min.)	C _r (dynamisch)	C _{or} (statisch)	(kN)	(Grad)	10	(mm) a	Fett	Öl
7901C	12	24	6	0,3	0,15	3,55	1,86	1,45	15	14,7	5,4	63 900	97 300
7901CSN24	12	24	6	0,3	0,15	3,40	1,79	1,72	15	14,7	5,4	83 300	127 000
7901A5	12	24	6	0,3	0,15	3,35	1,77	1,71	25	_	7,2	55 600	83 400
7901A5SN24	12	24	6	0,3	0,15	3,20	1,71	2,04	25	_	7,2	72 200	108 000
* 12BSR19S	12	24	6	0,3	0,15	1,95	0,85	1,02	15	7,7	5,4	88 900	123 000
* 12BSR19H	12	24	6	0,3	0,15	1,95	0,815	0,665	15	7,7	5,4	106 000	156 000
* 12BSR19X	12	24	6	0,3	0,15	1,95	0,815	0,665	15	7,7	5,4	123 000	167 000
7001C	12	28	8	0,3	0,15	6,10	2,90	2,4	15	13,2	6,7	57 500	87 500
7001CSN24	12	28	8	0,3	0,15	5,70	2,71	2,75	15	13,2	6,7	75 000	114 000
7001A5	12	28	8	0,3	0,15	5,85	2,79	2,82	25	_	8,7	50 000	75 000
7001A5SN24	12	28	8	0,3	0,15	5,50	2,61	3,44	25	_	8,7	65 000	97 500
7001A	12	28	8	0,3	0,15	5,70	2,71	2,13	30	_	9,8	37 500	50 000
* 12BSR10S	12	28	8	0,3	0.15	3,25	1.33	1,63	15	7.4	6.7	80 000	110 000
* 12BSR10H	12	28	8	0,3	0,15	3,25	1,27	1,06	15	7,4	6,7	95 000	140 000
* 12BSR10X	12	28	8	0,3	0,15	3,25	1,27	1,06	15	7.4	6,7	110 000	150 000
7201C	12	32	10	0,6	0.3	8,30	3,85	3,45	15	12,5	7,9	52 300	79 600
7201CSN24	12	32	10	0,6	0,3	7,80	3,60	3,75	15	12,5	7,9	68 200	104 000
7201A5	12	32	10	0,6	0.3	8,05	3,70	3,55	25	-	10.1	45 500	68 200
7201A5SN24	12	32	10	0,6	0,3	7,55	3,50	4,23	25	_	10,1	59 100	88 700
7201A	12	32	10	0,6	0,3	7,85	3,65	2,72	30	_	11,4	34 100	45 500
* 12BSR02S	12	32	10	0,6	0,3	5.05	1,98	2,45	15	6,6	7,9	72 800	100 000
* 12BSR02H	12	32	10	0,6	0.3	5,05	1,89	1,59	15	6,6	7,9	86 400	128 000
* 12BSR02X	12	32	10	0,6	0,3	5,05	1,89	1,59	15	6,6	7,7	100 000	137 000
7902C	15	28	7	0,3	0,15	5,00	2,64	1,93	15	14,5	6,4	53 500	81 400
7902CSN24	15	28	7	0,3	0,15	4,85	2,61	2,30	15	14,5	6,4	69 800	106 000
7902C3N24	15	28	7	0,3	0,15	4,75	2,53	2,30	25	-	8,5	46 600	69 800
		28	7	0,3	0,15	4,75	2,49	2,63	25	_	8,5	60 500	90 700
7902A5SN24	15	28	7	0,3	0,15	2,96	1,31	1,60	15	7,7	6,4	74 500	103 000
* 15BSR19S	15 15	28	7		0,15		1,26	1,04	15	7,7		88 400	131 000
* 15BSR19H			7	0,3	0,15	2,96 2,96	1,26	1,04	15	7,7	6,4	103 000	140 000
* 15BSR19X	15 15	28 32	9	0,3	0,15	6,55	3.40	2,63	15	14,1	7.6	49 000	74 500
7002C			9		0,15				15			63 900	97 100
7002CSN24	15	32		0,3		6,15	3,15	3,12		14,1	7,6 10		
7002A5	15	32	9	0,3	0,15	6,25	3,25	3,05	25 25	_		42 600	63 900
7002A5SN24	15	32	9	0,3	0,15	5,90	3,05	3,64		_	10	55 400	83 000
7002A	15	32	9	0,3	0,15	6,05	3,15	2,36	30		11,3	32 000	42 600
* 15BSR10S	15	32	9	0,3	0,15	4,20	1,72	2,12	15	7,2	7,6	68 100	93 700
* 15BSR10H	15	32	9	0,3	0,15	4,20	1,65	1,38	15	7,2	7,6	80 900	120 000
* 15BSR10X	15	32	9	0,3	0,15	4,20	1,65	1,38	15	7,2	7,6	93 700	128 000
7202C	15	35	11	0,6	0,3	9,10	4,55	3,85	15	13,2	8,8	46 000	70 000
7202CSN24	15	35	11	0,6	0,3	8,55	4,25	4,55	15	13,2	8,8	60 000	91 200
7202A5	15	35	11	0,6	0,3	8,75	4,35	3,95	25	_	11,3	40 000	60 000
7202A5SN24	15	35	11	0,6	0,3	8,25	4,10	5,50	25	_	11,3	52 000	78 000
7202A	15	35	11	0,6	0,3	8,50	4,25	3,00	30	_	12,7	30 000	40 000
* 15BSR02S	15	35	11	0,6	0,3	5,80	2,34	2,90	15	6,8	8,8	64 000	88 000
* 15BSR02H	15	35	11	0,6	0,3	5,80	2,24	1,89	15	6,8	8,8	76 000	112 000
* 15BSR02X	15	35	11	0,6	0,3	5,80	2,24	1,89	15	6,8	8,8	88 000	120 000

[[]¹] Mit einem Sternchen (*) gekennzeichnete Wälzlager sind als abgedichtete Wälzlager erhältlich.

 $[\]left[^{2}\right]$ Angaben zur zulässigen Axiallast siehe Seite 201.

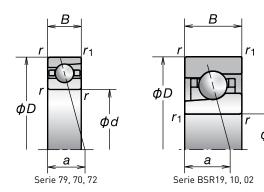
 $[\]left[^{3}\right]$ Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218.

	Anschlußmaße (mm)					Vorspa ordnung (1)		IDF)		rdnung	teifigke DB und µm)		Ge		ne Axiall m)	uft	Gewicht (kg)
d _a (min.)	D _a (max.)	D _b (max.)	r _a (max.)	r _b (max.)	EL	L	М	Н	EL	L	М	Н	EL	L	М	Н	(ca.)
14,5	21,5	22,8	0,3	0,15	8,6	16	41	77	12	16	25	34	4	2	-3	-8	0,011
14,5	21,5	22,8	0,3	0,15	7,3	15	43	84	13	17	27	38	4	2	-3	-8	0,010
14,5	21,5	22,8	0,3	0,15	16	25	59	120	32	38	53	70	1	0	-3	-7	0,011
14,5	21,5	22,8	0,3	0,15	15	25	63	134	35	43	60	81	1	0	-3	-7	0,010
14,5	21,5	22,8	0,3	0,15	4,7	13	25	_	9,0	13	17	_	6	3	0	_	0,012
14,5	21,5	22,8	0,3	0,15	3,3	12	25	_	8,8	14	19	_	6	3	0	_	0,011
14,5	21,5	22,8	0,3	0,15	3,3	12	25	_	8,8	14	19	_	6	3	0	_	0,011
14,5	25,5	26,8	0,3	0,15	13	25	57	120	14	18	26	37	3	0	-6	-14	0,021
14,5	25,5	26,8	0,3	0,15	12	25	61	133	15	20	29	42	3	0	-6	-14	0,019
14,5	25,5	26,8	0,3	0,15	16	45	97	203	31	45	60	81	1	-2	-6	-12	0,021
14,5	25,5	26,8	0,3	0,15	15	47	108	230	34	51	69	94	1	-2	-6	-12	0,019
14,5	25,5	26,8	0,3	0,15	25	104	218	363	48	78	104	127	0	-5	-10	-15	0,021
14,5	25,5	26,8	0,3	0,15	10	21	43	_	12	15	20	_	4	1	-4	_	0,023
14,5	25,5	26,8	0,3	0,15	9,2	20	45	_	12	17	23	_	4	1	-4	_	0,021
14,5	25,5	26,8	0,3	0,15	9,2	20	45	_	12	17	23	_	4	1	-4	_	0,021
17	27	29,5	0,6	0,3	20	39	99	197	16	21	32	46	1	-3	-12	-22	0,036
17	27	29,5	0,6	0,3	20	41	109	221	18	24	37	52	1	-3	-12	-22	0,031
17	27	29,5	0,6	0,3	34	56	146	287	40	49	70	92	-1	-3	-9	-16	0,036
17	27	29,5	0,6	0,3	35	61	164	329	46	56	81	107	-1	-3	-9	-16	0,031
17	27	29,5	0,6	0,3	25	104	218	361	48	78	103	126	0	-5	-10	-15	0,030
17	27	29,5	0,6	0,3	14	33	63	_	13	18	23	_	3	-2	-8	_	0,039
17	27	29,5	0,6	0,3	13	34	68	_	14	20	26	_	3	-2	-8	_	0,035
17	27	29,5	0,6	0,3	13	34	68	_	14	20	26	_	3	-2	-8	_	0,035
17,5	25,5	26,8	0,3	0,15	12	25	47	104	14	20	26	39	3	0	-4	-11	0,016
17,5	25,5	26,8	0,3	0,15	11	25	50	114	15	22	29	44	3	0	-4	-11	0,014
17,5	25,5	26,8	0,3	0,15	16	35	74	141	33	44	59	76	1	-1	-4	-8	0,016
17,5	25,5	26,8	0,3	0,15	15	36	80	158	36	50	67	88	1	-1	-4	-8	0,014
17,5	25,5	26,8	0,3	0,15	9,8	20	39	_	12	16	21	_	4	1	-3	_	0,017
17,5	25,5	26,8	0,3	0,15	8,5	20	40	_	13	18	23	_	4	1	-3	_	0,015
17,5	25,5	26,8	0,3	0,15	8,5	20	40	_	13	18	23	_	4	1	-3	_	0,015
17,5	29,5	30,8	0,3	0,15	12	29	66	147	14	20	29	43	3	-1	-7	-16	0,030
17,5	29,5	30,8	0,3	0,15	11	30	72	164	15	23	33	50	3	-1	-7	-16	0,027
17,5	29,5	30,8	0,3	0,15	16	35	103	197	33	43	65	84	1	-1	-6	-11	0,030
17,5	29,5	30,8	0,3	0,15	15	36	114	223	36	49	75	98	1	-1	-6	-11	0,027
17,5	29,5	30,8	0,3	0,15	25	110	234	392	51	85	113	139	0	-5	-10	-15	0,030
17,5	29,5	30,8	0,3	0,15	14	25	53	_	13	16	22	_	3	0	-6	_	0,030
17,5	29,5	30,8	0,3	0,15	13	25	56	_	14	18	25	_	3	0	-6	_	0,027
17,5	29,5	30,8	0,3	0,15	13	25	56	_	14	18	25	_	3	0	-6	_	0,027
20	30	32,5	0,6	0,3	20	40	97	199	17	23	34	48	1	-3	-11	-21	0,045
20	30	32,5	0,6	0,3	20	42	106	224	19	26	39	56	1	-3	-11	-21	0,040
20	30	32,5	0,6	0,3	35	73	197	392	44	57	84	112	-1	-4	-11	-19	0,044
20	30	32,5	0,6	0,3	36	79	223	452	49	66	98	131	-1	-4	-11	-19	0,039
20	30	32,5	0,6	0,3	25	111	236	394	51	86	114	139	0	-5	-10	-15	0,045
20	30	32,5	0,6	0,3	21	38	76	_	15	19	25	_	1	-3	-10	_	0,045
20	30	32,5	0,6	0,3	20	39	83	_	16	21	29	_	1	-3	-10	_	0,040
20	30	32,5	0,6	0,3	20	39	83	_	16	21	29		1	-3	-10	_	0,040

Tabelle $oldsymbol{A}$

	EL	L	М	Н						
15°	6,5	6,0	5,0	4,5						
25°		2	,0							
30°		1.4								

Tabelle ${f B}$

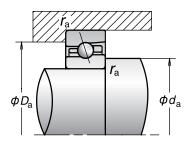

	DBD	DBB
Vorspannungsfaktor	1,36	2
Axiale Steifigkeit	1,48	2
Radiale Steifigkeit	1,54	2

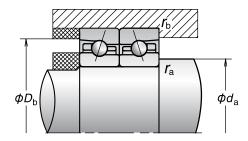
Für weitere Informationen:

•	Dynamisch äquivalente LagerbelastungS.	193
•	Statisch äguivalente LagerbelastungS.	200

Abmessungen der Zwischenringe und Position der Schmierdüser S. 239
 Empfohlene Fettmengen S. 259

Bohrungsdurchmesser 17, 20 mm




Lagerbe- zeichnung (1)		Hau		iessunge m)	n	Tragzahlen (kN)		Zulässige Axiallast (²)) winkel	Faktor f _o	Last- angriffs- punkt	Grenzdrehzahlen (³) (min-¹)		
zereimang ()	d	D	В	r (min.)	r ₁ (min.)	C _r (dynamisch)	C _{or} (statisch)	(kN)	(Grad)	10	(mm) a	Fett	Öl	
7903C	17	30	7	0,3	0,15	5,25	2,94	2,09	15	14,8	6,6	49 000	74 500	
7903CSN24	17	30	7	0,3	0,15	5,10	2,90	2,46	15	14,8	6,6	63 900	97 100	
7903A5	17	30	7	0,3	0,15	5,00	2,80	2,21	25	_	9	42 600	63 900	
7903A5SN24	17	30	7	0,3	0,15	4,85	2,76	2,63	25	_	9	55 400	83 000	
* 17BSR19S	17	30	7	0,3	0,15	3,25	1,53	1,76	15	7,8	6,6	68 100	93 700	
* 17BSR19H	17	30	7	0,3	0,15	3,25	1,47	1,22	15	7,8	6,6	80 900	120 000	
* 17BSR19X	17	30	7	0,3	0,15	3,25	1,47	1,22	15	7,8	6,6	93 700	128 000	
7003C	17	35	10	0,3	0,15	6,95	3,80	2,85	15	14,5	8,5	44 300	67 400	
7003CSN24	17	35	10	0,3	0,15	6,50	3,55	3,38	15	14,5	8,5	57 700	87 700	
7003A5	17	35	10	0,3	0,15	6,60	3,65	3,35	25		11,1	38 500	57 700	
7003A5SN24	17	35	10	0,3	0.15	6,20	3.40	4,00	25	_	11.1	50 000	75 000	
7003A	17	35	10	0,3	0,15	6,40	3,50	2,59	30	_	12,5	28 900	38 500	
* 17BSR10S	17	35	10	0,3	0,15	4,45	1,93	2,39	15	7.4	8,5	61 600	84 700	
* 17BSR10H	17	35	10	0,3	0,15	4,45	1,85	1,56	15	7,4	8,5	73 100	108 000	
* 17BSR10X	17	35	10	0,3	0,15	4,45	1,85	1,56	15	7,4	8,5	84 700	116 000	
7203C	17	40	12	0,6	0,3	11,4	5,85	4,85	15	13,3	9,8	40 400	61 500	
7203CSN24	17	40	12	0,6	0,3	10,8	5,55	5,70	15	13,3	9,8	52 700	80 000	
7203A5	17	40	12	0,6	0.3	11,0	5.60	5,30	25	-	12.6	35 100	52 700	
7203A5SN24	17	40	12	0,6	0,3	10,4	5,35	6,28	25	_	12,6	45 700	68 500	
7203A	17	40	12	0,6	0,3	10,7	5,45	4,05	30	_	14,2	26 400	35 100	
* 17BSR02S	17	40	12	0,6	0,3	7,25	2,98	3,65	15	6,8	9,8	56 200	77 200	
* 17BSR02H	17	40	12	0,6	0,3	7,25	2,86	2,39	15	6,8	9,8	66 700	98 300	
* 17BSR02X	17	40	12	0,6	0,3	7,25	2,86	2,39	15	6,8	9,8	77 200	106 000	
7904C	20	37	9	0,3	0,15	7,23	4,25	3,20	15	14,9	8,3	40 400	61 500	
7904CSN24	20	37	9	0,3	0,15	6,85	3,95	3,78	15	14,7	8,3	52 700	80 000	
7904A5	20	37	9	0,3	0,15	6,95	4,05	3,55	25	-	11,1	35 100	52 700	
7904A5SN24	20	37	9	0,3	0,15	6,50	3,80	4,20	25		11,1	45 700	68 500	
* 20BSR19S	20	37	9	0,3	0,15	4,70	2,15	2,66	15	7,7	8,3	56 200	77 200	
* 20BSR19H	20	37	9	0,3	0,15	4,70	2,13	1,73	15	7,7	8,3	66 700	98 300	
* 20BSR19X	20	37	9	0,3	0,15	4,70	2,05	1,73	15	7,7	8,3	77 200	106 000	
				0,6	0,13	11,7	6,55	4,80	15	14,0	10,1	37 100	56 500	
7004C 7004CSN24	20	42 42	12	0,6	0,3	11,7	6,30	5,72	15	14,0	10,1	48 400	73 600	
	20		12		0,3	11,2	6,25	5,72	25	14,0	13,2	32 300	48 400	
7004A5	20	42	12	0,6		10,7			25 25		13,2	42 000		
7004A5SN24	20	42	12	0,6	0,3		6,05	6,48		_			63 000	
7004A	20	42	12	0,6	0,3	10,8	6,10	4,20	30		14,9	24 200	32 300	
* 20BSR10S	20	42	12	0,6	0,3	7,45	3,35	4,10	15	7,2	10,1	51 700	71 000	
* 20BSR10H	20	42	12	0,6	0,3	7,45	3,20	2,67	15	7,2	10,1	61 300	90 400	
* 20BSR10X	20	42	12	0,6	0,3	7,45	3,20	2,67	15	7,2	10,1	71 000	96 800	
7204C	20	47	14	1	0,6	15,3	8,05	6,30	15	13,3	11,5	34 400	52 300	
7204CSN24	20	47	14	1	0,6	14,5	7,65	7,46	15	13,3	11,5	44 800	68 100	
7204A5	20	47	14	1	0,6	14,7	7,75	7,40	25	_	14,8	29 900	44 800	
7204A5SN24	20	47	14	1	0,6	13,9	7,35	8,88	25	_	14,8	38 900	58 300	
7204A	20	47	14	1	0,6	14,3	7,55	5,75	30	_	16,7	22 400	29 900	
* 20BSR02S	20	47	14	1	0,6	9,70	4,10	5,10	15	6,8	11,5	47 800	65 700	
* 20BSR02H	20	47	14	1	0,6	9,70	3,95	3,30	15	6,8	11,5	56 800	83 600	
* 20BSR02X	20	47	14	1	0,6	9,70	3,95	3,30	15	6,8	11,5	65 700	89 600	

[[]¹] Mit einem Sternchen (*) gekennzeichnete Wälzlager sind als abgedichtete Wälzlager erhältlich.

 $[\]left[^{2}\right]$ Angaben zur zulässigen Axiallast siehe Seite 201.

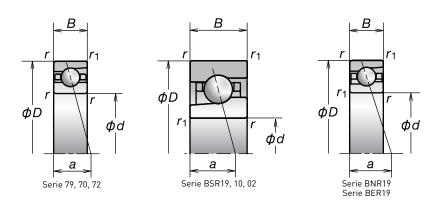
 $[\]left[^{3}\right]$ Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218.

Control Cont		Anschlußmaße (mm)				Vorspannung (Anordnung DB und DF) (N)				Axiale Steifigkeit (Anordnung DB und DF) (N/µm)				Gemessene Axialluft (µm)				Gewicht (kg)
19.5 27.5 28.8 0.3 0.15 10 25 59 131 16 23 33 49 3 0 -5 -12 0.015 19.5 27.5 28.8 0.3 0.15 14 37 84 167 37 53 72 95 1 -1 -4 -8 0.017 19.5 27.5 28.8 0.3 0.15 14 37 84 167 37 53 72 95 1 -1 -4 -8 0.015 19.5 27.5 28.8 0.3 0.15 11 25 49 -1 13 21 27 -3 3 0 -4 -2 0.018 19.5 27.5 28.8 0.3 0.15 11 25 49 -1 13 21 27 -3 3 0 -4 -2 0.016 19.5 27.5 28.8 0.3 0.15 11 25 49 -1 13 21 27 -3 3 0 -4 -2 0.016 19.5 27.5 28.8 0.3 0.15 15 30 69 156 16 21 31 46 2 -1 -7 -16 0.039 19.5 32.5 33.8 0.3 0.15 15 30 75 174 18 24 35 53 2 -1 -7 -16 0.039 19.5 32.5 33.8 0.3 0.15 25 47 27 257 41 51 47 499 0 -2 -7 -13 0.040 19.5 32.5 33.8 0.3 0.15 25 50 142 293 46 58 86 116 0 -2 -7 -13 0.037 19.5 32.5 33.8 0.3 0.15 25 116 25 49 22 23 45 49 19.5 32.5 33.8 0.3 0.15 12 29 65 -2 14 20 28 -3 -1 -7 -0 0.036 19.5 32.5 33.8 0.3 0.15 12 29 65 -2 14 20 28 -3 -1 -7 -0 0.036 19.5 32.5 33.8 0.3 0.15 12 29 65 -2 14 20 28 -3 -3 -1 -7 -0 0.036 19.5 32.5 33.8 0.3 0.15 12 29 65 -2 14 20 28 -3 -3 -1 -7 -0 0.036 19.5 32.5 33.8 0.3 0.15 12 29 65 -2 14 20 28 -3 -1 -7 -0 0.036 19.5 32.5 33.8 0.3 0.15 12 29 65 -2 14 20 28 -3 -1 -7 -0 0.036 19.5 32.5 33.8 0.3 0.15 12 29 65 -2 14 20 28 -3 -1 -7 -0 0.036 19.5 32.5 33.8 0.3 0.15 12 29 65 -2 14 20 28 -3 -1 -7 -0 0.036 19.5 32.5 33.8 0.3 0.15 12 29 65 -2 14 20 28 -3 -1 -7 -2 0.036 19.5 32.5 33.8 0.3						EL	L	М	Н	EL	L	М	Н	EL	L	М	Н	(ca.)
19.5					. ,									_	_	_		
19.5 27.5 28.8 0.3 0.15 14 37 84 167 37 53 72 95 1 -1 -4 -8 0.015 19.5 27.5 28.8 0.3 0.15 11 25 49 -1 13 21 27 -3 3 0 -4 -2 0.016 19.5 27.5 28.8 0.3 0.15 11 25 49 -1 13 21 27 -3 3 0 -4 -2 0.016 19.5 27.5 28.8 0.3 0.15 15 30 69 156 16 21 31 46 2 -1 -7 -16 0.039 19.5 32.5 33.8 0.3 0.15 15 30 69 156 16 21 31 46 2 -1 -7 -16 0.039 19.5 32.5 33.8 0.3 0.15 15 30 75 174 18 24 35 53 2 -1 -7 -16 0.039 19.5 32.5 33.8 0.3 0.15 25 47 172 257 41 51 74 99 -2 -7 -13 0.040 19.5 32.5 33.8 0.3 0.15 25 47 127 257 41 51 74 99 -2 -7 -13 0.040 19.5 32.5 33.8 0.3 0.15 25 116 251 422 293 46 58 86 116 0 -2 -7 -13 0.037 19.5 32.5 33.8 0.3 0.15 25 116 251 422 27 45 54 72 123 151 0 -5 -10 -15 0.040 19.5 32.5 33.8 0.3 0.15 12 29 65 -1 14 20 28 -3 3 -1 -7 -0 0.036 19.5 32.5 33.8 0.3 0.15 12 29 65 -1 14 20 28 -3 3 -1 -7 -0 0.036 19.5 32.5 33.8 0.3 0.15 12 29 65 -1 14 20 28 -3 3 -1 -7 -0 0.036 19.5 32.5 33.8 0.3 0.3 57 204 408 45 40 87 116 -1 -4 -11 -19 0.057 22 35 37.5 0.6 0.3 35 75 204 408 45 40 87 116 -1 -4 -11 -19 0.057 22 35 37.5 0.6 0.3 35 75 204 408 45 40 87 116 -1 -4 -11 -19 0.057 22 35 37.5 0.6 0.3 35 75 204 408 45 40 40 40 40 -4 -1 -1 -2 0.058 22 35 37.5 0.6 0.3 25 48 48 77 -1 6 21 29 -2 -1 -7 -1 0.036 22 35 37.5 0.6 0.3 37 82 222 470 51 69 102 136 -1 -4 -11 -19 0.057 22 35 37.5 0.6 0.3 35 55 51 107 -1				0,3							23	33		3	0	-5	-12	
19.5 27.5 28.8 0.3 0.15 12 25 46 13 21 27 3 0 -4 0.016 19.5 27.5 28.8 0.3 0.15 11 25 49 13 21 27 3 0 -4 0.016 19.5 32.5 33.8 0.3 0.15 15 30 69 156 16 21 31 46 2 -1 -7 -16 0.039 19.5 32.5 33.8 0.3 0.15 15 30 69 156 16 21 31 46 2 -1 -7 -16 0.039 19.5 32.5 33.8 0.3 0.15 15 30 69 156 16 21 31 46 2 -1 -7 -16 0.039 19.5 32.5 33.8 0.3 0.15 25 50 142 293 46 58 86 116 0 -2 -7 -13 0.040 19.5 32.5 33.8 0.3 0.15 25 50 142 293 46 58 86 116 0 -2 -7 -13 0.040 19.5 32.5 33.8 0.3 0.15 25 116 251 422 54 92 123 151 0 -5 -10 -15 0.040 19.5 32.5 33.8 0.3 0.15 12 29 60 -1 31 82 4 -3 3 -1 -7 -0 0.039 19.5 32.5 33.8 0.3 0.15 12 29 65 -1 4 20 28 -3 3 -1 -7 -0 0.036 19.5 32.5 33.8 0.3 0.15 12 29 65 -1 4 20 28 -3 3 -1 -7 -0 0.036 19.5 32.5 33.8 0.3 0.15 12 29 65 -1 4 20 28 -3 3 -1 -7 -0 0.036 22 35 37.5 0.6 0.3 25 46 146 296 19 25 41 59 0 -4 -16 -28 0.058 22 35 37.5 0.6 0.3 25 49 163 337 21 28 48 69 0 -4 -16 -28 0.058 22 35 37.5 0.6 0.3 25 15 27 204 408 45 60 87 116 -1 -4 -11 -19 0.057 22 35 37.5 0.6 0.3 25 15 27 204 408 45 60 87 116 -1 -4 -11 -19 0.057 22 35 37.5 0.6 0.3 25 115 27 27 27 28 48 69 0 -5 -10 -15 0.065 22 35 37.5 0.6 0.3 25 115 27 27 28 28 -1 28 -1 -1 -1 -1 0.057 23 37.5 0.6 0.3 25 115 27 27 28 28 -1 28 -1 -1 -1 -1 -1 0.057 24 35 37.5 0.6 0.3 25 115 27 27 28 28 -1																		
19.5	19,5												95				-8	
19.5														-				
19.5 32.5 33.8 0.3 0.15 15 30 69 156 16 21 31 46 2 -1 -7 -16 0.039 19.5 32.5 33.8 0.3 0.15 25 47 127 257 41 51 74 99 0 -2 -7 -13 0.040 19.5 32.5 33.8 0.3 0.15 25 50 142 293 46 58 86 116 0 -2 -7 -13 0.037 19.5 32.5 33.8 0.3 0.15 15 26 60 -1 13 18 24 -3 -1 -7 -0 0.039 19.5 32.5 33.8 0.3 0.15 12 29 65 -14 20 28 -3 -1 -7 -0 0.036 19.5 32.5 33.8 0.3 25 46																		
19.5			<u> </u>	· ·	-													
19,5 32,5 33,8 0,3 0,15 25 47 127 257 41 51 74 99 0 -2 -7 -13 0,040 19,5 32,5 33,8 0,3 0,15 25 50 142 273 46 58 86 116 0 -2 -7 -13 0,037 19,5 32,5 33,8 0,3 0,15 25 116 251 422 54 92 123 151 0 -5 -10 -15 0,040 19,5 32,5 33,8 0,3 0,15 13 29 60 -1 13 18 24 -3 3 -1 -7 -0 0,036 19,5 32,5 33,8 0,3 0,15 12 29 65 -1 14 20 28 -3 -1 -7 -0 0,036 19,5 32,5 33,8 0,3 0,15 12 29 65 -1 14 20 28 -3 -1 -7 -0 0,036 19,5 32,5 33,8 0,3 0,15 12 29 65 -1 14 20 28 -3 -1 -7 -0 0,036 22 35 37,5 0,6 0,3 25 49 163 337 21 28 48 69 0 -4 -16 -28 0,065 22 35 37,5 0,6 0,3 35 75 204 408 45 60 87 116 -1 -4 -11 -19 0,064 22 35 37,5 0,6 0,3 37 82 232 470 51 69 102 136 -1 -4 -11 -19 0,064 22 35 37,5 0,6 0,3 25 48 97 -1 16 21 28 -0 0 -5 -10 -15 0,065 22 35 37,5 0,6 0,3 25 48 97 -1 16 21 28 -0 0 -5 -13 -0 0,065 22 35 37,5 0,6 0,3 25 48 97 -1 16 21 28 -0 0 -5 -13 -1 -1 -1 0,064 22 35 37,5 0,6 0,3 25 51 107 -1 18 24 32 -0 0 -5 -13 -0 0,065 22 35 37,5 0,6 0,3 25 51 107 -1 18 24 32 -0 0 -5 -13 -0 0,065 22 35 37,5 0,6 0,3 25 51 107 -1 18 24 32 -0 0 -5 -13 -0 0,065 22 35 37,5 0,6 0,3 25 51 107 -1 18 24 32 -0 0 -5 -13 -0 0,065 22 35 37,5 0,6 0,3 25 51 107 -1 18 24 32 -0 0 -5 -13 -0 0,065 22 35 37,5 0,6 0,3 25 51 107 -1 18 24 32 -0 0 -5 -13 -0 0,065 22 35 37,5 0,6 0,3 25 54 107 -1 18 24 32 -0 0 -5 -13 -0 0,065 22																		
19.5					.,												-	
19,5														_				
19,5 32,5 33,8 0,3 0,15 12 29 66 — 13 18 24 — 3 —1 —7 — 0,036 19,5 32,5 33,8 0,3 0,15 12 29 65 — 14 20 28 — 3 —1 —7 — 0,036 22 35 37,5 0,6 0,3 25 46 146 296 19 25 41 59 0 —4 —16 —28 0,068 22 35 37,5 0,6 0,3 35 75 204 408 45 60 87 116 —1 —4 —11 —19 0,064 22 35 37,5 0,6 0,3 25 418 412 53 90 119 145 —0 —5 —11 —19 0,065 22 35 37,5 0,6 0,3														-				
19,5																		
19.5					. ,													
22 35 37,5 0,6 0,3 25 46 146 296 19 25 41 59 0 -4 -16 -28 0,058 22 35 37,5 0,6 0,3 35 75 204 408 45 60 87 116 -1 -4 -11 -19 0,064 22 35 37,5 0,6 0,3 37 82 232 470 51 69 102 136 -1 -4 -11 -19 0,057 22 35 37,5 0,6 0,3 25 115 247 412 53 90 119 145 0 -5 -13 - 0,065 22 35 37,5 0,6 0,3 25 51 107 - 18 24 32 - 0 -5 -13 - 0,057 22 35 37,5 0,6																		
22 35 37,5 0,6 0,3 25 49 163 337 21 28 48 69 0 -4 -16 -28 0,058 22 35 37,5 0,6 0,3 35 75 204 408 45 60 87 116 -1 -4 -11 -19 0,067 22 35 37,5 0,6 0,3 25 115 247 412 53 90 119 145 0 -5 -10 -15 0,065 22 35 37,5 0,6 0,3 25 48 97 - 16 21 28 - 0 -5 -13 - 0,065 22 35 37,5 0,6 0,3 25 51 107 - 18 24 32 - 0 -5 -13 - 0,057 22,5 34,5 35,8 0,3 <					-													
22 35 37,5 0,6 0,3 35 75 204 408 45 60 87 116 -1 -4 -11 -19 0,064 22 35 37,5 0,6 0,3 25 115 247 412 53 90 119 145 0 -5 -10 -15 0,065 22 35 37,5 0,6 0,3 25 48 97 - 16 21 28 - 0 -5 -10 -15 0,065 22 35 37,5 0,6 0,3 25 51 107 - 18 24 32 - 0 -5 -13 - 0,057 22,5 34,5 35,8 0,3 0,15 20 42 80 152 19 26 35 48 1 -3 -8 -15 0,032 22,5 34,5 35,8 0,3														_				
22 35 37,5 0,6 0,3 25 115 247 412 53 90 119 145 0 -5 -10 -15 0,065 22 35 37,5 0,6 0,3 25 48 97 — 16 21 28 — 0 — 5 -13 — 0,065 22 35 37,5 0,6 0,3 25 51 107 — 18 24 32 — 0 -5 -13 — 0,057 22 35 37,5 0,6 0,3 25 51 107 — 18 24 32 — 0 -5 -13 — 0,057 22,5 34,5 35,8 0,3 0,15 20 42 80 152 19 26 35 48 1 —3 —8 -15 0,03 22,5 34,5 35,8 0,3 </td <td></td> <td></td> <td></td> <td>.,.</td> <td>. ,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>				.,.	. ,									_				
22 35 37,5 0,6 0,3 25 115 247 412 53 90 119 145 0 -5 -10 -15 0,065 22 35 37,5 0,6 0,3 25 51 107 - 18 24 32 - 0 -5 -13 - 0,057 22 35 37,5 0,6 0,3 25 51 107 - 18 24 32 - 0 -5 -13 - 0,057 22,5 34,5 35,8 0,3 0,15 20 42 80 152 19 26 35 48 1 -3 -8 -15 0,036 22,5 34,5 35,8 0,3 0,15 25 63 114 247 43 60 75 102 0 -3 -6 -12 0,034 22,5 34,5 35,8 0,3																		
22 35 37,5 0,6 0,3 25 48 97 — 16 21 28 — 0 —5 —13 — 0,065 22 35 37,5 0,6 0,3 25 51 107 — 18 24 32 — 0 —5 —13 — 0,065 22,5 34,5 35,8 0,3 0,15 20 42 80 152 19 26 35 48 1 —3 —8 —15 0,036 22,5 34,5 35,8 0,3 0,15 25 63 114 247 43 60 75 102 0 —3 —6 —12 0,037 22,5 34,5 35,8 0,3 0,15 25 68 127 282 48 69 87 119 0 —3 —6 —12 0,037 22,5 34,5 35,8 0,3																		
22 35 37,5 0,6 0,3 25 51 107 — 18 24 32 — 0 —5 —13 — 0,057 22,5 34,5 35,8 0,3 0,15 20 42 80 152 19 26 35 48 1 —3 —8 —15 0,036 22,5 34,5 35,8 0,3 0,15 19 44 87 169 21 29 40 55 1 —3 —8 —15 0,033 22,5 34,5 35,8 0,3 0,15 25 63 114 247 43 60 75 102 0 —3 —6 —12 0,037 22,5 34,5 35,8 0,3 0,15 16 29 63 —15 19 26 —2 —1 —7 —0 0,034 22,5 34,5 35,8 0,3 0,15														_				
22 35 37,5 0,6 0,3 25 51 107 — 18 24 32 — 0 —5 —13 — 0,057 22,5 34,5 35,8 0,3 0,15 19 44 87 169 21 29 40 55 1 —3 —8 —15 0,033 22,5 34,5 35,8 0,3 0,15 25 63 114 247 43 60 75 102 0 —3 —6 —12 0,037 22,5 34,5 35,8 0,3 0,15 25 68 127 282 48 69 87 119 0 —3 —6 —12 0,034 22,5 34,5 35,8 0,3 0,15 15 30 67 —17 21 29 —2 —1 —7 —0,033 22,5 34,5 35,8 0,3 0,15 15 <														_			_	
22,5 34,5 35,8 0,3 0,15 20 42 80 152 19 26 35 48 1 -3 -8 -15 0,036 22,5 34,5 35,8 0,3 0,15 25 63 114 247 43 60 75 102 0 -3 -6 -12 0,037 22,5 34,5 35,8 0,3 0,15 25 68 127 282 48 69 87 119 0 -3 -6 -12 0,034 22,5 34,5 35,8 0,3 0,15 16 29 63 - 15 19 26 - 2 -1 -7 - 0,034 22,5 34,5 35,8 0,3 0,15 15 30 67 - 17 21 29 - 2 -1 -7 - 0,033 25 37 39,5 0,6 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>_</td> <td></td>									_				_				_	
22,5 34,5 35,8 0,3 0,15 19 44 87 169 21 29 40 55 1 -3 -8 -15 0,033 22,5 34,5 35,8 0,3 0,15 25 63 114 247 43 60 75 102 0 -3 -6 -12 0,037 22,5 34,5 35,8 0,3 0,15 16 29 63 - 15 19 26 - 2 -1 -7 - 0,034 22,5 34,5 35,8 0,3 0,15 15 30 67 - 17 21 29 - 2 -1 -7 - 0,034 22,5 34,5 35,8 0,3 0,15 15 30 67 - 17 21 29 - 2 -1 -7 - 0,033 25 37 39,5 0,6							42	80	152	19	26		48	1	-3		-15	
22,5 34,5 35,8 0,3 0,15 25 63 114 247 43 60 75 102 0 -3 -6 -12 0,037 22,5 34,5 35,8 0,3 0,15 25 68 127 282 48 69 87 119 0 -3 -6 -12 0,034 22,5 34,5 35,8 0,3 0,15 15 30 67 - 17 21 29 - 2 -1 -7 - 0,036 22,5 34,5 35,8 0,3 0,15 15 30 67 - 17 21 29 - 2 -1 -7 - 0,033 25 37 39,5 0,6 0,3 25 52 132 277 24 32 48 68 0 -4 -12 -22 0,067 25 37 39,5 0,6				0,3	0,15	19	44	87	169	21	29	40	55	1		-8	-15	
22,5 34,5 35,8 0,3 0,15 16 29 63 — 15 19 26 — 2 —1 —7 — 0,036 22,5 34,5 35,8 0,3 0,15 15 30 67 — 17 21 29 — 2 —1 —7 — 0,033 25 37 39,5 0,6 0,3 25 49 119 244 21 28 42 59 0 —4 —12 —22 0,067 25 37 39,5 0,6 0,3 25 52 132 277 24 32 48 68 0 —4 —12 —22 0,060 25 37 39,5 0,6 0,3 38 81 206 403 51 68 97 127 —1 —4 —10 —17 0,060 25 37 39,5 0,6 <		34,5	35,8	0,3	0,15	25	63	114	247	43	60	75	102	0	-3	-6	-12	0,037
22,5 34,5 35,8 0,3 0,15 15 30 67 — 17 21 29 — 2 —1 —7 — 0,033 22,5 34,5 35,8 0,3 0,15 15 30 67 — 17 21 29 — 2 —1 —7 — 0,033 25 37 39,5 0,6 0,3 25 52 132 277 24 32 48 68 0 —4 —12 —22 0,067 25 37 39,5 0,6 0,3 25 52 132 277 24 32 48 68 0 —4 —12 —22 0,060 25 37 39,5 0,6 0,3 38 90 234 465 58 79 113 149 —1 —4 —10 —17 0,060 25 37 39,5 0,6	22,5	34,5	35,8	0,3	0,15	25	68	127	282	48	69	87	119	0	-3	-6	-12	0,034
22,5 34,5 35,8 0,3 0,15 15 30 67 — 17 21 29 — 2 —1 —7 — 0,033 25 37 39,5 0,6 0,3 25 49 119 244 21 28 42 59 0 —4 —12 —22 0,067 25 37 39,5 0,6 0,3 25 52 132 277 24 32 48 68 0 —4 —12 —22 0,060 25 37 39,5 0,6 0,3 36 81 206 403 51 68 97 127 —1 —4 —10 —17 0,067 25 37 39,5 0,6 0,3 25 128 280 473 59 104 139 170 0 —5 —10 —15 0,068 25 37 39,5 0,6	22,5	34,5	35,8	0,3	0,15	16	29	63	_	15	19	26	_	2	-1	-7	_	0,036
25 37 39,5 0,6 0,3 25 49 119 244 21 28 42 59 0 -4 -12 -22 0,067 25 37 39,5 0,6 0,3 25 52 132 277 24 32 48 68 0 -4 -12 -22 0,060 25 37 39,5 0,6 0,3 36 81 206 403 51 68 97 127 -1 -4 -10 -17 0,067 25 37 39,5 0,6 0,3 38 90 234 465 58 79 113 149 -1 -4 -10 -17 0,060 25 37 39,5 0,6 0,3 25 51 107 - 18 24 32 - 0 -5 -10 -15 0,068 25 37 39,5 0,6		34,5	35,8	0,3	0,15		30	67	_	17	21		_		-1		_	0,033
25 37 39,5 0,6 0,3 25 52 132 277 24 32 48 68 0 -4 -12 -22 0,060 25 37 39,5 0,6 0,3 36 81 206 403 51 68 97 127 -1 -4 -10 -17 0,067 25 37 39,5 0,6 0,3 38 90 234 465 58 79 113 149 -1 -4 -10 -17 0,060 25 37 39,5 0,6 0,3 25 128 280 473 59 104 139 170 0 -5 -10 -15 0,068 25 37 39,5 0,6 0,3 25 51 107 - 18 24 32 - 0 -5 -13 - 0,068 25 37 39,5 0,6				0,3	-			_										
25 37 39,5 0,6 0,3 36 81 206 403 51 68 97 127 -1 -4 -10 -17 0,067 25 37 39,5 0,6 0,3 38 90 234 465 58 79 113 149 -1 -4 -10 -17 0,060 25 37 39,5 0,6 0,3 25 128 280 473 59 104 139 170 0 -5 -10 -15 0,068 25 37 39,5 0,6 0,3 25 51 107 - 18 24 32 - 0 -5 -13 - 0,068 25 37 39,5 0,6 0,3 25 54 119 - 20 27 37 - 0 -5 -13 - 0,061 25 37 39,5 0,6																		
25 37 39,5 0,6 0,3 38 90 234 465 58 79 113 149 -1 -4 -10 -17 0,060 25 37 39,5 0,6 0,3 25 128 280 473 59 104 139 170 0 -5 -10 -15 0,068 25 37 39,5 0,6 0,3 25 51 107 - 18 24 32 - 0 -5 -13 - 0,068 25 37 39,5 0,6 0,3 25 54 119 - 20 27 37 - 0 -5 -13 - 0,061 25 37 39,5 0,6 0,3 25 54 119 - 20 27 37 - 0 -5 -13 - 0,061 25 37 39,5 0,6 0,3														_				
25 37 39,5 0,6 0,3 25 128 280 473 59 104 139 170 0 -5 -10 -15 0,068 25 37 39,5 0,6 0,3 25 51 107 - 18 24 32 - 0 -5 -13 - 0,068 25 37 39,5 0,6 0,3 25 54 119 - 20 27 37 - 0 -5 -13 - 0,061 25 37 39,5 0,6 0,3 25 54 119 - 20 27 37 - 0 -5 -13 - 0,061 25 37 39,5 0,6 0,3 25 54 119 - 20 27 37 - 0 -5 -13 - 0,061 26 41 42 1 0,5 35 68 196 384 23 30 48 68 -2 -7 -20 -33 0,103 26 41 42 1 0,5 63 112 290 596 59 73				.,.												-		
25 37 39,5 0,6 0,3 25 51 107 — 18 24 32 — 0 —5 —13 — 0,068 25 37 39,5 0,6 0,3 25 54 119 — 20 27 37 — 0 —5 —13 — 0,061 26 41 42 1 0,5 35 68 196 384 23 30 48 68 —2 —7 —20 —33 0,103 26 41 42 1 0,5 37 74 221 440 26 34 56 79 —2 —7 —20 —33 0,091 26 41 42 1 0,5 63 112 290 596 59 73 104 140 —3 —6 —14 —24 0,102 26 41 42 1 0,5 68 125 332 691 67 84 122 165 —3 —6 —14 —24 0,090 26 41 42 1 0,5 25 262 439 649 56 128<					. , .													
25 37 39,5 0,6 0,3 25 54 119 — 20 27 37 — 0 —5 —13 — 0,061 25 37 39,5 0,6 0,3 25 54 119 — 20 27 37 — 0 —5 —13 — 0,061 26 41 42 1 0,5 35 68 196 384 23 30 48 68 —2 —7 —20 —33 0,103 26 41 42 1 0,5 37 74 221 440 26 34 56 79 —2 —7 —20 —33 0,091 26 41 42 1 0,5 63 112 290 596 59 73 104 140 —3 —6 —14 —24 0,102 26 41 42 1 0,5 68 125 332 691 67 84 122 165 —3 —6 —14 —24 0,090 26 41 42 1 0,5 25 262 439 649 56 128<														-		-		
25 37 39,5 0,6 0,3 25 54 119 — 20 27 37 — 0 —5 —13 — 0,061 26 41 42 1 0,5 35 68 196 384 23 30 48 68 —2 —7 —20 —33 0,103 26 41 42 1 0,5 37 74 221 440 26 34 56 79 —2 —7 —20 —33 0,091 26 41 42 1 0,5 63 112 290 596 59 73 104 140 —3 —6 —14 —24 0,102 26 41 42 1 0,5 68 125 332 691 67 84 122 165 —3 —6 —14 —24 0,090 26 41 42 1 0,5														_				
26 41 42 1 0,5 35 68 196 384 23 30 48 68 -2 -7 -20 -33 0,103 26 41 42 1 0,5 37 74 221 440 26 34 56 79 -2 -7 -20 -33 0,091 26 41 42 1 0,5 63 112 290 596 59 73 104 140 -3 -6 -14 -24 0,102 26 41 42 1 0,5 68 125 332 691 67 84 122 165 -3 -6 -14 -24 0,090 26 41 42 1 0,5 25 262 439 649 56 128 155 181 0 -10 -15 -20 0,104 26 41 42 1 0,5 34 67 140 - 19 25 34 - -2 -8 -18 - 0,103 26 41 42 1 0,5 35 72 157 - 22 29 </td <td></td> <td></td> <td></td> <td>.,.</td> <td>. , .</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>				.,.	. , .									_				
26 41 42 1 0,5 37 74 221 440 26 34 56 79 -2 -7 -20 -33 0,091 26 41 42 1 0,5 63 112 290 596 59 73 104 140 -3 -6 -14 -24 0,102 26 41 42 1 0,5 68 125 332 691 67 84 122 165 -3 -6 -14 -24 0,090 26 41 42 1 0,5 25 262 439 649 56 128 155 181 0 -10 -15 -20 0,104 26 41 42 1 0,5 34 67 140 - 19 25 34 - -2 -8 -18 - 0,103 26 41 42 1 0,5 35 72 157 - 22 29 39 - -2 -8 -18 - 0,091					-		-											
26 41 42 1 0,5 63 112 290 596 59 73 104 140 -3 -6 -14 -24 0,102 26 41 42 1 0,5 68 125 332 691 67 84 122 165 -3 -6 -14 -24 0,090 26 41 42 1 0,5 25 262 439 649 56 128 155 181 0 -10 -15 -20 0,104 26 41 42 1 0,5 34 67 140 - 19 25 34 - -2 -8 -18 - 0,103 26 41 42 1 0,5 35 72 157 - 22 29 39 - -2 -8 -18 - 0,091																		
26 41 42 1 0,5 68 125 332 691 67 84 122 165 -3 -6 -14 -24 0,090 26 41 42 1 0,5 25 262 439 649 56 128 155 181 0 -10 -15 -20 0,104 26 41 42 1 0,5 34 67 140 - 19 25 34 - -2 -8 -18 - 0,103 26 41 42 1 0,5 35 72 157 - 22 29 39 - -2 -8 -18 - 0,091																		
26 41 42 1 0,5 25 262 439 649 56 128 155 181 0 -10 -15 -20 0,104 26 41 42 1 0,5 34 67 140 - 19 25 34 - -2 -8 -18 - 0,103 26 41 42 1 0,5 35 72 157 - 22 29 39 - -2 -8 -18 - 0,091														-	_			
26 41 42 1 0,5 34 67 140 - 19 25 34 - -2 -8 -18 - 0,103 26 41 42 1 0,5 35 72 157 - 22 29 39 - -2 -8 -18 - 0,091																		
26 41 42 1 0,5 35 72 157 — 22 29 39 — — 2 — 8 — 18 — 0,091														-				
20 + 41 + 42 + 1 + 0.5 + 55 + 12 + 157 + - + 22 + 27 + 57 + - + 2 + -0 + -18 + - + 0.071	26	41	42	1	0.5	35	72	157	_	22	29	39	_	-2	-8	-18	_	0,091

Tabelle ${f A}$

	EL	L	М	Н
15°	6,5	6,0	5,0	4,5
25°		2	,0	
30°		1	,4	

Tabelle ${f B}$

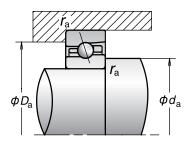

DBD	DBB
1,36	2
1,48	2
1,54	2
	1,36 1,48 1,54

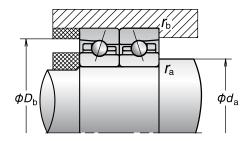
Für weitere Informationen:

•	Dynamiso	ch äq	uivalent	te Lag	erbelas	tung	S.	193	
_	Circles		-14-1			_	_	200	

- Statisch äquivalente Lagerbelastung..... S. 200

Bohrungsdurchmesser 25 mm




Lagerbe- zeichnung (1)		Hau	ptabm (m	iessunge m)	n	Tragz (k	ahlen N)	Zulässige Axiallast (²)		Faktor f	Last- angriffs- punkt	Grenzdrehzahlen (³) (min-¹)		
zeichhang ()	d	D	В	r (min.)	r ₁ (min.)	C _r (dynamisch)	C _{or} (statisch)	(kN)	(Grad)	I ₀	(mm) a	Fett	Öl	
7905C	25	42	9	0,3	0,15	8,25	5,40	3,90	15	15,5	9,0	34 400	52 300	
7905CSN24	25	42	9	0,3	0,15	7,70	5,05	4,63	15	15,5	9,0	44 800	68 100	
7905A5	25	42	9	0,3	0,15	7,80	5,15	4,40	25	_	12,3	29 900	44 800	
7905A5SN24	25	42	9	0,3	0,15	7,30	4,80	5,20	25	_	12,3	38 900	58 300	
* 25BSR19S	25	42	9	0,3	0,15	5,40	2,74	3,40	15	7,8	9,0	47 800	65 700	
* 25BSR19H	25	42	9	0,3	0,15	5,35	2,62	2,22	15	7,8	9,0	56 800	83 600	
* 25BSR19X	25	42	9	0,3	0,15	5,35	2,62	2,22	15	7,8	9,0	65 700	89 600	
7005C	25	47	12	0,6	0,3	12,3	7,40	5,20	15	14,7	10,8	32 000	48 700	
7005CSN24	25	47	12	0,6	0,3	11,8	7,15	6,16	15	14,7	10,8	41 700	63 400	
7005A5	25	47	12	0,6	0,3	11,7	7,10	5,95	25	_	14,4	27 800	41 700	
7005A5SN24	25	47	12	0,6	0,3	11,2	6,85	7,08	25	_	14,4	36 200	54 200	
7005A	25	47	12	0,6	0,3	11,3	6,85	4,55	30	_	16,4	20 900	27 800	
* 25BSR10S	25	47	12	0,6	0,3	7,90	3,75	4,65	15	7,6	10,8	44 500	61 200	
* 25BSR10H	25	47	12	0,6	0,3	7,90	3,60	3,05	15	7,6	10,8	52 800	77 800	
* 25BSR10X	25	47	12	0,6	0,3	7,90	3,60	3,05	15	7,6	10,8	61 200	83 400	
7205C	25	52	15	1	0,6	17,4	10,2	7,50	15	14,0	12,7	29 900	45 500	
7205CSN24	25	52	15	1	0,6	16,5	9,70	8,91	15	14,0	12,7	39 000	59 300	
7205A5	25	52	15	1	0,6	16,7	9,80	9,05	25	_	16,5	26 000	39 000	
7205A5SN24	25	52	15	1	0,6	15,8	9,25	10,7	25	_	16,5	33 800	50 700	
7205A	25	52	15	1	0,6	16,1	9,45	6,95	30	_	18,6	19 500	26 000	
* 25BSR02S	25	52	15	1	0,6	11,1	5,20	6,45	15	7,1	12,7	41 600	57 200	
* 25BSR02H	25	52	15	1	0,6	11,1	4,95	4,20	15	7,1	12,7	49 400	72 800	
* 25BSR02X	25	52	15	1	0,6	11,1	4,95	4,20	15	7,1	12,7	57 200	78 000	

^[1] Mit einem Sternchen (*) gekennzeichnete Wälzlager sind als abgedichtete Wälzlager erhältlich.

⁽²) Angaben zur zulässigen Axiallast siehe Seite 201.

^[3] Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218.

	Anschlußmaße (mm)					Vorspannung (Anordnung DB und DF) (N)				ordnung	teifigkei DB und µm)		Gemessene Axialluft (μm)				Gewicht (kg)
d _a (min.)	D _a (max.)	D _b (max.)	r _a (max.)	r _b (max.)	EL	L	М	Н	EL	L	М	Н	EL	L	М	Н	(ca.)
27,5	39,5	40,8	0,3	0,15	19	37	99	203	21	28	43	61	1	-2	-9	-17	0,043
27,5	39,5	40,8	0,3	0,15	18	39	109	229	23	31	49	70	1	-2	-9	-17	0,039
27,5	39,5	40,8	0,3	0,15	38	70	153	290	57	71	96	124	-1	-3	-7	-12	0,043
27,5	39,5	40,8	0,3	0,15	39	76	172	332	64	81	111	144	-1	-3	-7	-12	0,039
27,5	39,5	40,8	0,3	0,15	20	41	76	_	18	25	32	_	1	-3	-8	_	0,043
27,5	39,5	40,8	0,3	0,15	19	43	83	_	20	28	36	-	1	-3	-8	_	0,039
27,5	39,5	40,8	0,3	0,15	19	43	83	_	20	28	36	_	1	-3	-8	_	0,039
30	42	44,5	0,6	0,3	30	58	148	292	24	32	48	67	-1	-5	-14	-24	0,078
30	42	44,5	0,6	0,3	31	62	165	332	27	36	55	78	-1	-5	-14	-24	0,070
30	42	44,5	0,6	0,3	52	104	193	397	61	79	100	133	-2	-5	-9	-16	0,077
30	42	44,5	0,6	0,3	55	116	220	458	70	91	116	156	-2	-5	-9	-16	0,069
30	42	44,5	0,6	0,3	25	135	299	507	63	112	149	183	0	-5	-10	-15	0,079
30	42	44,5	0,6	0,3	25	52	112	_	20	25	35	_	0	-5	-13	_	0,078
30	42	44,5	0,6	0,3	25	56	125	_	22	29	40	_	0	-5	-13	_	0,070
30	42	44,5	0,6	0,3	25	56	125	_	22	29	40	_	0	-5	-13	_	0,070
31	46	47	1	0,5	42	82	193	402	27	36	53	76	1	-4	-14	-27	0,127
31	46	47	1	0,5	41	86	212	452	30	41	61	88	1	-4	-14	-27	0,112
31	46	47	1	0,5	82	143	330	691	73	89	123	166	-2	-5	-12	-22	0,130
31	46	47	1	0,5	87	156	372	793	83	103	143	194	-2	-5	-12	-22	0,115
31	46	47	1	0,5	49	357	578	839	80	161	193	223	0	-10	-15	-20	0,129
31	46	47	1	0,5	37	84	163	_	22	31	40	_	2	-5	-14	_	0,127
31	46	47	1	0,5	36	88	179	-	25	35	46	-	2	-5	-14	_	0,112
31	46	47	1	0,5	36	88	179	_	25	35	46	_	2	-5	-14	_	0,112

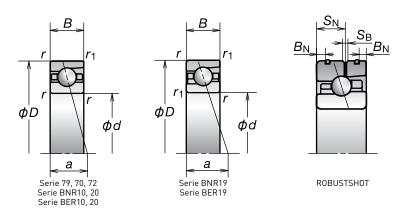
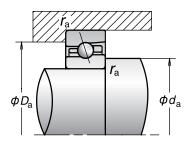

Tabe	Tabelle A												
	EL	L	М	Н									
15°	6,5	6,0	5,0	4,5									
25°		2	,0										
30° 1,4													

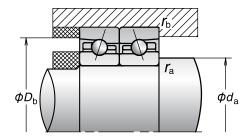
Tabelle B		
	DBD	DBE
Vorspannungsfaktor	1,36	2
Axiale Steifigkeit	1,48	2
Radiale Steifigkeit	1,54	2

Für weitere Informationen:

• Empfohlene Fettmengen ······ S. 259

Bohrungsdurchmesser 30 mm


Lagerbe- zeichnung (¹)			На	uptab	mess (mm)	•	n (²)		Tragz (k		Zulässige Druck Axiallast (3) winke		Faktor f _o	Last- angriffs- punkt		hzahlen (4) in ⁻¹)
Zeiciniung ()	d	D	В	B _N	S _N	S _B	r (min.)	r ₁ (min.)	C _r (dynamisch)	C _{or} (statisch)	(kN)	(Grad)	10	(mm) a	Fett	Öl
* 7906C	30	47	9	_	_	_	0,3	0,15	8,70	6,25	4,40	15	15,9	9,7	29 900	45 500
* 7906CSN24	30	47	9	_	_	_	0,3	0,15	8,20	5,85	5,20	15	15,9	9,7	39 000	59 300
* 7906A5	30	47	9	_	_	_	0,3	0,15	8,25	5,95	4,95	25	_	13,5	26 000	39 000
* 7906A5SN24	30	47	9	_	_	_	0,3	0,15	7,75	5,55	5,86	25	_	13,5	33 800	50 700
* 30BN19BV1V	30	47	9	_	_	_	0,3	0,15	5,00	3,60	5,05	18	10,9	10,8	36 400	_
* 30BN19BSN24V1V	30	47	9	_	_	_	0,3	0,15	5,00	3,45	3,30	18	10,9	10,8	46 800	_
* 30BA19BV1V	30	47	9	_	_	_	0,3	0,15	4,80	3,45	5,90	25	_	13,5	31 200	_
* 30BA19BSN24V1V	30	47	9	_	_	_	0,3	0,15	4,80	3,30	4,00	25	_	13,5	41 600	_
30BNR19S	30	47	9	_	_	_	0,3	0,15	6,30	4,05	5,75	18	10,5	10,8	36 400	52 000
30BNR19H	30	47	9	1,1	5,6	1,4	0,3	0,15	6,30	3,90	3,80	18	10,5	10,8	46 800	72 800
30BNR19X	30	47	9	1,1	5,6	1,4	0,3	0,15	6,30	3,90	3,80	18	10,5	10,8	54 600	85 800
30BER19S	30	47	9	_	_	_	0,3	0,15	6,00	3,90	6,80	25	_	13,5	31 200	44 200
30BER19H	30	47	9	1,1	5,6	1,4	0,3	0,15	6,00	3,75	4,60	25	_	13,5	41 600	65 000
30BER19X	30	47	9	1,1	5,6	1,4	0,3	0,15	6,00	3,75	4,60	25	_	13,5	49 400	78 000
* 7006C	30	55	13	_	_	_	1	0,6	15,9	10,3	6,85	15	14,9	12,2	27 100	41 200
* 7006CSN24	30	55	13	_	_	_	1	0,6	15,4	10,0	8,12	15	14,9	12,2	35 300	53 700
* 7006A5	30	55	13	_	_	_	1	0,6	15,1	9,80	8,05	25	_	16,4	23 600	35 300
* 7006A5SN24	30	55	13	_	_	_	1	0,6	14,6	9,55	9,56	25	_	16,4	30 600	45 900
* 7006A	30	55	13	_	_	_	1	0,6	14,6	9,45	6,20	30	_	18,8	17 700	23 600
* 30BNR10S	30	55	13	_	_	_	1	0,6	8,65	5,75	8,20	18	10,3	13,3	33 000	47 100
* 30BNR10H	30	55	13	2,8	7,5	1,4	1	0,6	8,65	5,50	5,35	18	10,3	13,3	42 400	65 900
* 30BNR10X	30	55	13	2,8	7,5	1,4	1	0,6	8,65	5,50	5,35	18	10,3	13,3	49 500	77 700
* 30BER10S	30	55	13	_	_	_	1	0,6	8,30	5,50	9,65	25	_	16,3	28 300	40 000
* 30BER10H	30	55	13	2,8	7,5	1,4	1	0,6	8,30	5,30	6,50	25	_	16,3	37 700	58 900
* 30BER10X	30	55	13	2,8	7,5	1,4	1	0,6	8,30	5,30	6,50	25	_	16,3	44 800	70 600
* 30BNR20SV1V	30	55	16	_	_	_	1	0,6	8,65	5,75	8,20	18	10,3	14,8	33 000	_
* 30BNR20HV1V	30	55	16	_	_	_	1	0,6	8,65	5,50	5,35	18	10,3	14,8	42 400	_
* 30BNR20XV1V	30	55	16	_	_	_	1	0,6	8,65	5,50	5,35	18	10,3	14,8	49 500	_
* 30BER20SV1V	30	55	16	_	_	_	1	0,6	8,30	5,50	9,65	25	_	17,8	28 300	_
* 30BER20HV1V	30	55	16	_	_	_	1	0,6	8,30	5,30	6,50	25	_	17,8	37 700	_
* 30BER20XV1V	30	55	16	_	_	_	1	0,6	8,30	5,30	6,50	25	_	17,8	44 800	_
7206C	30	62	16	_	_	_	1	0,6	24,2	14,7	10,3	15	13,9	14,2	25 000	38 100
7206CSN24	30	62	16	_	_	_	1	0,6	23,2	14,2	12,2	15	13,9	14,2	32 700	49 600
7206A5	30	62	16	_	_	_	1	0,6	23,2	14,1	12,0	25	_	18,7	21 800	32 700
7206A5SN24	30	62	16	_	_	_	1	0,6	22,2	13,6	14,2	25	_	18,7	28 300	42 400
7206A	30	62	16	_	_	_	1	0,6	22,4	13,6	9,20	30	_	21,3	16 400	21 800


^[1] Mit einem Sternchen (*) gekennzeichnete Wälzlager sind als abgedichtete Wälzlager erhältlich. Die Serie 20 enthält ausschließlich abgedichtete Wälzlager

 $^[^2]$ Wenn für ein Wälzlager Werte in den Spalten B_N , S_N und S_B angegeben sind, ist es als ROBUSTSHOT erhältlich.

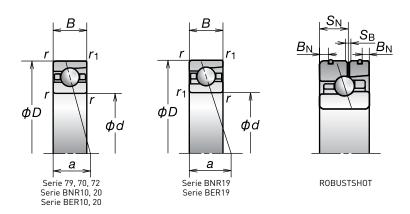
^[3] Angaben zur zulässigen Axiallast siehe Seite 201.

^[4] Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218.

	Ansch	lußmaße	e (mm)		(And	Vorspa ordnung (1)		d DF)		Axiale Soordnung (N/			Ge		ne Axial m)	luft	Gewicht (kg)
d _a (min.)	D _a (max.)	D _b (max.)	r _a (max.)	r _b (max.)	EL	L	М	Н	EL	L	М	Н	EL	L	М	Н	(ca.)
32,5	44,5	45,8	0,3	0,15	25	46	95	204	25	33	45	65	0	-3	-8	-16	0,049
32,5	44,5	45,8	0,3	0,15	25	49	104	230	28	37	51	75	0	-3	-8	-16	0,044
32,5	44,5	45,8	0,3	0,15	39	74	141	285	62	78	99	131	-1	-3	-6	-11	0,050
32,5	44,5	45,8	0,3	0,15	41	81	158	326	70	90	115	154	-1	-3	-6	-11	0,045
32,5	44,5	45,8	0,3	0,15	25	109	218	_	30	53	71	_	0	-8	-15	_	0,050
32,5	44,5	45,8	0,3	0,15	25	121	248	_	34	62	83	_	0	-8	-15	_	0,047
32,5	44,5	45,8	0,3	0,15	25	178	352	_	50	100	131	_	0	-8	-14	_	0,050
32,5	44,5	45,8	0,3	0,15	25	202	405	_	56	117	153	_	0	-8	-14	_	0,047
32,5	44,5	45,8	0,3	0,15	25	101	197	_	28	48	63	_	0	-8	-15	_	0,048
32,5	44,5	45,8	0,3	0,15	25	112	224	_	31	55	73	_	0	-8	-15	_	0,043
32,5	44,5	45,8	0,3	0,15	25	112	224	_	31	55	73	_	0	-8	-15	_	0,043
32,5	44,5	45,8	0,3	0,15	25	164	318	_	47	90	116	_	0	-8	-14	_	0,048
32,5	44,5	45,8	0,3	0,15	25	185	366	_	52	105	136	_	0	-8	-14	_	0,043
32,5	44,5	45,8	0,3	0,15	25	185	366	_	52	105	136	_	0	-8	-14	_	0,043
36	49	50	1	0,5	41	75	195	386	30	38	58	81	1	-3	-13	-24	0,114
36	49	50	1	0,5	41	78	214	434	33	42	66	94	1	-3	-13	-24	0,102
36	49	50	1	0,5	66	129	294	590	73	93	127	169	-1	-4	-10	-18	0,114
36	49	50	1	0,5	68	139	331	676	82	106	148	197	-1	-4	-10	-18	0,102
36	49	50	1	0,5	49	191	390	638	87	138	180	217	0	-5	-10	-15	0,116
36	49	50	1	0,5	49	106	229	_	39	52	71	_	0	-5	-13	_	0,124
36	49	50	1	0,5	49	113	254	_	44	59	82	_	0	-5	-13	_	0,116
36	49	50	1	0,5	49	113	254	_	44	59	82	_	0	-5	-13	_	0,116
36	49	50	1	0,5	49	224	443	_	64	109	141	_	0	-8	-15	_	0,124
36	49	50	1	0,5	49	250	505	_	72	126	165	_	0	-8	-15	_	0,116
36	49	50	1	0,5	49	250	505	_	72	126	165		0	-8	-15		0,116
36	49	50	1	0,5	49	106	229	_	39	52	71	_	0	-5	-13	_	0,150
36	49	50	1	0,5	49	113	254	_	44	59	82	_	0	-5	-13	_	0,142
36	49	50	1	0,5	49	113	254	_	44	59	82	_	0	-5	-13	_	0,142
36	49	50	1	0,5	49	224	443	_	64	109	141	_	0	-8	-15	_	0,150
36	49	50	1	0,5	49	250	505	_	72	126	165	_	0	-8	-15	_	0,142
36	49	50	1	0,5	49	250	505	_	72	126	165		0	-8	-15	_	0,142
36	56	57	1	0,5	57	114	292	591	33	43	66	94	-1	-7	-20	-35	0,194
36	56	57	1	0,5	58	122	326	673	36	49	76	109	-1	-7	-20	-35	0,169
36	56	57	1	0,5	105	202	457	881	85	108	147	192	-3	-7	-15	-25	0,194
36	56	57	1	0,5	113	224	521	1 018	97	124	172	225	-3	-7	-15	-25	0,169
36	56	57	1	0,5	49	384	625	908	86	175	210	243	0	-10	-15	-20	0,197

Tabelle f A

	EL	L	М	Н
15°	6,5	6,0	5,0	4,5
25°		2	,0	
30°		1	,4	

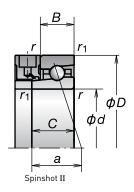

Tabelle ${f B}$

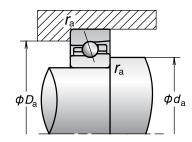
	DBD	DBB
Vorspannungsfaktor	1,36	2
Axiale Steifigkeit	1,48	2
Radiale Steifigkeit	1,54	2

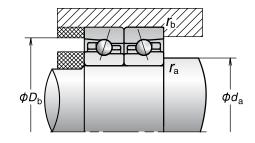
Für weitere Informationen:

- Dynamisch äquivalente Lagerbelastung........ S. 193
- Statisch äquivalente Lagerbelastung..... S. 200 • Abmessungen der Zwischenringe und
- Position der Schmierdüse------ S. 239 • Empfohlene Fettmengen ····· S. 259

Bohrungsdurchmesser 35 mm


Lagerbe- zeichnung (¹)			На	uptab	mess (mm)	•	n (²)		Tragz (k		Zulässige Axiallast (³)	Druck- winkel	Faktor f _o	Last- angriffs- punkt		hzahlen (4) in ⁻¹)
Zeiciniung ()	d	D	В	B _N	S _N	S _B	r (min.)	r ₁ (min.)	\mathbf{C}_{r} (dynamisch)	$C_{\rm or}$ (statisch)	(kN)	(Grad)	10	(mm) a	Fett	Öl
* 7907C	35	55	10	_	_	_	0,6	0,3	12,7	9,15	6,60	15	15,7	11,0	25 600	38 900
* 7907CSN24	35	55	10	_	_	_	0,6	0,3	11,9	8,55	7,82	15	15,7	11,0	33 400	50 700
* 7907A5	35	55	10	_	_	_	0,6	0,3	12,0	8,70	7,20	25	_	15,5	22 300	33 400
* 7907A5SN24	35	55	10	_	_	_	0,6	0,3	11,3	8,15	8,52	25	-	15,5	28 900	43 400
* 35BN19AV1V	35	55	10	_	_	_	0,6	0,3	6,95	5,10	7,20	18	10,8	12,3	31 200	_
* 35BN19ASN24V1V	35	55	10	_	_	_	0,6	0,3	6,95	4,90	4,75	18	10,8	12,3	40 000	_
* 35BA19BV1V	35	55	10	_	_	_	0,6	0,3	6,65	4,90	8,50	25	_	15,5	26 700	_
* 35BA19BSN24V1V	35	55	10	_	_	_	0,6	0,3	6,65	4,70	5,75	25	_	15,5	35 600	_
35BNR19S	35	55	10	_	_	_	0,6	0,3	9,20	6,00	8,55	18	10,4	12,3	31 200	44 500
35BNR19H	35	55	10	1,6	6,1	1,4	0,6	0,3	9,20	5,70	5,60	18	10,4	12,3	40 000	62 300
35BNR19X	35	55	10	1,6	6,1	1,4	0,6	0,3	9,20	5,70	5,60	18	10,4	12,3	46 700	73 400
35BER19S	35	55	10	_	_	_	0,6	0,3	8,80	5,75	10,0	25	-	15,5	26 700	37 800
35BER19H	35	55	10	1,6	6,1	1,4	0,6	0,3	8,80	5,50	6,80	25	_	15,5	35 600	55 600
35BER19X	35	55	10	1,6	6,1	1,4	0,6	0,3	8,80	5,50	6,80	25	-	15,5	42 300	66 700
* 7007C	35	62	14	_	_	_	1	0,6	20,1	13,7	9,35	15	15,0	13,5	23 800	36 100
* 7007CSN24	35	62	14	_	_	_	1	0,6	19,0	13,0	11,1	15	15,0	13,5	29 700	45 200
* 7007A5	35	62	14	_	_	_	1	0,6	19,1	13,0	11,4	25	-	18,3	20 700	31 000
* 7007A5SN24	35	62	14	_	_	_	1	0,6	18,1	12,4	13,5	25	-	18,3	25 800	38 800
* 7007A	35	62	14	_	_	_	1	0,6	18,4	12,6	8,75	30	_	21,0	15 500	20 700
* 35BNR10S	35	62	14	_	_	_	1	0,6	10,1	7,10	10,2	18	10,6	14,8	28 900	41 300
* 35BNR10H	35	62	14	2,8	8,3	1,4	1	0,6	10,1	6,80	6,70	18	10,6	14,8	37 200	57 800
* 35BNR10X	35	62	14	2,8	8,3	1,4	1	0,6	10,1	6,80	6,70	18	10,6	14,8	43 300	68 100
* 35BER10S	35	62	14	_	_	_	1	0,6	9,70	6,85	12,0	25	_	18,2	24 800	35 100
* 35BER10H	35	62	14	2,8	8,3	1,4	1	0,6	9,70	6,55	8,10	25	_	18,2	33 000	51 600
* 35BER10X	35	62	14	2,8	8,3	1,4	1	0,6	9,70	6,55	8,10	25	_	18,2	39 200	61 900
* 35BNR20SV1V	35	62	17	_	_	_	1	0,6	10,1	7,10	10,2	18	10,6	16,3	28 900	-
* 35BNR20HV1V	35	62	17	_	_	_	1	0,6	10,1	6,80	6,70	18	10,6	16,3	37 200	-
* 35BNR20XV1V	35	62	17	_	_	_	1	0,6	10,1	6,80	6,70	18	10,6	16,3	43 300	_
* 35BER20SV1V	35	62	17	_	_	_	1	0,6	9,70	6,85	12,0	25	_	19,7	24 800	-
* 35BER20HV1V	35	62	17	_	_	_	1	0,6	9,70	6,55	8,10	25	_	19,7	33 000	-
* 35BER20XV1V	35	62	17	_	_	_	1	0,6	9,70	6,55	8,10	25	_	19,7	39 200	_
7207C	35	72	17	_	_	_	1,1	0,6	32,0	19,9	14,4	15	13,9	15,7	21 500	32 800
7207CSN24	35	72	17	_	_	_	1,1	0,6	30,5	19,0	17,1	15	13,9	15,7	28 100	42 700
7207A5	35	72	17	_	_	_	1,1	0,6	30,5	19,1	16,6	25	-	21,0	18 700	28 100
7207A5SN24	35	72	17	_	_	_	1.1	0.6	29.0	18,2	19,7	25	_	21.0	24 300	36 500
7207A	35	72	17	_	_	_	1,1	0,6	29,6	18,5	12,7	30	-	23,9	14 100	18 700


^[1] Mit einem Sternchen (*) gekennzeichnete Wälzlager sind als abgedichtete Wälzlager erhältlich. Die Serie 20 enthält ausschließlich abgedichtete Wälzlager


 $^[^2]$ Wenn für ein Wälzlager Werte in den Spalten B_N , S_N und S_B angegeben sind, ist es als ROBUSTSHOT erhältlich.

^[3] Angaben zur zulässigen Axiallast siehe Seite 201.

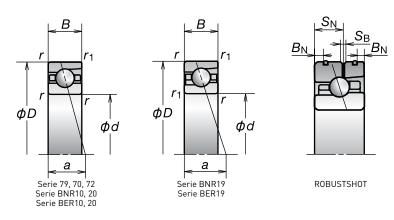
^[4] Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218.

		lußmaße	e (mm)		Vorspannung (Anordnung DB und DF) (N)				Axiale Steifigkeit (Anordnung DB und DF) (N/µm)				Gemessene Axialluft (μm)				Gewicht (kg)
d _a (min.)	D _a (max.)	D _b (max.)	r _a (max.)	r _b (max.)	EL	L	М	Н	EL	L	М	Н	EL	L	М	Н	(ca.)
40	50	52,5	0,6	0,3	33	67	149	297	29	39	55	77	2	-2	-9	-18	0,074
40	50	52,5	0,6	0,3	32	69	162	332	32	43	63	89	2	-2	-9	-18	0,065
40	50	52,5	0,6	0,3	49	110	248	508	70	93	127	169	0	-3	-8	-15	0,075
40	50	52,5	0,6	0,3	49	119	278	580	79	107	147	198	0	-3	-8	-15	0,066
40	50	52,5	0,6	0,3	49	154	324	_	41	64	87	_	0	-8	-17	_	0,080
40	50	52,5	0,6	0,3	49	168	364	_	46	73	101	_	0	-8	-17	_	0,074
40	50	52,5	0,6	0,3	49	235	472	_	67	117	153	_	0	-8	-15	_	0,080
40	50	52,5	0,6	0,3	49	263	538	_	75	135	178	_	0	-8	-15	_	0,074
40	50	52,5	0,6	0,3	49	142	288	_	37	56	74	_	0	-8	-17	_	0,072
40	50	52,5	0,6	0,3	49	155	323	_	42	64	86	_	0	-8	-17	_	0,063
40	50	52,5	0,6	0,3	49	155	323	_	42	64	86	_	0	-8	-17	_	0,063
40	50	52,5	0,6	0,3	49	214	419	_	61	102	132	_	0	-8	-15	_	0,072
40	50	52,5	0,6	0,3	49	238	477	_	68	118	154	_	0	-8	-15	_	0,063
40	50	52,5	0,6	0,3	49	238	477	_	68	118	154	_	0	-8	-15	_	0,063
41	56	57	1	0,5	58	121	251	493	36	49	67	94	-1	-7	-16	-28	0,151
41	56	57	1	0,5	59	130	279	558	40	55	78	109	-1	-7	-16	-28	0,133
41	56	57	1	0,5	68	161	387	779	78	107	150	199	-1	-5	-12	-21	0,151
41	56	57	1	0,5	70	177	439	897	89	124	174	233	-1	-5	-12	-21	0,133
41	56	57	1	0,5	49	203	421	693	93	151	197	237	0	-5	-10	-15	0,153
41	56	57	1	0,5	49	110	222	_	41	55	73	_	0	-5	-12	_	0,164
41	56	57	1	0,5	49	117	247	_	46	63	85	_	0	-5	-12	_	0,154
41	56	57	1	0,5	49	117	247	_	46	63	85	_	0	-5	-12	_	0,154
41	56	57	1	0,5	49	237	474	_	68	118	153	_	0	-8	-15	_	0,164
41	56	57	1	0,5	49	265	541	_	76	136	178	_	0	-8	-15	_	0,154
41	56	57	1	0,5	49	265	541	_	76	136	178	_	0	-8	-15	_	0,154
41	56	57	1	0,5	49	110	222	_	41	55	73	_	0	-5	-12	_	0,197
41	56	57	1	0,5	49	117	247	_	46	63	85	_	0	-5	-12	_	0,187
41	56	57	1	0,5	49	117	247	_	46	63	85		0	-5	-12	_	0,187
41	56 56	57 57	1	0,5	49 49	237	474 541	_	68 76	118	153 178	_	0	-8 -8	-15 -15	_	0,197
41	56 56	57	1	0,5	49 49	265 265	541	_	76	136 136	178	_	0	-8 -8	-15 -15	_	0,187
41		67	1	0,5	75	151	-				75	107	-3	-8 -10	-15	- /2	0,187
42 42	65 65	67	1	0,6	75 78	164	385 434	911	37 42	50 57	87	107	-3 -3	-10	-25 -25	-43 -43	0,280
	65 65		1	0,6		238	596	1 178	42 95	118	167	220	-3 -4	-10	-25 -18		0,240 0,277
42 42	65 65	67 67	1	0,6	131 142	238	683	1 366	109	137	196	259	-4 -4	-8 -8	-18 -18	-30 -30	
42	65 65	67	1	0,6	49	401	683	1 288	90	184	221	259	-4 0	-8 -10	-18 -15	-30 -25	0,237 0,284

Tabelle A

labet				
	EL	L	М	Н
15°	6,5	6,0	5,0	4,5
25°		2	,0	
300		1	4	

Tabelle ${f B}$

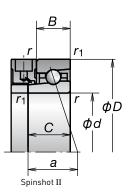

	DBD	DBB
Vorspannungsfaktor	1,36	2
Axiale Steifigkeit	1,48	2
Radiale Steifigkeit	1,54	2

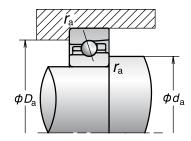
Für weitere Informationen:

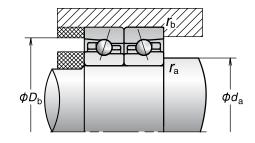
Dynamisch äquivalente Lagerbelastung S. 19	3
• Statisch ännivalente Lagerhelastung S. 20	ıN

- ullet Abmessungen der Zwischenringe und Position der Schmierdüse·····S. 239
- Empfohlene Fettmengen ····· S. 259

Bohrungsdurchmesser 40 mm


Lagerbe- zeichnung (¹)			На	aupta	bmes (mm	•	en (²)			Tragzahlen (kN)		Zulässige Axiallast (3)	Druck- winkel	Faktor	Last- angriffs- punkt	Grenzdrehzahlen (4) (min ⁻¹)	
Zeiciniung ()	d	D	В	С	B _N	S _N	S _B	r (min.)	r ₁ (min.)	C _r (dynamisch)	C _{or} (statisch)	(kN)	(Grad)	f _o	(mm) a	Fett	Öl
* 7908C	40	62	12	_	_	_	_	0,6	0,3	15,9	11,7	8,40	15	15,7	12,8	22 600	34 400
* 7908CSN24	40	62	12	_	_	_	_	0,6	0,3	15,1	11,2	9,97	15	15,7	12,8	29 500	44 800
* 7908A5	40	62	12	_	_	_	_	0,6	0,3	15,0	11,2	8,90	25	_	17,9	19 700	29 500
* 7908A5SN24	40	62	12	_	_	_	_	0,6	0,3	14,3	10,6	10,5	25	_	17,9	25 500	38 300
* 40BNR19S	40	62	12	_	_	_	_	0,6	0,3	11,5	7,65	10,8	18	10,4	14,3	27 500	39 300
* 40BNR19H	40	62	12	_	2,2	7,0	1,4	0,6	0,3	11,5	7,30	7,10	18	10,4	14,3	35 300	55 000
* 40BNR19X	40	62	12	17	2,2	7,0	1,4	0,6	0,3	11,5	7,30	7,10	18	10,4	14,3	41 200	64 800
* 40BER19S	40	62	12	_	_	_	_	0,6	0,3	11,0	7,35	12,8	25	_	17,9	23 600	33 400
* 40BER19H	40	62	12	_	2,2	7,0	1,4	0,6	0,3	11,0	7,05	8,65	25	_	17,9	31 400	49 100
* 40BER19X	40	62	12	17	2,2	7,0	1,4	0,6	0,3	11,0	7,05	8,65	25	_	17,9	37 300	58 900
* 40BNR29SV1V	40	62	14	_	_	_	_	0,6	0,3	11,5	7,65	10,8	18	10,4	15,3	27 500	_
* 40BNR29HV1V	40	62	14	_	_	_	_	0,6	0,3	11,5	7,30	7,10	18	10,4	15,3	35 300	_
* 40BNR29XV1V	40	62	14	_	_	_	_	0,6	0,3	11,5	7,30	7,10	18	10,4	15,3	41 200	_
* 40BER29SV1V	40	62	14	_	_	_	_	0,6	0,3	11,0	7,35	12,8	25	_	18,9	23 600	_
* 40BER29HV1V	40	62	14	_	_	_	_	0,6	0,3	11,0	7,05	8,65	25	_	18,9	31 400	_
* 40BER29XV1V	40	62	14	_	_	_	_	0,6	0,3	11,0	7,05	8,65	25	_	18,9	37 300	_
* 7008C	40	68	15	_	_	_	_	1	0,6	21,6	15,9	10,6	15	15,4	14,7	21 300	32 500
* 7008CSN24	40	68	15	_	_	_	_	1	0,6	20,5	15,1	12,5	15	15,4	14,7	27 800	42 300
* 7008A5	40	68	15	_	_	_	_	1	0,6	20,5	15,1	12,0	25	_	20,1	18 600	27 800
* 7008A5SN24	40	68	15	_	_	_	_	1	0,6	19,4	14,3	14,2	25	_	20,1	24 100	36 200
* 7008A	40	68	15	_	_	_	_	1	0,6	19,7	14,6	9,15	30	_	23,1	13 900	18 600
* 40BNR10S	40	68	15	_	_	_	_	1	0,6	10,6	7,95	11,5	18	10,7	16,2	26 000	37 100
* 40BNR10H	40	68	15	_	2,8	8.8	1,4	1	0,6	10,6	7,60	7,50	18	10.7	16,2	33 400	51 900
* 40BNR10X	40	68	15	20	2,8	8,8	1,4	1	0,6	10,6	7,60	7,50	18	10,7	16,2	38 900	61 200
* 40BER10S	40	68	15	_	_	_	_	1	0,6	10,1	7,65	13,5	25	_	19,9	22 300	31 500
* 40BER10H	40	68	15	_	2,8	8,8	1,4	1	0,6	10,1	7,30	9,10	25	_	19,9	29 700	46 300
* 40BER10X	40	68	15	20	2,8	8,8	1,4	1	0,6	10,1	7,30	9,10	25	_	19,9	35 200	55 600
* 40BNR20SV1V	40	68	18	_	_	_	_	1	0.6	10,6	7.95	11,5	18	10.7	17,7	26 000	_
* 40BNR20HV1V	40	68	18	_	_	_	_	1	0,6	10,6	7,60	7,50	18	10.7	17,7	33 400	_
* 40BNR20XV1V	40	68	18	_	_	_	_	1	0.6	10,6	7.60	7,50	18	10.7	17.7	38 900	_
* 40BER20SV1V	40	68	18	_	_	_	_	1	0.6	10,1	7.65	13.5	25	_	21.4	22 300	_
* 40BER20HV1V	40	68	18	_	_	_	_	1	0,6	10,1	7,30	9,10	25	_	21,4	29 700	_
* 40BER20XV1V	40	68	18	_	_	_	_	1	0,6	10,1	7,30	9,10	25	_	21,4	35 200	
7208C	40	80	18	_	_	_	_	1,1	0,6	38,0	25,2	17,6	15	14,1	17,0	19 200	29 200
7208CSN24	40	80	18	_	_	_	_	1,1	0,6	36,5	24,2	20,9	15	14,1	17,0	25 000	38 000
7208A5	40	80	18	_	_	_	_	1,1	0,6	36,5	24,1	20,7	25	-	23,0	16 700	25 000
7208A5SN24	40	80	18	_	_	_	_	1.1	0.6	35,0	23.1	24,4	25	_	23.0	21 700	32 500
7208A33N24	40	80	18					1,1	0,6	35,5	23,1	15.8	30		26,3	12 500	16 700


^[1] Mit einem Sternchen [*] gekennzeichnete Wälzlager sind als abgedichtete Wälzlager erhältlich. Die Serien 20 und 29 enthalten ausschließlich


abgedichtete Wälzlager. [2] Ein Wälzlager mit Wert in der Spalte C ist als Spinshot II erhältlich; ein Wälzlager mit Werten in den Spalten B_N , S_N und S_B ist als ROBUSTSHOT erhältlich.

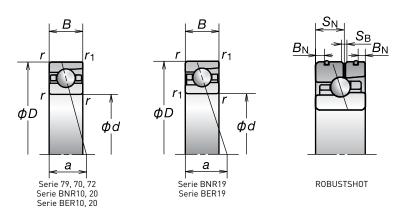
^[3] Angaben zur zulässigen Axiallast siehe Seite 201.

⁽⁴⁾ Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218.

	Ansch	lußmaß	e (mm)		(And	Vorspa ordnung (1)		d DF)		Axiale Stordnung (N/			Ge	messer (µ	ne Axial m)	luft	Gewicht (kg)
d _a (min.)	D _a (max.)	D _b (max.)	r _a (max.)	r _b (max.)	EL	L	М	Н	EL	L	М	Н	EL	L	М	Н	(ca.)
45	57	59,5	0,6	0,3	41	78	196	384	32	42	63	88	1	-3	-12	-22	0,109
45	57	59,5	0,6	0,3	40	81	215	432	35	47	72	101	1	-3	-12	-22	0,096
45	57	59,5	0,6	0,3	68	113	291	572	81	97	139	182	-1	-3	-9	-16	0,110
45	57	59,5	0,6	0,3	71	121	327	655	92	111	161	213	-1	-3	-9	-16	0,097
45	57	59,5	0,6	0,3	49	145	277	_	38	57	74	_	0	-8	-16	_	0,105
45	57	59,5	0,6	0,3	49	158	310	_	43	66	86	_	0	-8	-16	_	0,092
45	57	59,5	0,6	0,3	49	158	310	_	43	66	86	_	0	-8	-16	_	0,092
45	57	59,5	0,6	0,3	49	221	434	_	63	106	137	_	0	-8	-15	_	0,105
45	57	59,5	0,6	0,3	49	246	494	_	71	123	160	_	0	-8	-15	_	0,092
45	57	59,5	0,6	0,3	49	246	494	_	71	123	160	_	0	-8	-15	_	0,092
45	57	59,5	0,6	0,3	49	145	277	_	38	57	74	_	0	-8	-16	_	0,120
45	57	59,5	0,6	0,3	49	158	310	_	43	66	86	_	0	-8	-16	_	0,107
45	57	59,5	0,6	0,3	49	158	310	_	43	66	86	_	0	-8	-16	_	0,107
45	57	59,5	0,6	0,3	49	221	434	_	63	106	137	_	0	-8	-15	_	0,120
45	57	59,5	0,6	0,3	49	246	494	_	71	123	160	_	0	-8	-15	_	0,107
45	57	59,5	0,6	0,3	49	246	494	_	71	123	160	_	0	-8	-15	_	0,107
46	62	63	1	0,5	58	114	291	594	39	51	77	110	-1	-6	-17	-30	0,189
46	62	63	1	0,5	59	123	325	676	43	58	89	128	-1	-6	-17	-30	0,168
46	62	63	1	0,5	92	203	424	864	95	127	167	223	-2	-6	-12	-21	0,188
46	62	63	1	0,5	98	225	483	998	108	147	195	262	-2	-6	-12	-21	0,167
46	62	63	1	0,5	49	219	463	768	101	168	221	267	0	-5	-10	-15	0,191
46	62	63	1	0,5	49	114	216	_	44	60	77	_	0	-5	-11	_	0,204
46	62	63	1	0,5	49	122	240	_	49	68	89	_	0	-5	-11	_	0,193
46	62	63	1	0,5	49	122	240	_	49	68	89	_	0	-5	-11	_	0,193
46	62	63	1	0,5	49	252	510	_	72	128	167	_	0	-8	-15	_	0,204
46	62	63	1	0,5	49	282	583	_	81	148	195	_	0	-8	-15	_	0,193
46	62	63	1	0,5	49	282	583	_	81	148	195	_	0	-8	-15	_	0,193
46	62	63	1	0,5	49	114	216	_	44	60	77	_	0	-5	-11	_	0,242
46	62	63	1	0,5	49	122	240	_	49	68	89	_	0	-5	-11	_	0,231
46	62	63	1	0,5	49	122	240	_	49	68	89	_	0	-5	-11	_	0,231
46	62	63	1	0,5	49	252	510	_	72	128	167	_	0	-8	-15	_	0,242
46	62	63	1	0,5	49	282	583	_	81	148	195	_	0	-8	-15	_	0,231
46	62	63	1	0,5	49	282	583	_	81	148	195	_	0	-8	-15	_	0,231
47	73	75	1	0,6	98	202	501	985	44	60	90	125	-5	-13	-29	-47	0,366
47	73	75	1	0,6	104	223	570	1 133	50	69	104	147	-5	-13	-29	-47	0,313
47	73	75	1	0,6	138	290	750	1 490	105	137	196	259	-4	-9	-20	-33	0,362
47	73	75	1	0,6	151	326	864	1 734	121	159	230	305	-4	-9	-20	-33	0,309
47	73	75	1	0,6	49	438	721	1 428	97	205	246	318	0	-10	-15	-25	0,370

Tabelle $oldsymbol{\mathsf{A}}$

	EL	L	М	Н
15°	6,5	6,0	5,0	4,5
25°		2	,0	
30°		1	,4	

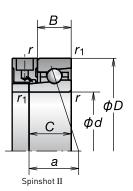

Tabelle ${f B}$

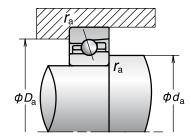
DBD	DBB
1,36	2
1,48	2
1,54	2
	1,36 1,48 1,54

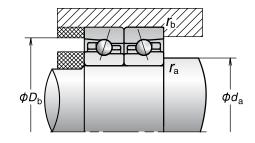
Für weitere Informationen:

- Dynamisch äquivalente Lagerbelastung.......... S. 193
- Statisch äquivalente Lagerbelastung..... S. 200

Bohrungsdurchmesser 45 mm


Lagerbe- zeichnung (¹)			Ha	aupta	bmes (mm		en (²)			Tragz (k		Zulässige Axiallast (3)	Druck- winkel	Faktor	Last- angriffs- punkt		hzahlen (4) in-1)
zeiciiiuiig ()	d	D	В	С	B _N	S _N	S _B	r (min.)	r ₁ (min.)	C _r (dynamisch)	C_{or} (statisch)	(kN)	(Grad)	f _o	(mm) a	Fett	Öl
* 7909C	45	68	12	_	_	_	_	0,6	0,3	16,8	13,4	8,55	15	16,0	13,6	20 400	31 000
* 7909CSN24	45	68	12	_	_	_	_	0,6	0,3	16,0	12,7	10,1	15	16,0	13,6	26 600	40 400
* 7909A5	45	68	12	-	_	_	_	0,6	0,3	15,9	12,7	9,95	25	_	19,2	17 700	26 600
* 7909A5SN24	45	68	12	_	_	_	_	0,6	0,3	15,1	12,1	11,8	25	_	19,2	23 100	34 600
* 45BNR19S	45	68	12	_	_	_	_	0,6	0,3	12,1	8,70	12,4	18	10,6	15,2	24 800	35 400
* 45BNR19H	45	68	12	_	2,2	7,0	1,4	0,6	0,3	12,1	8,30	8,10	18	10,6	15,2	31 900	49 600
* 45BNR19X	45	68	12	17	2,2	7,0	1,4	0,6	0,3	12,1	8,30	8,10	18	10,6	15,2	37 200	58 500
* 45BER19S	45	68	12	_	_	_	_	0,6	0,3	11,6	8,35	14,6	25	_	19,2	21 300	30 100
* 45BER19H	45	68	12	-	2,2	7,0	1,4	0,6	0,3	11,6	8,00	9,85	25	_	19,2	28 400	44 300
* 45BER19X	45	68	12	17	2,2	7,0	1,4	0,6	0,3	11,6	8,00	9,85	25	_	19,2	33 700	53 100
* 45BNR29SV1V	45	68	14	_	_	_	_	0,6	0,3	12,1	8,70	12,4	18	10,6	16,2	24 800	_
* 45BNR29HV1V	45	68	14	_	_	_	_	0,6	0,3	12,1	8,30	8,10	18	10,6	16,2	31 900	_
* 45BNR29XV1V	45	68	14	-	_	_	_	0,6	0,3	12,1	8,30	8,10	18	10,6	16,2	37 200	_
* 45BER29SV1V	45	68	14	_	_	_	_	0,6	0,3	11,6	8,35	14,6	25	_	20,2	21 300	_
* 45BER29HV1V	45	68	14	_	_	_	_	0,6	0,3	11,6	8,00	9,85	25	_	20,2	28 400	_
* 45BER29XV1V	45	68	14	_	_	_	_	0,6	0,3	11,6	8,00	9,85	25	_	20,2	33 700	_
* 7009C	45	75	16	_	_	_	_	1	0,6	25,6	19,3	12,4	15	15,4	16,0	19 200	29 200
* 7009CSN24	45	75	16	_	_	_	_	1	0,6	24,4	18,4	14,7	15	15,4	16,0	25 000	38 000
* 7009A5	45	75	16	_	_	_	_	1	0,6	24,3	18,3	14,5	25	_	22,0	16 700	25 000
* 7009A5SN24	45	75	16	_	_	_	_	1	0,6	23,1	17,5	17,2	25	_	22,0	21 700	32 500
* 7009A	45	75	16	_	_	_	_	1	0,6	23,4	17,7	11,1	30	_	25,3	12 500	16 700
* 45BNR10S	45	75	16	_	_	_	_	1	0,6	11,7	9,00	12,7	18	10,6	17,6	23 400	33 400
* 45BNR10E	45	75	16	_	_	_	_	1	0,6	11,7	9,00	12,7	18	10,6	17,6	25 000	35 700
* 45BNR10H	45	75	16	_	3,4	9,3	1,4	1	0,6	11,7	8,60	8,35	18	10,6	17,6	30 000	46 700
* 45BNR10X	45	75	16	21	3,4	9,3	1,4	1	0,6	11,7	8,60	8,35	18	10,6	17,6	35 000	55 000
* 45BER10S	45	75	16	_	_	_	_	1	0,6	11,2	8,60	15,0	25	_	21,8	20 000	28 400
* 45BER10E	45	75	16	_	_	_	_	1	0,6	11,2	8,60	15,0	25	_	21,8	21 500	30 400
* 45BER10H	45	75	16	_	3,4	9,3	1,4	1	0,6	11,2	8,25	10,1	25	_	21,8	26 700	41 700
* 45BER10X	45	75	16	21	3,4	9,3	1,4	1	0,6	11,2	8,25	10,1	25	_	21,8	31 700	50 000
* 45BNR20EV1V	45	75	19	_	_	_	_	1	0,6	11,7	9,00	12,7	18	10,6	19,1	25 000	_
* 45BNR20HV1V	45	75	19	_	_	_	_	1	0,6	11,7	8,60	8,35	18	10,6	19,1	30 000	_
* 45BNR20XV1V	45	75	19	_	_	_	_	1	0,6	11,7	8,60	8,35	18	10,6	19,1	35 000	_
* 45BER20EV1V	45	75	19	_	_	_	_	1	0,6	11,2	8,60	15,0	25	_	23,3	21 500	_
* 45BER20HV1V	45	75	19	_	_	_	_	1	0,6	11,2	8,25	10,1	25	_	23,3	26 700	_
* 45BER20XV1V	45	75	19	_	_	_	_	1	0,6	11,2	8,25	10,1	25	_	23,3	31 700	_
7209C	45	85	19	_	_	_	_	1,1	0,6	43,0	28,8	19,6	15	14,2	18,2	17 700	27 000
7209CSN24	45	85	19	_	_	_	_	1,1	0,6	41,0	27,8	23,3	15	14,2	18,2	23 100	35 100
7209A5	45	85	19	_	_	_	_	1,1	0,6	41,0	27,6	23,3	25	_	24,7	15 400	23 100
7209A5SN24	45	85	19	_	_	_	_	1,1	0,6	39,0	26,6	27,7	25	_	24,7	20 000	30 000
7209A	45	85	19	_	_	_	_	1,1	0,6	39,5	26,7	18,0	30	_	28,3	11 600	15 400


^[1] Mit einem Sternchen [*] gekennzeichnete Wälzlager sind als abgedichtete Wälzlager erhältlich. Die Serien 20 und 29 enthalten ausschließlich


abgedichtete Wälzlager. [2] Ein Wälzlager mit Wert in der Spalte C ist als Spinshot II erhältlich; ein Wälzlager mit Werten in den Spalten B_N , S_N und S_B ist als ROBUSTSHOT erhältlich.

^[3] Angaben zur zulässigen Axiallast siehe Seite 201.

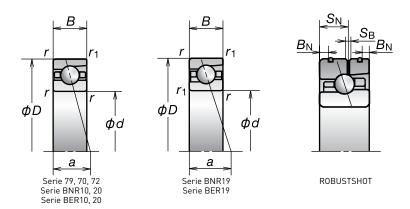
⁽⁴⁾ Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218.

	Ansch	lußmaß	e (mm)		(And	rdnung	nnung DB und	IDF)		Axiale Sordnung (N/			Ge	messer (µ	ne Axial m)	luft	Gewicht (kg)
d _a (min.)	D _a (max.)	D _b (max.)	r _a (max.)	r _b (max.)	EL	L	М	Н	EL	L	М	Н	EL	L	М	Н	(ca.)
50	63	65,5	0,6	0,3	49	104	192	391	37	51	66	93	0	-5	-11	-21	0,129
50	63	65,5	0,6	0,3	49	111	211	440	41	57	76	108	0	-5	-11	-21	0,115
50	63	65,5	0,6	0,3	70	146	353	676	88	115	160	208	-1	-4	-10	-17	0,130
50	63	65,5	0,6	0,3	72	159	399	776	99	132	187	243	-1	-4	-10	-17	0,116
50	63	65,5	0,6	0,3	49	153	298	_	41	63	82	_	0	-8	-16	_	0,125
50	63	65,5	0,6	0,3	49	168	335	_	46	72	95	_	0	-8	-16	_	0,111
50	63	65,5	0,6	0,3	49	168	335	_	46	72	95	_	0	-8	-16	_	0,111
50	63	65,5	0,6	0,3	49	237	473	_	68	117	151	_	0	-8	-15	_	0,125
50	63	65,5	0,6	0,3	49	265	539	_	76	136	177	_	0	-8	-15	_	0,111
50	63	65,5	0,6	0,3	49	265	539	_	76	136	177	_	0	-8	-15		0,111
50	63	65,5	0,6	0,3	49	153	298	_	41	63	82	_	0	-8	-16	_	0,143
50	63	65,5	0,6	0,3	49	168	335	_	46	72	95	_	0	-8	-16	_	0,128
50	63	65,5	0,6	0,3	49	168	335	_	46	72	95	_	0	-8	-16	_	0,128
50	63	65,5	0,6	0,3	49	237	473	_	68	117	151	_	0	-8	-15	_	0,143
50	63	65,5	0,6	0,3	49	265	539	_	76	136	177	_	0	-8	-15	_	0,128
50	63	65,5	0,6	0,3	49	265	539	_	76	136	177	_	0	-8	-15	_	0,128
51	69	70	1	0,5	80	144	338	695	45	57	84	120	-3	-8	-19	-33	0,238
51	69	70	1	0,5	84	156	380	794	51	66	97	140	-3	-8	-19	-33	0,211
51	69	70	1	0,5	94	210	485	958	99	132	181	238	-2	-6	-13	-22	0,250
51	69	70	1	0,5	99	233	553	1 107	113	153	212	280	-2	-6	-13	-22	0,223
51	69	70	1	0,5	49	227	482	1 178	105	176	231	324	0	-5	-10	-20	0,241
51	69	70	1	0,5	49	114	218	_	44	60	77	_	0	-5	-11	_	0,259
51	69	70	1	0,5	49	114	218	_	44	60	77	_	0	-5	-11	_	0,259
51	69	70	1	0,5	49	123	242	_	50	69	89	_	0	-5	-11	_	0,246
51	69	70	1	0,5	49	123	242	_	50	69	89	_	0	-5	-11	_	0,246
51	69	70	1	0,5	49	255	516	_	73	129	168	_	0	-8	-15	_	0,259
51	69	70	1	0,5	49	255	516	_	73	129	168	_	0	-8	-15	_	0,259
51	69	70	1	0,5	49	285	590	_	82	150	197	_	0	-8	-15	_	0,246
51	69	70	1	0,5	49	285	590		82	150	197	_	0	-8	-15		0,246
51	69	70	1	0,5	49	114	218	_	44	60	77	_	0	-5	-11	_	0,305
51	69	70	1	0,5	49	123	242	_	50	69	89	_	0	-5	-11	_	0,291
51	69	70	1	0,5	49	123	242	_	50	69	89	_	0	-5	-11	_	0,291
51	69	70	1	0,5	49	255	516	_	73	129	168	_	0	-8	-15	_	0,305
51	69	70	1	0,5	49	285	590	_	82	150	197	_	0	-8	-15	_	0,291
51	69	70	1	0,5	49	285	590	_	82	150	197		0	-8	-15		0,291
52	78	80	1	0,6	123	254	534	1 067	49	67	94	131	-7	-16	-30	-49	0,406
52	78	80	1	0,6	132	283	608	1 230	56	77	109	154	-7	-16	-30	-49	0,341
52	78	80	1	0,6	169	333	875	1 738	115	147	212	281	-5	-10	-22	-36	0,402
52	78	80	1	0,6	186	377	1 011	2 026	133	171	249	330	-5	-10	-22	-36	0,337
52	78	80	1	0,6	49	450	1 084	1 905	100	212	292	363	0	-10	-20	-30	0,410

Tabelle $oldsymbol{\mathsf{A}}$

	EL	L	М	Н
15°	6,5	6,0	5,0	4,5
25°		2	,0	
30°		1.	.4	

Tabelle ${f B}$

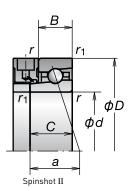

	DBD	DBB
Vorspannungsfaktor	1,36	2
Axiale Steifigkeit	1,48	2
Radiale Steifinkeit	1 54	2

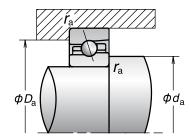
Für weitere Informationen:

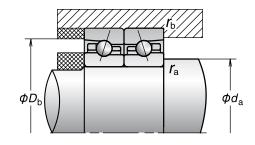
•	Dynar	nisch	äquiva	lente	La	ger	belast	ung	S.	193
_	Ctatia	مة طم	مملمنين	+- -		امطم	a a t		_	200

- \bullet Statisch äquivalente Lagerbelastung------ S. 200

Bohrungsdurchmesser 50 mm


Lagerbe-			На	aupta	bmes (mn		en (²)				Tragzahlen (kN)		Druck- winkel	Faktor	Last- angriffs- punkt	fs- (min-1)	
zeichnung (¹)	d	D	В	С	B _N	S _N	S _B	r (min.)	r ₁ (min.)	C _r (dynamisch)	C _{or} (statisch)	(kN)	(Grad)	t _o	(mm) a	Fett	Öι
* 7910C	50	72	12	_	_	_	_	0,6	0,3	17,7	15,0	9,45	15	16,2	14,2	18 900	28 700
* 7910CSN24	50	72	12	_	_	_	_	0,6	0,3	16,8	14,3	11,2	15	16,2	14,2	24 600	37 400
* 7910A5	50	72	12	_	_	_	_	0,6	0,3	16,7	14,2	11,0	25	_	20,2	16 400	24 600
* 7910A5SN24	50	72	12	_	_	_	_	0,6	0,3	15,9	13,5	13,1	25	_	20,2	21 400	32 000
* 50BNR19S	50	72	12	_	_	_	_	0,6	0,3	12,8	9,75	13,9	18	10,7	15,9	23 000	32 800
* 50BNR19H	50	72	12	_	2,2	7,0	1,4	0,6	0,3	12,8	9,30	9,10	18	10,7	15,9	29 600	46 000
* 50BNR19X	50	72	12	17	2,2	7.0	1,4	0,6	0,3	12,8	9,30	9,10	18	10,7	15,9	34 500	54 100
* 50BER19S	50	72	12	_	_	_	_	0,6	0,3	12,2	9,35	16,3	25	_	20,2	19 700	27 900
* 50BER19H	50	72	12	_	2,2	7,0	1,4	0,6	0,3	12,2	8,95	11,0	25	_	20,2	26 300	41 000
* 50BER19X	50	72	12	17	2,2	7,0	1,4	0.6	0,3	12,2	8,95	11,0	25	_	20.2	31 200	49 200
* 50BNR29SV1V	50	72	14	_		_	_	0.6	0,3	12,8	9,75	13,9	18	10.7	16.9	23 000	_
* 50BNR29HV1V	50	72	14	_	_	_	_	0,6	0,3	12,8	9,30	9,10	18	10,7	16,9	29 600	_
* 50BNR29XV1V	50	72	14	_	_	_	_	0.6	0,3	12,8	9,30	9,10	18	10.7	16.9	34 500	_
* 50BER29SV1V	50	72	14	_	_	_	_	0.6	0,3	12,2	9,35	16,3	25	-	21,2	19 700	_
* 50BER29HV1V	50	72	14	_	_	_		0.6	0,3	12,2	8,95	11,0	25		21,2	26 300	_
* 50BER29XV1V	50	72	14	_	_	_	_	0.6	0,3	12.2	8.95	11,0	25	_	21.2	31 200	_
* 7010C	50	80	16		_			1	0,6	27,3	21,9	13,9	15	15.7	16,7	17 700	27 000
* 7010CSN24	50	80	16	_	_	_	_	1	0,6	26,0	21,7	16,5	15	15,7	16,7	23 100	35 100
* 7010A5	50	80	16	_	_	_	_	1	0,6	25,8	20,8	16,2	25	-	23,2	15 400	23 100
* 7010A5SN24	50	80	16		_			1	0,6	24,6	19.9	19,3	25	_	23,2	20 000	30 000
* 7010A	50	80	16	_	_	_	_	1	0,6	24,8	20,1	12,5	30	_	26,8	11 600	15 400
* 50BNR10S	50	80	16	_	_	_	_	1	0,6	12,2	9,90	14,0	18	10.8	18.4	21 600	30 800
* 50BNR10E	50	80	16	_	_			1	0,6	12,2	9,90	14,0	18	10,8	18,4	23 100	33 000
* 50BNR10H	50	80	16	_	3,4	9.3	1,4	1	0,6	12,2	9.50	9,20	18	10,8	18,4	27 700	43 100
* 50BNR10X	50	80	16	21	3,4	9,3		1		12,2	9,50	9,20	18	10,8	18,4	32 400	50 800
	50	80	16	_	- -	7,3	1,4	1	0,6				25	10,0		18 500	
* 50BER10S				_	_	_	_		0,6	11,6	9,50	16,5			23,0		26 200
* 50BER10E	50	80	16					1	0,6	11,6	9,50	16,5	25	_	23,0	19 900	28 000
* 50BER10H	50	80	16	- 01	3,4	9,3	1,4		0,6	11,6	9,10	11,1	25	_	23,0	24 700	38 500
* 50BER10X	50	80	16	21	3,4	9,3	1,4	1	0,6	11,6	9,10	11,1	25		23,0	29 300	46 200
* 50BNR20EV1V	50	80	19	_	_	_	_	1	0,6	12,2	9,90	14,0	18	10,8	19,9	23 100	_
* 50BNR20HV1V	50	80	19	_	_	_	_	1	0,6	12,2	9,50	9,20	18	10,8	19,9	27 700	_
* 50BNR20XV1V	50	80	19	_	_	_	_	1	0,6	12,2	9,50	9,20	18	10,8	19,9	32 400	_
* 50BER20EV1V	50	80	19	_	_	_	_	1	0,6	11,6	9,50	16,5	25	_	24,5	19 900	_
* 50BER20HV1V	50	80	19	_	_	_	_	1	0,6	11,6	9,10	11,1	25	_	24,5	24 700	_
* 50BER20XV1V	50	80	19	_	_	_	_	1	0,6	11,6	9,10	11,1	25	_	24,5	29 300	_
7210C	50	90	20	_	_	_	_	1,1	0,6	45,0	31,5	21,1	15	14,5	19,4	16 500	25 000
7210CSN24	50	90	20	_	_	_	_	1,1	0,6	43,0	30,5	25,0	15	14,5	19,4	20 600	31 300
7210A5	50	90	20	_	_	_	_	1,1	0,6	43,0	30,5	25,2	25	_	26,3	14 300	21 500
7210A5SN24	50	90	20	_	_	_	_	1,1	0,6	41,0	29,3	29,9	25	_	26,3	17 900	26 900
7210A	50	90	20	_	_	_	_	1,1	0,6	41,5	29,3	19,4	30	_	30,2	10 800	14 300


⁽¹⁾ Mit einem Sternchen (*) gekennzeichnete Wälzlager sind als abgedichtete Wälzlager erhältlich. Die Serien 20 und 29 enthalten ausschließlich abgedichtete Wälzlager.
(2) Ein Wälzlager mit Wert in der Spalte C ist als Spinshot II erhältlich; ein Wälzlager mit Werten in den Spalten B_N, S_N und S_B ist als ROBUSTSHOT


erhältlich.

^[3] Angaben zur zulässigen Axiallast siehe Seite 201.

⁽⁴⁾ Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218.

	Ansch	lußmaß	e (mm)		(And	rdnung	annung DB und N)	IDF)		Axiale Sordnung (N/			Gemessene Axialluft (µm)				Gewicht (kg)
d _a (min.)	D _a (max.)	D _b (max.)	r _a (max.)	r _b (max.)	EL	L	М	Н	EL	L	М	Н	EL	L	М	Н	(ca.)
55	67	69,5	0,6	0,3	49	95	240	499	40	51	78	111	0	-4	-13	-24	0,130
55	67	69,5	0,6	0,3	49	100	266	565	44	58	89	129	0	-4	-13	-24	0,114
55	67	69,5	0,6	0,3	71	154	379	791	94	124	175	235	-1	-4	-10	-18	0,132
55	67	69,5	0,6	0,3	74	168	430	911	107	143	204	276	-1	-4	-10	-18	0,116
55	67	69,5	0,6	0,3	49	162	319	_	44	68	89	_	0	-8	-16	_	0,127
55	67	69,5	0,6	0,3	49	177	359	_	49	78	103	_	0	-8	-16	_	0,111
55	67	69,5	0,6	0,3	49	177	359	_	49	78	103	_	0	-8	-16	_	0,111
55	67	69,5	0,6	0,3	49	253	511	_	73	128	166	_	0	-8	-15	_	0,127
55	67	69,5	0,6	0,3	49	283	584	_	81	149	194	_	0	-8	-15	_	0,111
55	67	69,5	0,6	0,3	49	283	584	_	81	149	194	_	0	-8	-15	_	0,111
55	67	69,5	0,6	0,3	49	162	319	_	44	68	89	_	0	-8	-16	_	0,144
55	67	69,5	0,6	0,3	49	177	359	_	49	78	103	_	0	-8	-16	_	0,128
55	67	69,5	0,6	0,3	49	177	359	_	49	78	103	_	0	-8	-16	_	0,128
55	67	69,5	0,6	0,3	49	253	511	_	73	128	166	_	0	-8	-15	_	0,144
55	67	69,5	0,6	0,3	49	283	584	_	81	149	194	_	0	-8	-15	_	0,128
55	67	69,5	0,6	0,3	49	283	584	_	81	149	194	_	0	-8	-15	_	0,128
56	74	75	1	0,5	70	152	388	791	46	63	95	135	-2	-8	-20	-34	0,259
56	74	75	1	0,5	73	165	438	906	51	72	110	158	-2	-8	-20	-34	0,228
56	74	75	1	0,5	125	262	580	1 189	118	154	208	278	-3	-7	-14	-24	0,270
56	74	75	1	0,5	136	293	664	1 379	135	179	244	327	-3	-7	-14	-24	0,239
56	74	75	1	0,5	49	243	525	1 299	113	194	256	360	0	-5	-10	-20	0,262
56	74	75	1	0,5	49	119	250	_	47	64	86	_	0	-5	-12	_	0,281
56	74	75	1	0,5	49	119	250	_	47	64	86	_	0	-5	-12	_	0,281
56	74	75	1	0,5	49	128	280	_	52	74	100	_	0	-5	-12	_	0,266
56	74	75	1	0,5	49	128	280	_	52	74	100	_	0	-5	-12	_	0,266
56	74	75	1	0,5	49	270	552	_	78	140	182	_	0	-8	-15	_	0,281
56	74	75	1	0,5	49	270	552	_	78	140	182	_	0	-8	-15	_	0,281
56	74	75	1	0,5	49	303	633	_	87	162	213	_	0	-8	-15	_	0,266
56	74	75	1	0,5	49	303	633	_	87	162	213	_	0	-8	-15	_	0,266
56	74	75	1	0,5	49	119	250	_	47	64	86	_	0	-5	-12	_	0,330
56	74	75	1	0,5	49	128	280	_	52	74	100	_	0	-5	-12	_	0,315
56	74	75	1	0,5	49	128	280	_	52	74	100	_	0	-5	-12	_	0,315
56	74	75	1	0,5	49	270	552	_	78	140	182	_	0	-8	-15	_	0,330
56	74	75	1	0,5	49	303	633	_	87	162	213	_	0	-8	-15	_	0,315
56	74	75	1	0,5	49	303	633	_	87	162	213	_	0	-8	-15	_	0,315
57	83	85	1	0,6	127	248	590	1 171	52	69	102	143	-7	-15	-31	-50	0,457
57	83	85	1	0,6	137	277	674	1 351	60	80	119	167	-7	-15	-31	-50	0,387
57	83	85	1	0,6	208	391	989	1 934	130	164	233	306	-6	-11	-23	-37	0,453
57	83	85	1	0,6	231	445	1 145	2 257	150	191	274	361	-6	-11	-23	-37	0,383
57	83	85	1	0,6	49	477	1 156	2 038	105	227	314	390	0	-10	-20	-30	0,462

Tabelle $oldsymbol{\mathsf{A}}$

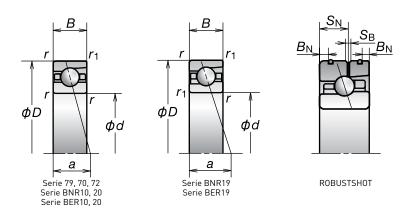
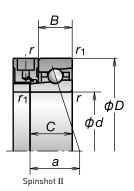
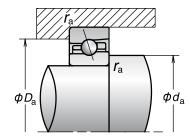

	EL	L	М	Н
15°	6,5	6,0	5,0	4,5
25°		2	,0	
30°		1.	.4	

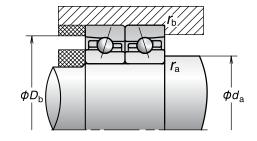
Tabelle **B**

	DBD	DBB
Vorspannungsfaktor	1,36	2
Axiale Steifigkeit	1,48	2
Radiale Steifigkeit	1,54	2

- Dynamisch äquivalente Lagerbelastung.......... S. 193
- Statisch äquivalente Lagerbelastung..... S. 200


Bohrungsdurchmesser 55 mm




Lagerbe-			Н	aupta	bmes (mn	sung n)	en (²)				ahlen N)	Zulässige Axiallast (3)	Druck- winkel	Faktor	Last- angriffs- punkt		hzahlen (4) in ⁻¹)
zeichnung (¹)	d	D	В	С	B _N	S _N	S _B	r (min.)	r ₁ (min.)	C _r (dynamisch)	C _{or} (statisch)	(kN)	(Grad)	t _o	(mm) a	Fett	Öl
* 7911C	55	80	13	_	_	_	_	1	0,6	20,1	17,7	11,0	15	16,3	15,5	17 100	26 000
* 7911CSN24	55	80	13	_	_	_	_	1	0,6	19,4	17,3	13,0	15	16,3	15,5	22 300	33 800
* 7911A5	55	80	13	_	_	_	_	1	0,6	19,0	16,8	12,5	25	_	22,2	14 900	22 300
* 7911A5SN24	55	80	13	_	_	_	_	1	0,6	18,3	16,4	14,8	25	_	22,2	19 300	28 900
* 55BNR19S	55	80	13	_	_	_	_	1	0,6	14,4	11,4	16,2	18	10,7	17,5	20 800	29 700
* 55BNR19E	55	80	13	_	_	_	_	1	0,6	14,4	11,4	16,2	18	10,7	17.5	22 300	31 800
* 55BNR19H	55	80	13	_	2,8	7,5	1,4	1	0,6	14,4	10,9	10,6	18	10,7	17.5	26 700	41 500
* 55BNR19X	55	80	13	18	2,8	7,5	1,4	1	0,6	14,4	10,9	10,6	18	10,7	17.5	31 200	48 900
* 55BER19S	55	80	13	_	_	_	_	0	0,5	13,8	10,9	16,1	25	_	22,2	17 800	25 200
* 55BER19E	55	80	13	_	_	_	_	1	0,6	13,8	10,9	16,1	25	_	22,2	19 200	27 000
* 55BER19H	55	80	13	_	2.8	7.5	1.4	1	0,6	13,8	10.4	12,9	25	_	22,2	23 800	37 100
* 55BER19X	55	80	13	18	2.8	7,5	1.4	1	0.6	13,8	10.4	12,9	25	_	22.2	28 200	44 500
* 55BNR29EV1V	55	80	16	_		_	_	1	0,6	14,4	11,4	16,2	18	10.7	19,0	22 300	_
* 55BNR29HV1V	55	80	16	_	_	_	_	1	0,6	14,4	10,9	10,6	18	10,7	19.0	26 700	_
* 55BNR29XV1V	55	80	16	_	_	_	_	1	0.6	14,4	10.9	10,6	18	10.7	19.0	31 200	_
* 55BER29EV1V	55	80	16	_	_	_	_	1	0,6	13,8	10,9	16,1	25	-	23.7	19 200	_
* 55BER29HV1V	55	80	16	_	_	_	_	1	0,6	13,8	10,4	12,9	25	_	23,7	23 800	_
* 55BER29XV1V	55	80	16	_	_	_	_	1	0,6	13,8	10,4	12,9	25	_	23,7	28 200	_
* 7011C	55	90	18	_	_			1,1	0,6	36,0	28,6	18,9	15	15,5	18,7	15 900	24 200
* 7011CSN24	55	90	18	_	_	_	_	1,1	0,6	34,0	27,1	22,4	15	15,5	18.7	20 700	31 500
* 7011A5	55	90	18	_	_	_	_	1,1	0,6	34,0	27,2	21,8	25	-	25.9	13 800	20 700
* 7011A5SN24	55	90	18	_	_	_	_	1,1	0,6	32,0	25,7	25,8	25	_	25.9	18 000	26 900
* 7011A	55	90	18		_	_	_	1.1	0.6	32,5	26,3	16,6	30	_	29.9	10 400	13 800
* 55BNR10S	55	90	18	_	_	_	_	1,1	0,6	15,1	12,5	17,8	18	10,8	20,6	19 400	27 600
* 55BNR10E	55	90	18	_	_	_	_	1.1	0,6	15,1	12,5	17,8	18	10,8	20,6	20 700	29 600
* 55BNR10H	55	90	18	_	4,3	10,0	1,4	1,1	0,6	15,1	12,0	11,7	18	10,8	20,6	24 900	38 700
* 55BNR10X	55	90	18	23	4,3	10,0	1,4	1,1	0,6	15,1	12,0	11,7	18	10,8	20,6	29 000	45 600
* 55BER10S	55	90	18	_	-	-	-	1,1	0,6	14,4	12,0	21,0	25	-	25,7	16 600	23 500
* 55BER10E	55	90	18					1,1	0,6	14,4	12,0	21,0	25		25,7	17 800	25 200
* 55BER10H	55	90	18		4,3	10.0	1,4	1,1	0,6	14,4	11,5	14,1	25	_	25,7	22 100	34 500
* 55BER10X	55	90	18	23	4,3	10,0	1,4	1,1	0.6	14,4	11,5	14,1	25		25,7	26 300	41 400
* 55BNR20EV1V	55	90	22		4,5	10,0	1,4	1,1	0,6	15,1	12,5	17,8	18	10.8	22,6	20 700	41 400
* 55BNR20HV1V	55	90	22							15,1	12,5	11,7	18	10,8	22,6	24 900	_
* 55BNR20XV1V	55	90	22				_	1,1	0,6	15,1	12,0	11,7	18	10,8	22,6	29 000	_
* 55BER20EV1V	55	90	22					1,1	0,6				25	10,8	27.7	17 800	
* 55BER20HV1V	55	90	22	_	_	_	_	,	0,6	14,4	12,0	21,0	25	_	27,7	22 100	_
	55	90	22	_	_	_	_	1,1	0,6	14,4	11,5	14,1	25 25	_			_
* 55BER20XV1V 7211C	55	100	21					1,1	0,6	14,4	11,5	14,1	15		27,7	26 300	22 600
				_	_	_	_	1,5	1	55,5	40,0	27,6		14,5	20,9	14 900	
7211CSN24	55	100	21	_	_	_	_	1,5	1	53,0	38,0	32,8	15	14,5	20,9	19 400	29 500
7211A5	55	100	21	-	_	_	_	1,5	1	53,0	38,0	32,5	25	_	28,6	13 000	19 400
7211A5SN24	55	100	21	_	_	_	_	1,5	1	50,5	36,5	38,6	25	_	28,6	16 800	25 200
7211A	55	100	21			_		1,5	1	51,0	37,0	25,0	30		32,9	9 700	13 000

^[1] Mit einem Sternchen (*) gekennzeichnete Wälzlager sind als abgedichtete Wälzlager erhältlich. Die Serien 20 und 29 enthalten ausschließlich

 ^(*) Mit einem Sternchen (*) gekennzeichnete Watztager sind als abgedichtete Watztager erhaltlich. Die Serien 20 und 29 enthalten ausschlieblich abgedichtete Wätztager.
 (2) Ein Wätztager mit Wert in der Spalte C ist als Spinshot II erhältlich; ein Wätztager mit Werten in den Spalten B_N, S_N und S_B ist als ROBUSTSHOT erhältlich.
 (3) Angaben zur zulässigen Axiallast siehe Seite 201.
 (4) Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218.

	Ansch	lußmaße	e (mm)		Vorspannung (Anordnung DB und DF) (N)					Axiale Stordnung (N/			Ge	luft	Gewicht (kg)		
d _a (min.)	D _a (max.)	D _b (max.)	r _a (max.)	r _b (max.)	EL	L	М	Н	EL	L	М	Н	EL	L	М	Н	(ca.)
61	74	75	1	0,5	60	111	296	593	45	58	90	126	-1	-5	-15	-26	0,182
61	74	75	1	0,5	61	119	331	675	50	66	104	147	-1	-5	-15	-26	0,163
61	74	75	1	0,5	99	196	454	917	113	144	198	264	-2	-5	-11	-19	0,184
61	74	75	1	0,5	106	217	517	1 059	129	167	232	309	-2	-5	-11	-19	0,165
61	74	75	1	0,5	49	167	333	_	46	72	94	_	0	-8	-16	_	0,178
61	74	75	1	0,5	49	167	333	_	46	72	94	_	0	-8	-16	_	0,178
61	74	75	1	0,5	49	184	375	_	51	82	109	_	0	-8	-16	_	0,158
61	74	75	1	0,5	49	184	375	_	51	82	109	_	0	-8	-16	_	0,158
61	74	75	1	0,5	49	264	538	_	76	136	176	_	0	-8	-15	_	0,178
61	74	75	1	0,5	49	264	538	_	76	136	176	_	0	-8	-15	_	0,178
61	74	75	1	0,5	49	296	615	_	85	158	206	_	0	-8	-15	_	0,158
61	74	75	1	0,5	49	296	615	_	85	158	206		0	-8	-15	_	0,158
61	74	75	1	0,5	49	167	333	_	46	72	94	_	0	-8	-16	_	0,213
61	74	75	1	0,5	49	184	375	_	51	82	109	_	0	-8	-16	_	0,194
61	74	75	1	0,5	49	184	375	_	51	82	109	_	0	-8	-16	_	0,194
61	74	75	1	0,5	49	264	538	_	76	136	176	_	0	-8	-15	_	0,213
61	74	75	1	0,5	49	296	615	_	85	158	206	_	0	-8	-15	_	0,194
61	74	75	1	0,5	49	296	615	_	85	158	206	_	0	-8	-15	_	0,194
62	83	85	1	0,6	95	200	479	971	51	69	102	144	-4	-11	-24	-40	0,380
62	83	85	1	0,6	100	221	544	1 118	58	80	119	169	-4	-11	-24	-40	0,332
62	83	85	1	0,6	157	345	804	1 552	129	171	236	307	-4	-9	-18	-29	0,383
62	83	85	1	0,6	172	391	928	1 807	148	199	277	362	-4	-9	-18	-29	0,335
62	83	85	1	0,6	49	246	887	1 307	115	196	311	360	0	-5	-15	-20	0,385
62	83	85	1	0,6	49	121	305	_	49	67	95	_	0	-5	-14	_	0,414
62	83	85	1	0,6	49	121	305	_	49	67	95	_	0	-5	-14	_	0,414
62	83	85	1	0,6	49	131	343	_	54	77	111	_	0	-5	-14	_	0,393
62	83 83	85 85	1	0,6	49	131	343	_	54	77	111	_	0	-5 10	-14	_	0,393
62	83	85 85	1	0,6	49 49	356 356	725 725	_	81 81	160 160	208 208	_	0	-10 -10	-18 -18	_	0,414
62 62	83	85	1	0,6	49	404	836	_	90	186	244	_	0	-10	-18	_	0,414 0,393
62	83	85	1	0,6	49	404	836	_	90	186	244	_	0	-10	-18		0,373
62	83	85	1	0,6	49	121	305	_	49	67	95	_	0	-10	-14		0,573
62	83	85	1	0,6	49	131	343		54	77	111	_	0	-5 -5	-14		0,301
62	83	85	1	0,6	49	131	343	_	54	77	111	_	0	-5	-14	_	0,480
62	83	85	1	0,6	49	356	725	_	81	160	208	_	0	-10	-14	_	0,480
62	83	85	1	0,6	49	404	836	_	90	186	244	_	0	-10	-18	_	0,480
62	83	85	1	0,6	49	404	836		90	186	244		0	-10	-18		0,480
64	91	94	1,5	0,8	142	289	788	1 554	56	74	116	163	-8	-17	-38	-60	0,400
64	91	94	1,5	0,8	155	323	906	1 802	64	86	136	191	-8	-17	-38	-60	0,502
64	91	94	1,5	0,8	248	491	1 206	2 397	142	182	256	338	-7	-13	-26	-42	0,596
64	91	94	1,5	0,8	277	562	1 401	2 804	165	213	301	399	-7	-13	-26	-42	0,497
64	91	94	1,5	0,8	49	494	1 722	2 635	108	236	372	438	0	-10	-26	-35	0,609

Tabelle A

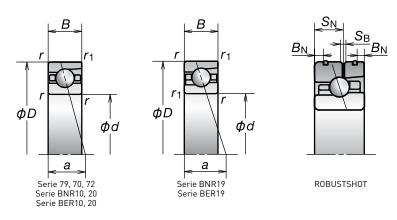
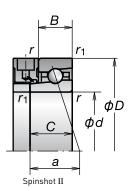
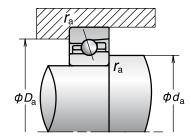

ıapeı	le A			
	EL	L	М	Н
15°	6,5	6,0	5,0	4,5
25°		2	,0	
30°		1.	.4	

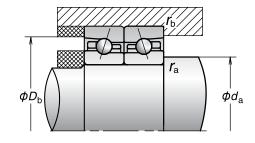
Tabelle ${f B}$

	DBD	DBB
Vorspannungsfaktor	1,36	2
Axiale Steifigkeit	1,48	2
Radiale Steifigkeit	1,54	2

- ◆ Dynamisch äquivalente Lagerbelastung······· S. 193
 ◆ Statisch äquivalente Lagerbelastung····· S. 200
- Abmessungen der Zwischenringe und
 - Position der Schmierdüse- S. 239
- Empfohlene Fettmengen ····· S. 259


Bohrungsdurchmesser 60 mm



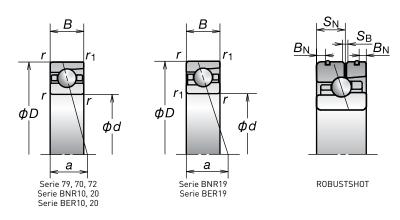

Lagerbe-			Н	aupta	bmes (mn	ssung n)	en (²)				ahlen N)	Zulässige Axiallast (3)	Druck- winkel	Faktor	Last- angriffs- punkt		hzahlen (4) in ⁻¹)
zeichnung (¹)	d	D	В	С	B _N	S _N	S _B	r (min.)	r ₁ (min.)	\mathbf{C}_{r} (dynamisch)	C_{or} (statisch)	(kN)	(Grad)	f _o	(mm) a	Fett	Öl
* 7912C	60	85	13	_	_	_	_	1	0,6	20,4	18,7	11,5	15	16,5	16,2	15 900	24 200
* 7912CSN24	60	85	13	_	_	_	_	1	0,6	19,7	18,3	13,6	15	16,5	16,2	20 700	31 500
* 7912A5	60	85	13	_	_	_	_	1	0,6	19,2	17,7	13,0	25	_	23,4	13 800	20 700
* 7912A5SN24	60	85	13	_	_	_	_	1	0,6	18,6	17,3	15,5	25	_	23,4	18 000	26 900
* 60BNR19S	60	85	13	_	_	_	_	1	0,6	14,6	12,0	17,1	18	10,7	18,3	19 400	27 600
* 60BNR19E	60	85	13	_	_	_	_	1	0,6	14,6	12,0	17,1	18	10,7	18,3	20 700	29 600
* 60BNR19H	60	85	13	_	2,8	7,5	1,4	1	0,6	14,6	11,5	11,2	18	10,7	18,3	24 900	38 700
* 60BNR19X	60	85	13	18	2,8	7,5	1,4	1	0,6	14,6	11,5	11,2	18	10,7	18,3	29 000	45 600
* 60BER19S	60	85	13	_	_	_	_	1	0,6	14,0	11.5	20,1	25	_	23,4	16 600	23 500
* 60BER19E	60	85	13	_	_	_	_	1	0,6	14,0	11,5	20,1	25	_	23,4	17 800	25 200
* 60BER19H	60	85	13	_	2.8	7,5	1,4	1	0,6	14,0	11,0	13,6	25	_	23,4	22 100	34 500
* 60BER19X	60	85	13	18	2,8	7.5	1,4	1	0,6	14,0	11,0	13,6	25	_	23.4	26 300	41 400
* 60BNR29EV1V	60	85	16		_			1	0,6	14,6	12,0	17,1	18	10.7	19.8	20 700	_
* 60BNR29HV1V	60	85	16	_	_	_	_	1	0,6	14,6	11.5	11,2	18	10.7	19,8	24 900	_
* 60BNR29XV1V	60	85	16	_	_	_	_	1	0,6	14,6	11,5	11,2	18	10.7	19,8	29 000	_
* 60BER29EV1V	60	85	16	_	_	_	_	1	0,6	14,0	11,5	20,1	25	_	24,9	17 800	_
* 60BER29HV1V	60	85	16		_	_	_	1	0,6	14,0	11,0	13,6	25	_	24,9	22 100	_
* 60BER29XV1V	60	85	16				_	1	0,6	14,0	11,0	13,6	25	_	24,9	26 300	_
* 7012C	60	95	18		_			1.1	0.6	37,0	30,5	19,9	15	15.7	19.4	14 900	22 600
* 7012CSN24	60	95	18					1,1	0.6	35,0	29,0	23,6	15	15.7	19.4	19 400	29 500
* 7012C5N24	60	95	18					1.1	0,6	35,0	29,1	23,0	25	-	27,1	13 000	19 400
* 7012A5SN24	60	95	18		_		_	1,1	0,6	33,0	27,1	27,3	25	_	27,1	16 800	25 200
* 7012A	60	95	18		_					33,5	28,1	17,6	30			9 700	13 000
	60	95	18					1,1	0,6				18		31,4		
* 60BNR10S		95	18	_	_ 	_	_	1,1	0,6	15,6	13,7	19,5	18	10,8	21,5	18 100 19 400	25 900 27 700
* 60BNR10E	60			_				1,1	0,6	15,6	13,7	19,5		10,8	21,5		
* 60BNR10H	60	95	18	-	4,3	10,0	1,4	1,1	0,6	15,6	13,1	12,8	18	10,8	21,5	23 300	36 200
* 60BNR10X	60	95	18	23	4,3	10,0	1,4	1,1	0,6	15,6	13,1	12,8	18	10,8	21,5	27 100	42 600
* 60BER10S	60	95	18	_	_	_	_	1,1	0,6	15,0	13,1	22,9	25	_	26,9	15 500	22 000
* 60BER10E	60	95	18	_	-	-	_	1,1	0,6	15,0	13,1	22,9	25	_	26,9	16 700	23 500
* 60BER10H	60	95	18	_	4,3	10,0	1,4	1,1	0,6	15,0	12,5	15,5	25	_	26,9	20 700	32 300
* 60BER10X	60	95	18	23	4,3	10,0	1,4	1,1	0,6	15,0	12,5	15,5	25	_	26,9	24 600	38 800
* 60BNR20EV1V	60	95	22	-	_	-	_	1,1	0,6	15,6	13,7	19,5	18	10,8	23,5	19 400	_
* 60BNR20HV1V	60	95	22	_	_	_	_	1,1	0,6	15,6	13,1	12,8	18	10,8	23,5	23 300	_
* 60BNR20XV1V	60	95	22	_	_	_	_	1,1	0,6	15,6	13,1	12,8	18	10,8	23,5	27 100	_
* 60BER20EV1V	60	95	22	_	_	_	_	1,1	0,6	15,0	13,1	22,9	25	_	28,9	16 700	_
* 60BER20HV1V	60	95	22	_	_	_	_	1,1	0,6	15,0	12,5	15,5	25	_	28,9	20 700	_
* 60BER20XV1V	60	95	22		_		_	1,1	0,6	15,0	12,5	15,5	25	_	28,9	24 600	
7212C	60	110	22	_	_	_	_	1,5	1	67,5	49,0	34,0	15	14,4	22,4	13 600	20 600
7212CSN24	60	110	22	_	-	_	_	1,5	1	63,5	46,5	40,6	15	14,4	22,4	17 700	26 900
7212A5	60	110	22	_	_	_	_	1,5	1	64,0	47,0	40,0	25	_	30,8	11 800	17 700
7212A5SN24	60	110	22	_	_	_	_	1,5	1	61,0	44,5	47,3	25	_	30,8	15 300	23 000
7212A	60	110	22	_	_	_	_	1,5	1	62,0	45,5	30,5	30	_	35,5	8 900	11 800

^[1] Mit einem Sternchen (*) gekennzeichnete Wälzlager sind als abgedichtete Wälzlager erhältlich. Die Serien 20 und 29 enthalten ausschließlich

 ^(*) Mit einem Sternchen (*) gekennzeichnete Watztager sind als abgedichtete Watztager erhaltlich. Die Serien 20 und 29 enthalten ausschlieblich abgedichtete Wätztager.
 (2) Ein Wätztager mit Wert in der Spalte C ist als Spinshot II erhältlich; ein Wätztager mit Werten in den Spalten B_N, S_N und S_B ist als ROBUSTSHOT erhältlich.
 (3) Angaben zur zulässigen Axiallast siehe Seite 201.
 (4) Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218.

66 79 80 1 0,5 61 122 341 661 52 68 108 149 -1 -5 - 66 79 80 1 0,5 101 201 419 884 117 150 198 267 -2 -5 - 66 79 80 1 0,5 108 223 477 1 021 133 173 231 313 -2 -5 - 66 79 80 1 0,5 49 171 343 - 47 74 97 - 0 -8 -	M H 15 -25 15 -25 10 -18 10 -18 16 - 16 -	-25 0,195 -25 0,175 -18 0,198
66 79 80 1 0,5 61 122 341 661 52 68 108 149 -1 -5 - 66 79 80 1 0,5 101 201 419 884 117 150 198 267 -2 -5 - 66 79 80 1 0,5 49 171 343 - 47 74 97 - 0 -8 -	15 –25 10 –18 10 –18 16 –	-25 0,175 -18 0,198
66 79 80 1 0,5 101 201 419 884 117 150 198 267 -2 -5 - 66 79 80 1 0,5 108 223 477 1 021 133 173 231 313 -2 -5 - 66 79 80 1 0,5 49 171 343 - 47 74 97 - 0 -8 -	10 –18 10 –18 16 –	-18 0,198
66 79 80 1 0,5 108 223 477 1 021 133 173 231 313 -2 -5 - 66 79 80 1 0,5 49 171 343 - 47 74 97 - 0 -8 -	10 –18 16 –	-,
66 79 80 1 0,5 49 171 343 - 47 74 97 - 0 -8 -	16 —	-18 0.175
	-	
66 79 80 1 0,5 49 171 343 - 47 74 97 - 0 -8 -	16 _	0,170
		- 0,190
	16 —	- 0,170
	16 –	- 0,170
	15 –	-1
	15 —	- 0,190
	15 —	-1
	15 —	0,
	16 —	-,
	16 —	-,
	16 —	0,200
	15 —	0,220
	15 —	0,200
		- 0,208
	25 –42	
	25 –42	
	17 –28	
	17 –28	
	15 –20	
	15 —	-1
	15 —	0,440
	15 —	0,
	15 —	
	18 –	0,1.0
	18 —	-1
	18 –	
	18 —	9,
	15 — 15 —	-,
		-,
	15 — 18 —	-1
	18 –	0,000
	18 –	0,012
	42 -67	<u>'</u>
	42 -67	
	29 –47	
	29 –47	
	25 –35	

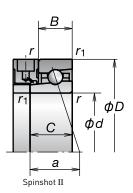
Tab 15 25 30

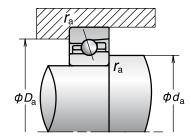

bel	le A				Tabelle B		
	EL	L	М	Н		DBD	DBB
5°	6,5	6,0	5,0	4,5	Vorspannungsfaktor	1,36	2
5°		2	,0		Axiale Steifigkeit	1,48	2
0°		1.	.4		Radiale Steifigkeit	1,54	2

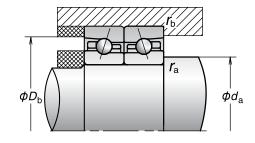
Für weitere Informationen:

2

- Dynamisch äquivalente Lagerbelastung------- S. 193
 Statisch äquivalente Lagerbelastung------ S. 200
- Abmessungen der Zwischenringe und
- Position der Schmierdüse- S. 239 • Empfohlene Fettmengen ····· S. 259


Bohrungsdurchmesser 65 mm




Lagerbe-			Н	aupta	bmes (mn	sung n)	en (²)				ahlen N)	Zulässige Axiallast (3)	Druck- winkel	Faktor	Last- angriffs- punkt		hzahlen (4) in ⁻¹)
zeichnung (¹)	d	D	В	С	B _N	S _N	S _B	r (min.)	r ₁ (min.)	C _r (dynamisch)	C _{or} (statisch)	(kN)	(Grad)	t _o	(mm) a	Fett	Öl
* 7913C	65	90	13	_	_	_	_	1	0,6	21,2	20,5	12,5	15	16,7	16,9	14 900	22 600
* 7913CSN24	65	90	13	_	_	_	_	1	0,6	20,5	20,1	14,8	15	16,7	16,9	19 400	29 500
* 7913A5	65	90	13	_	_	_	_	1	0,6	20,0	19,4	14,2	25	_	24,6	13 000	19 400
* 7913A5SN24	65	90	13	_	_	_	_	1	0,6	19,3	19,0	16,8	25	_	24,6	16 800	25 200
* 65BNR19S	65	90	13	_	_	_	_	1	0,6	15,2	13,2	18,7	18	10,8	19,1	18 100	25 900
* 65BNR19E	65	90	13	_	_	_	_	1	0,6	15,2	13,2	18,7	18	10,8	19,1	19 400	27 700
* 65BNR19H	65	90	13	_	2,8	7.5	1,4	1	0,6	15,2	12,6	12,3	18	10,8	19,1	23 300	36 200
* 65BNR19X	65	90	13	18	2,8	7.5	1,4	1	0,6	15,2	12,6	12,3	18	10,8	19,1	27 100	42 600
* 65BER19S	65	90	13	_	_	_	_	1	0,6	14,5	12,6	22,1	25	_	24,6	15 500	22 000
* 65BER19E	65	90	13	_	_	_	_	1	0,6	14,5	12,6	22,1	25	_	24.6	16 700	23 500
* 65BER19H	65	90	13	_	2.8	7.5	1.4	1	0,6	14,5	12,1	14,9	25	_	24.6	20 700	32 300
* 65BER19X	65	90	13	18	2.8	7,5	1.4	1	0.6	14,5	12,1	14,9	25	_	24.6	24 600	38 800
* 65BNR29EV1V	65	90	16	_		_	_	1	0,6	15,2	13,2	18,7	18	10.8	20.6	19 400	_
* 65BNR29HV1V	65	90	16	_	_	_	_	1	0,6	15,2	12,6	12,3	18	10,8	20,6	23 300	_
* 65BNR29XV1V	65	90	16	_	_	_	_	1	0.6	15,2	12,6	12,3	18	10.8	20.6	27 100	_
* 65BER29EV1V	65	90	16	_	_	_	_	1	0,6	14,5	12,6	22,1	25	-	26,1	16 700	_
* 65BER29HV1V	65	90	16	_	_	_	_	1	0,6	14,5	12,1	14,9	25	_	26,1	20 700	_
* 65BER29XV1V	65	90	16	_	_	_	_	1	0,6	14,5	12,1	14,9	25	_	26,1	24 600	_
* 7013C	65	100	18	_	_		_	1,1	0,6	39,0	34,5	22,0	15	15.9	20.0	14 000	21 300
* 7013CSN24	65	100	18	_	_	_	_	1,1	0,6	37,0	32,5	26,1	15	15.9	20.0	18 200	27 700
* 7013A5	65	100	18		_	_	_	1,1	0,6	37,0	32,5	25,4	25	-	28,2	12 200	18 200
* 7013A5SN24	65	100	18	_	_	_	_	1,1	0,6	35,0	31,0	30,2	25	_	28.2	15 800	23 700
* 7013A	65	100	18		_	_	_	1.1	0.6	35,5	31,5	19,5	30	_	32.8	9 100	12 200
* 65BNR10S	65	100	18	_	_	_	_	1,1	0,6	16,2	14,8	21,1	18	10.9	22,3	17 000	24 300
* 65BNR10E	65	100	18	_		_	_	1.1	0,6	16,2	14,8	21,1	18	10,7	22,3	18 200	26 000
* 65BNR10H	65	100	18	_	4.0	10,4	1,4	1,1	0,6	16,2	14,2	13,9	18	10,7	22,3	21 900	34 000
* 65BNR10X	65	100	18	23	4,0	10,4	1,4	1,1	0,6	16,2	14,2	13,7	18	10,7	22,3	25 500	40 000
* 65BER10S	65	100	18	_	4,0	-	-	1,1	0,6	15,5	14,2	24,9	25	-	28.0	14 600	20 700
* 65BER10E	65	100	18					1,1	0,6	15,5	14,2	24,7	25		28,0	15 700	20 700
* 65BER10H	65	100	18		4.0	10.4	1,4	1,1	0,6	15,5	13,6	16,8	25	_	28.0	19 400	30 400
* 65BER10X	65	100	18	23	4,0	10,4	1,4	1,1	0.6	15,5	13,6	16,8	25		28.0	23 100	36 400
	65	100	22		4,0	- 1	1,4			16,2	· ·		18	10.9		18 200	36 400
* 65BNR20EV1V			22	_	_	_	_	1,1	0,6		14,8	21,1	18	1.	24,3		_
* 65BNR20HV1V	65	100						1,1	0,6	16,2	14,2	13,9		10,9	24,3	21 900	_
* 65BNR20XV1V	65	100	22		_	_	_	1,1	0,6	16,2	14,2	13,9	18	10,9	24,3	25 500	_
* 65BER20EV1V	65	100	22	_	_	_	_	1,1	0,6	15,5	14,2	24,9	25	_	30,0	15 700	_
* 65BER20HV1V	65	100	22	_	_	_	_	1,1	0,6	15,5	13,6	16,8	25	_	30,0	19 400	_
* 65BER20XV1V	65	100	22	_	_	_	_	1,1	0,6	15,5	13,6	16,8	25	1//	30,0	23 100	10.000
7213C	65	120	23	-	_	_	_	1,5	1	77,0	58,5	40,0	15	14,6	23,9	12 500	19 000
7213CSN24	65	120	23	_	_	_	_	1,5	1	73,0	56,0	47,5	15	14,6	23,9	16 300	24 700
7213A5	65	120	23	_	_	_	_	1,5	1	73,0	56,0	46,5	25	_	33,1	10 900	16 300
7213A5SN24	65	120	23	_	_	_	_	1,5	1	69,5	53,5	55,4	25	_	33,1	14 100	21 100
7213A	65	120	23					1,5	1	70,5	54,0	36,0	30		38,2	8 200	10 900

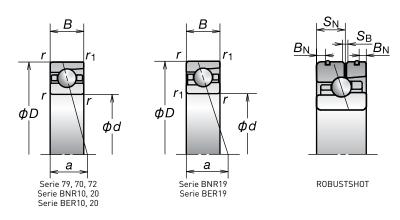
^[1] Mit einem Sternchen (*) gekennzeichnete Wälzlager sind als abgedichtete Wälzlager erhältlich. Die Serien 20 und 29 enthalten ausschließlich

 ^(*) Mit einem Sternchen (*) gekennzeichnete Watztager sind als abgedichtete Watztager erhaltlich. Die Serien 20 und 29 enthalten ausschlieblich abgedichtete Wätztager.
 (2) Ein Wätztager mit Wert in der Spalte C ist als Spinshot II erhältlich; ein Wätztager mit Werten in den Spalten B_N, S_N und S_B ist als ROBUSTSHOT erhältlich.
 (3) Angaben zur zulässigen Axiallast siehe Seite 201.
 (4) Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218.

	Anschl	ußmaße	e (mm)		(And	Vorspa ordnung (1)	DB und	DF)		Axiale Stordnung (N/	DB und		(μπ)				Gewicht (kg)
d _a (min.)	D _a (max.)	D _b (max.)	r _a (max.)	r _b (max.)	EL	L	М	Н	EL	L	М	Н	EL	L	М	Н	(ca.)
71	84	85	1	0,5	74	151	348	690	53	71	104	145	-2	-7	-16	-27	0,208
71	84	85	1	0,5	76	164	391	787	59	81	120	169	-2	-7	-16	-27	0,186
71	84	85	1	0,5	104	212	500	948	124	161	223	288	-2	-5	-11	-18	0,211
71	84	85	1	0,5	112	235	572	1 096	142	186	261	338	-2	-5	-11	-18	0,189
71	84	85	1	0,5	49	179	364	_	50	80	105	_	0	-8	-16	_	0,204
71	84	85	1	0,5	49	179	364	_	50	80	105	_	0	-8	-16	_	0,204
71	84	85	1	0,5	49	198	412	_	56	92	122	_	0	-8	-16	_	0,181
71	84	85	1	0,5	49	198	412	_	56	92	122	_	0	-8	-16	_	0,181
71	84	85	1	0,5	49	288	595	_	83	152	198	_	0	-8	-15	_	0,204
71	84	85	1	0,5	49	288	595	_	83	152	198	_	0	-8	-15	_	0,204
71	84	85	1	0,5	49	324	683	_	93	177	232	_	0	-8	-15	_	0,181
71	84	85	1	0,5	49	324	683	_	93	177	232	_	0	-8	-15	_	0,181
71	84	85	1	0,5	49	179	364	_	50	80	105	_	0	-8	-16	_	0,245
71	84	85	1	0,5	49	198	412	_	56	92	122	_	0	-8	-16	_	0,223
71	84	85	1	0,5	49	198	412	_	56	92	122	_	0	-8	-16	_	0,223
71	84	85	1	0,5	49	288	595	_	83	152	198	_	0	-8	-15	_	0,245
71	84	85	1	0,5	49	324	683	_	93	177	232	_	0	-8	-15	_	0,223
71	84	85	1	0,5	49	324	683	_	93	177	232	_	0	-8	-15		0,223
72	93	95	1	0,6	130	260	537	1 062	64	85	117	163	-6	-13	-24	-39	0,435
72	93	95	1	0,6	141	290	612	1 224	73	98	136	191	-6	-13	-24	-39	0,379
72	93	95	1	0,6	209	386	915	1 781	157	196	272	356	-5	-9	-18	-29	0,455
72	93	95	1	0,6	232	439	1 059	2 077	182	229	320	420	-5	-9	-18	-29	0,399
72	93	95	1	0,6	49	272	1 012	1 498	127	225	360	418	0	-5	-15	-20	0,441
72	93	95	1	0,6	49	130	367	_	54	76	113	_	0	-5	-15	_	0,472
72	93	95	1	0,6	49	130	367	_	54	76	113	_	0	-5	-15	_	0,472
72	93	95	1	0,6	49	141	415	-	60	87	131	_	0	-5	-15	_	0,447
72	93	95	1	0,6	49	141	415	_	60	87	131	_	0	-5	-15	_	0,447
72	93	95	1	0,6	49	399	824	_	89	184	240	_	0	-10	-18	_	0,472
72	93	95 05	1	0,6	49	399	824	_	89	184	240	_	0	-10	-18	_	0,472
72	93	95	1	0,6	49	454	952	_	100	215	282	_	0	-10 10	-18	_	0,447
72 72	93	95	1	0,6	49	454	952	_	100	215	282	_	0	-10	-18	_	0,447
72	93 93	95 95	1	0,6	49 49	130	367 415	_	54	76 87	113 131	_	0	-5 -5	-15 -15	_	0,570
72	93	95 95	1	0,6	49	141 141	415	_	60	87		_	0	-5 -5	-15 -15	_	0,545
72	93	95 95	1	0,6	49	399	824	_	60 89	184	131 240	_	0	-5 -10	-15 -18	_	0,545 0,570
72				0,6				_				_	0			_	
72	93 93	95 95	1	0,6	49 49	454 454	952 952	_	100	215 215	282 282	_	0	-10 -10	-18 -18	_	0,545 0,545
74	111	114	1,5	0,8	219	454	1 069	2 175	71	95	141	200	-12	-23	-44	-70	<u> </u>
				,					82		165		-12 -12			-70 -70	1,01
74 74	111	114 114	1,5	0,8	243 357	509 657	1 235	2 533	177	111 221	314	235 414	-12 -9	-23 -15	-44 -30	-/U -48	0,842
74	111	114	1,5 1,5	0,8	405	755	1 941	3 307	207	259	370	414	-9 -9	-15 -15	-30	-48 -48	1,00
74	111	114	1,5	0,8	405	553	1 851	2 998	120	269	416	489	-9 0	-10	-30 -25	-48 -35	0,832
/4	111	114	1,3	0,8	47	553	1 001	2 178	120	207	410	477	U	-10	-20	-30	1,02

Tabelle $oldsymbol{\mathsf{A}}$ М EL 15° 6,5 25°

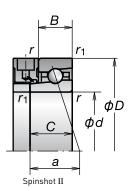
Tabelle **B** Н DBD DBB 6,0 5,0 4,5 Vorspannungsfaktor 1,36 Axiale Steifigkeit 1,48 2,0 Radiale Steifigkeit 1,54 30°

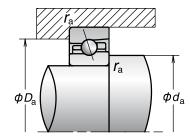

Für weitere Informationen:

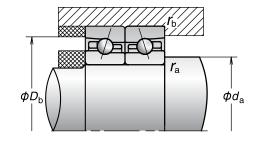
2

2

- ◆ Dynamisch äquivalente Lagerbelastung······· S. 193
 ◆ Statisch äquivalente Lagerbelastung····· S. 200
- Abmessungen der Zwischenringe und Position der Schmierdüse- S. 239 • Empfohlene Fettmengen ····· S. 259


Bohrungsdurchmesser 70 mm




Lagerbe-			Н	aupta	bmes (mn	sung n)	en (²)				ahlen N)	Zulässige Axiallast (3)	Druck- winkel	Faktor	Last- angriffs- punkt		hzahlen (4) in-1)
zeichnung (¹)	d	D	В	С	B _N	S _N	S _B	r (min.)	r ₁ (min.)	C _r (dynamisch)	C _{or} (statisch)	(kN)	(Grad)	t _o	(mm) a	Fett	Öl
* 7914C	70	100	16	_	_	_	_	1	0,6	29,5	27,8	17,3	15	16,4	19,4	13 600	20 600
* 7914CSN24	70	100	16	_	_	_	_	1	0,6	28,1	26,6	20,5	15	16,4	19,4	17 700	26 900
* 7914A5	70	100	16	_	_	_	_	1	0,6	27,9	26,3	20,3	25	_	27,8	11 800	17 700
* 7914A5SN24	70	100	16	_	_	_	_	1	0,6	26,5	25,2	24,1	25	_	27,8	15 300	23 000
* 70BNR19S	70	100	16	_	_	_	_	1	0,6	21,3	18,1	26,1	18	10,8	21,8	16 500	23 600
* 70BNR19E	70	100	16	_	_	_	_	1	0,6	21,3	18,1	26,1	18	10,8	21,8	17 700	25 200
* 70BNR19H	70	100	16	_	3,1	9,3	1,4	1	0,6	21,3	17,3	17,1	18	10,8	21,8	21 200	33 000
* 70BNR19X	70	100	16	21	3,1	9,3	1,4	1	0,6	21,3	17,3	17,1	18	10,8	21,8	24 800	38 900
* 70BER19S	70	100	16	_	_	_	_	1	0,6	20,4	17,3	30,5	25	_	27,8	14 200	20 000
* 70BER19E	70	100	16	_	_	_	_	1	0,6	20,4	17,3	30,5	25	_	27,8	15 200	21 500
* 70BER19H	70	100	16	_	3,1	9,3	1.4	1	0,6	20,4	16,6	20,7	25	_	27,8	18 900	29 500
* 70BER19X	70	100	16	21	3,1	9,3	1,4	1	0.6	20,4	16.6	20.7	25	_	27,8	22 400	35 300
* 70BNR29EV1V	70	100	19		_		_	1	0,6	21,3	18,1	26,1	18	10.8	23,3	17 700	_
* 70BNR29HV1V	70	100	19	_	_	_	_	1	0,6	21,3	17,3	17,1	18	10,8	23,3	21 200	_
* 70BNR29XV1V	70	100	19	_	_	_		1	0.6	21,3	17,3	17,1	18	10.8	23.3	24 800	_
* 70BER29EV1V	70	100	19	_	_	_	_	1	0,6	20,4	17,3	30,5	25	-	29,3	15 200	_
* 70BER29HV1V	70	100	19	_	_	_	_	1	0,6	20,4	16,6	20,7	25	_	29,3	18 900	_
* 70BER29XV1V	70	100	19	_	_	_	_	1	0,6	20,4	16,6	20,7	25	_	29,3	22 400	_
* 7014C	70	110	20	_	_	_		1,1	0.6	49,0	43,0	26,8	15	15.7	22,1	12 800	19 500
* 7014CSN24	70	110	20	_	_	_	_	1,1	0,6	47,0	41,5	31,8	15	15.7	22,1	16 700	25 400
* 7014A5	70	110	20	_	_	_	_	1,1	0,6	46,5	41,0	32,0	25	-	31.0	11 200	16 700
* 7014A5SN24	70	110	20		_	_		1,1	0,6	44,5	39,0	38,0	25	_	31.0	14 500	21 700
* 7014A	70	110	20	_	_	_	_	1.1	0.6	45,0	39,5	24,6	30	_	36.0	8 400	11 200
* 70BNR10S	70	110	20					1,1	0,6	22,3	19,8	28,6	18	10.9	24,5	15 600	22 300
* 70BNR10E	70	110	20					1,1	0,6	22,3	19,8	28,6	18	10,7	24,5	16 700	23 800
* 70BNR10H	70	110	20		4.0	11,6	1,4	1,1	0,6	22,3	18,9	18,8	18	10,7	24,5	20 000	31 200
* 70BNR10X	70	110	20	25	4,0	11,6	1,4	1,1	0,6	22,3	18,9	18,8	18	10,7	24,5	23 400	36 700
* 70BER10S	70	110	20	_	_	11,0		1,1	0,6	21,3	18,9	33,5	25		30.8	13 400	18 900
	70	110	20		_		_ _						25	_		14 400	
* 70BER10E * 70BER10H	70	110	20	_				1,1	0,6	21,3	18,9	33,5 22,6	25	_	30,8	17 800	20 300 27 800
					4,0	11,6	1,4	1,1	0,6	21,3	18,1			_			
* 70BER10X	70	110	20	25	4,0	11,6	1,4	1,1	0,6	21,3	18,1	22,6	25		30,8	21 200	33 400
* 70BNR20EV1V	70	110	24	_	_	_	_	1,1	0,6	22,3	19,8	28,6	18	10,9	26,5	16 700	_
* 70BNR20HV1V	70	110	24	_	_	_	_	1,1	0,6	22,3	18,9	18,8	18	10,9	26,5	20 000	_
* 70BNR20XV1V	70	110	24	_	_	_	_	1,1	0,6	22,3	18,9	18,8	18	10,9	26,5	23 400	_
* 70BER20EV1V	70	110	24	_	_	_	_	1,1	0,6	21,3	18,9	33,5	25	_	32,8	14 400	_
* 70BER20HV1V	70	110	24	_	_	-	_	1,1	0,6	21,3	18,1	22,6	25	_	32,8	17 800	_
* 70BER20XV1V	70	110	24	_	_	_	_	1,1	0,6	21,3	18,1	22,6	25	_	32,8	21 200	40.000
7214C	70	125	24	_	_	-	_	1,5	1	83,5	64,5	43,0	15	14,6	25,1	11 800	18 000
7214CSN24	70	125	24	_	_	_	_	1,5	1	79,5	61,5	51,3	15	14,6	25,1	15 400	23 400
7214A5	70	125	24	_	_	_	_	1,5	1	79,5	61,5	49,5	25	_	34,7	10 300	15 400
7214A5SN24	70	125	24	_	_	_	_	1,5	1	76,0	59,0	59,0	25	_	34,7	13 400	20 000
7214A	70	125	24		_		_	1,5	1	77,0	59,5	38,0	30		40,1	7 700	10 300

^[1] Mit einem Sternchen (*) gekennzeichnete Wälzlager sind als abgedichtete Wälzlager erhältlich. Die Serien 20 und 29 enthalten ausschließlich

 ^(*) Mit einem Sternchen (*) gekennzeichnete Watztager sind als abgedichtete Watztager erhaltlich. Die Serien 20 und 29 enthalten ausschlieblich abgedichtete Wätztager.
 (2) Ein Wätztager mit Wert in der Spalte C ist als Spinshot II erhältlich; ein Wätztager mit Werten in den Spalten B_N, S_N und S_B ist als ROBUSTSHOT erhältlich.
 (3) Angaben zur zulässigen Axiallast siehe Seite 201.
 (4) Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218.

	Anschl	lußmaße	e (mm)		(And	Vorspa ordnung (N	DB und	IDF)		Axiale Stordnung (N/			Ge	messer (µ	ne Axial m)	luft	Gewicht (kg)
d _a (min.)	D _a (max.)	D _b (max.)	r _a (max.)	r _b (max.)	EL	L	М	Н	EL	L	М	Н	EL	L	М	Н	(ca.)
76	94	95	1	0,5	101	205	503	1 004	59	79	119	168	-4	-10	-22	-36	0,338
76	94	95	1	0,5	108	227	571	1 155	67	91	138	196	-4	-10	-22	-36	0,301
76	94	95	1	0,5	137	298	676	1 404	138	182	248	334	-3	-7	-14	-24	0,341
76	94	95	1	0,5	150	336	777	1 633	158	212	291	392	-3	-7	-14	-24	0,304
76	94	95	1	0,5	49	181	367	_	51	80	105	_	0	-8	-16	_	0,328
76	94	95	1	0,5	49	181	367	_	51	80	105	_	0	-8	-16	_	0,328
76	94	95	1	0,5	49	200	415	_	57	93	122	_	0	-8	-16	_	0,292
76	94	95	1	0,5	49	200	415	_	57	93	122	_	0	-8	-16	_	0,292
76	94	95	1	0,5	49	292	604	_	84	154	201	_	0	-8	-15	_	0,328
76	94	95	1	0,5	49	292	604	_	84	154	201	_	0	-8	-15	_	0,328
76	94	95	1	0,5	49	329	693	_	94	180	235	_	0	-8	-15	_	0,292
76	94	95	1	0,5	49	329	693	_	94	180	235	_	0	-8	-15	_	0,292
76	94	95	1	0,5	49	181	367	_	51	80	105	_	0	-8	-16	_	0,381
76	94	95	1	0,5	49	200	415	_	57	93	122	_	0	-8	-16	_	0,344
76	94	95	1	0,5	49	200	415	_	57	93	122	_	0	-8	-16	_	0,344
76	94	95	1	0,5	49	292	604	_	84	154	201	_	0	-8	-15	_	0,381
76	94	95	1	0,5	49	329	693	_	94	180	235	_	0	-8	-15	_	0,344
76	94	95	1	0,5	49	329	693	_	94	180	235	_	0	-8	-15	_	0,344
77	103	105	1	0,6	148	285	732	1 460	68	89	135	190	-7	-14	-30	-48	0,606
77	103	105	1	0,6	161	319	839	1 692	78	103	158	222	-7	-14	-30	-48	0,525
77	103	105	1	0,6	255	500	1 080	2 196	172	220	294	391	-6	-11	-20	-33	0,625
77	103	105	1	0,6	285	572	1 252	2 566	200	257	346	461	-6	-11	-20	-33	0,544
77	103	105	1	0,6	49	278	1 038	2 106	130	231	370	482	0	-5	-15	-25	0,613
77	103	105	1	0,6	49	235	509	_	53	93	126	_	0	-10	-20	_	0,645
77	103	105	1	0,6	49	235	509	_	53	93	126	_	0	-10	-20	_	0,645
77	103	105	1	0,6	49	262	582	_	60	108	147	_	0	-10	-20	_	0,605
77	103	105	1	0,6	49	262	582	_	60	108	147	_	0	-10	-20	_	0,605
77	103	105	1	0,6	49	396	815	_	89	181	236	_	0	-10	-18	_	0,645
77	103	105	1	0,6	49	396	815	_	89	181	236	_	0	-10	-18	_	0,645
77	103	105	1	0,6	49	451	942	_	100	212	278	_	0	-10	-18	_	0,605
77 77	103	105	1	0,6	49	451	942		100	212 93	278		0	-10	-18 -20		0,605
77	103	105	1	0,6	49 49	235	509 582	_	53 60	108	126 147	_	0	-10 -10	-20 -20	_	0,764
	103	105		0,6		262		_				_				_	0,724
77 77	103 103	105 105	1	0,6	49 49	262 396	582 815	_	60 89	108 181	147 236	_ _	0	-10 -10	-20 -18	_	0,724
77				0,6				_		-		_	0		-18 -18	_	0,764
77	103 103	105 105	1	0,6	49 49	451 451	942 942	_	100 100	212	278 278	_	0	-10 -10	-18 -18	_	0,724 0,724
77	116	119		0,8	243	484	1 164	2 368	75	100	148	209	<u>-9</u>	-20	-42	-69	1,09
79			1,5	,					75 86		172	245	-9 -9		-42 -42		
79	116 116	119 119	1,5	0,8	262 406	539 781	1 329 1 856	2 734 3 690	188	115 239	332	438	-9 -8	-20 -15	-42 -30	-69 -49	0,898 1.08
79	116	119	1,5 1,5	0,8	406	887	2 147	4 304	218	239	332	517	-8 -8	-15 -15	-30	-49 -49	,
				0,8										-			0,888
79	116	119	1,5	0,8	98	1 067	2 626	3 932	153	346	481	562	0	-15	-30	-40	1,10

Tabelle $oldsymbol{\mathsf{A}}$ М EL

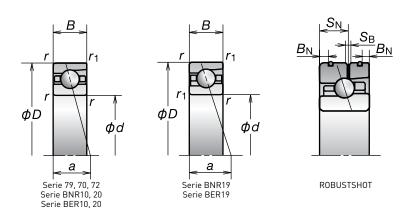
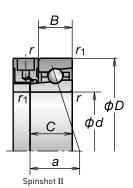
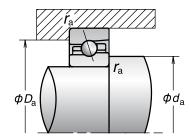

Н 15° 6,0 5,0 4,5 6,5 25° 2,0 30° 1,4

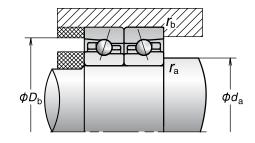
Tabelle ${f B}$

	DBD	DBB
Vorspannungsfaktor	1,36	2
Axiale Steifigkeit	1,48	2
Radiale Steifigkeit	1.54	2

- ◆ Dynamisch äquivalente Lagerbelastung······· S. 193
 ◆ Statisch äquivalente Lagerbelastung····· S. 200
- Abmessungen der Zwischenringe und Position der Schmierdüse- S. 239 • Empfohlene Fettmengen ····· S. 259


Bohrungsdurchmesser 75 mm




Lagerbe-	zeichnung (¹)			aupta	bmes (mr	ssung n)	en (²)				ahlen N)	Zulässige Axiallast (3)	Druck- winkel	Faktor	Last- angriffs- punkt		hzahlen (4) in ⁻¹)
zeichnung (')	d	D	В	С	B _N	S _N	S _B	r (min.)	r ₁ (min.)	C _r (dynamisch)	C _{or} (statisch)	(kN)	(Grad)	t _o	(mm) a	Fett	Öl
* 7915C	75	105	16	_	_		_	1	0,6	30,0	29,3	18,0	15	16,6	20,1	12 800	19 500
* 7915CSN24	75	105	16	_	_	_	_	1	0,6	28,6	28,0	21,3	15	16,6	20,1	16 700	25 400
* 7915A5	75	105	16	_	_	_	_	1	0,6	28,3	27,7	21,2	25	_	29.0	11 200	16 700
* 7915A5SN24	75	105	16	_	_	_	_	1	0,6	26,9	26,5	25,1	25	_	29.0	14 500	21 700
* 75BNR19S	75	105	16	_	_	_	_	1	0,6	21,6	19,0	27,5	18	10.9	22,6	15 600	22 300
* 75BNR19E	75	105	16	_	_	_	_	1	0,6	21,6	19,0	27,5	18	10.9	22,6	16 700	23 800
* 75BNR19H	75	105	16	_	3.1	9.3	1.4	1	0,6	21,6	18.2	18.0	18	10.9	22.6	20 000	31 200
* 75BNR19X	75	105	16	21	3,1	9,3	1,4	1	0,6	21,6	18,2	18,0	18	10.9	22,6	23 400	36 700
* 75BER19S	75	105	16	_	_	_	_	1	0,6	20,7	18,2	32,5	25	_	29.0	13 400	18 900
* 75BER19E	75	105	16	_	_	_	_	1	0,6	20,7	18,2	32,5	25	_	29.0	14 400	20 300
* 75BER19H	75	105	16	_	3.1	9,3	1.4	1	0,6	20,7	17,4	21,7	25	_	29,0	17 800	27 800
* 75BER19X	75	105	16	21	3.1	9,3	1.4	1	0.6	20.7	17,4	21,7	25	_	29.0	21 200	33 400
* 75BNR29EV1V	75	105	19	_	_	-,0		1	0,6	21,6	19,0	27,5	18	10.9	24,1	16 700	_
* 75BNR29HV1V	75	105	19	_	_	_	_	1	0,6	21,6	18,2	18,0	18	10,9	24,1	20 000	_
* 75BNR29XV1V	75	105	19	_	_		_	1	0.6	21,6	18.2	18,0	18	10,7	24.1	23 400	_
* 75BER29EV1V	75	105	19	_	_	_	_	1	0,6	20,7	18,2	32,5	25	-	30.5	14 400	_
* 75BER29HV1V	75	105	19	_	_		_	1	0,6	20,7	17,4	21,7	25	_	30.5	17 800	_
* 75BER29XV1V	75	105	19	_	_	_	_	1	0,6	20,7	17,4	21,7	25	_	30,5	21 200	_
* 7015C	75	115	20				_	1,1	0,6	50,5	45,5	28,1	15	15.9	22,7	12 200	18 500
* 7015CSN24	75	115	20			_	_	1,1	0,6	48,0	44,0	33,3	15	15.9	22,7	15 800	24 000
* 7015A5	75	115	20		_		_	1,1	0,6	47,5	43,5	33,5	25	-	32,1	10 600	15 800
* 7015A5SN24	75	115	20			_	_	1,1	0,6	45,5	41,5	40,0	25	_	32,1	13 700	20 600
* 7015A	75	115	20					1.1	0,6	46,0	41,5	25,9	30		37.4	7 900	10 600
* 75BNR10S	75	115	20				_	1,1	0,6	22,6	20,7	30,0	18	11,0	25,3	14 800	21 100
* 75BNR10E	75	115	20				_	1.1	0,6	22,6	20,7	30,0	18	11.0	25,3	15 800	22 600
* 75BNR10H	75	115	20		4.0	11,6	1,4	1,1	0,6	22,6	19,8	19,7	18	11,0	25,3	19 000	29 500
* 75BNR10X	75	115	20	27	4,0		1,4	1,1	0,6	22,6	17,8	19,7	18	11,0	25,3	22 200	34 800
* 75BER10S	75	115	20			11,6				21,6	19,8	35,0	25		31.9	12 700	17 900
* 75BER10E	75	115	20	_		_	_	1,1	0,6	21,6	19,8	35,0	25	_	31,9	13 600	17 900
* 75BER10E	75	115	20	_							19,8		25	_	31,9	16 900	26 400
	75	115	20	27	4,0	11,6	1,4	1,1	0,6	21,6		23,7	25		31,9	20 000	31 600
* 75BER10X	75	115	24	_	4,0	11,6	1,4	1,1	0,6	21,6	19,0	23,7	18				31 600
* 75BNR20EV1V				_	_	_	_	1,1	0,6	22,6	20,7	30,0		11,0	27,3	15 800	_
* 75BNR20HV1V	75	115	24	_	_	_	-	1,1	0,6	22,6	19,8	19,7	18	11,0	27,3	19 000	_
* 75BNR20XV1V	75	115	24	_	_	_	_	1,1	0,6	22,6	19,8	19,7	18	11,0	27,3	22 200	_
* 75BER20EV1V	75	115	24	_	_	_	_	1,1	0,6	21,6	19,8	35,0	25	_	33,9	13 600	_
* 75BER20HV1V	75	115	24	_	_	_	_	1,1	0,6	21,6	19,0	23,7	25	_	33,9	16 900	_
* 75BER20XV1V	75	115	24	_	_	_	_	1,1	0,6	21,6	19,0	23,7	25	-	33,9	20 000	45.400
7215C	75	130	25	_	_	_	_	1,5	1	87,0	70,0	46,0	15	14,8	26,2	11 300	17 100
7215CSN24	75	130	25	_	_	_	_	1,5	1	83,0	67,0	54,9	15	14,8	26,2	14 700	22 300
7215A5	75	130	25	_	_	_	_	1,5	1	82,5	66,5	53,0	25	_	36,4	9 800	14 700
7215A5SN24	75	130	25	_	_	_	_	1,5	1	79,0	63,5	62,7	25	_	36,4	12 700	19 100
7215A	75	130	25		_		_	1,5	1	80,0	64,5	40,5	30		42,1	7 400	9 800

^[1] Mit einem Sternchen (*) gekennzeichnete Wälzlager sind als abgedichtete Wälzlager erhältlich. Die Serien 20 und 29 enthalten ausschließlich

 ^(*) Mit einem Sternchen (*) gekennzeichnete Watztager sind als abgedichtete Watztager erhaltlich. Die Serien 20 und 29 enthalten ausschlieblich abgedichtete Wätztager.
 (2) Ein Wätztager mit Wert in der Spalte C ist als Spinshot II erhältlich; ein Wätztager mit Werten in den Spalten B_N, S_N und S_B ist als ROBUSTSHOT erhältlich.
 (3) Angaben zur zulässigen Axiallast siehe Seite 201.
 (4) Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218.

	Ansch	lußmaße	e (mm)		(And	Vorspa ordnung (1)		d DF)		Axiale Soordnung (N/			Ge	emesser (µ	ne Axial m)	luft	Gewicht (kg)
d _a (min.)	D _a (max.)	D_b (max.)	r _a (max.)	r _b (max.)	EL	L	М	Н	EL	L	М	Н	EL	L	М	Н	(ca.)
81	99	100	1	0,5	103	190	489	997	61	79	120	171	-4	-9	-21	-35	0,358
81	99	100	1	0,5	109	210	555	1 147	70	91	140	199	-4	-9	-21	-35	0,319
81	99	100	1	0,5	140	307	765	1 458	142	189	268	347	-3	-7	-15	-24	0,355
81	99	100	1	0,5	153	346	882	1 696	164	220	314	409	-3	-7	-15	-24	0,316
81	99	100	1	0,5	49	185	464	_	52	83	118	_	0	-8	-19	_	0,348
81	99	100	1	0,5	49	185	464	_	52	83	118	_	0	-8	-19	_	0,348
81	99	100	1	0,5	49 49	205	528	_	58	96	138	_	0	-8	-19 -19	_	0,310
81 81	99	100	1	0,5 0,5	49	205	528 625	_	58 87	96 160	138 209	_	0	-8 -8	-19 -15	_	0,310 0,348
81	99	100	1	0,5	49	301	625	_	87	160	209	_	0	-8	-15	_	0,348
81	99	100	1	0,5	49	339	718	_	97	187	245	_	0	-8	-15		0,340
81	99	100	1	0,5	49	337	718		97	187	245		0	-8	-15	_	0,310
81	99	100	1	0,5	49	185	464	_	52	83	118	_	0	-8	-19	_	0,403
81	99	100	1	0,5	49	205	528	_	58	96	138	_	0	-8	-19	_	0,365
81	99	100	1	0,5	49	205	528	_	58	96	138	_	0	-8	-19	_	0,365
81	99	100	1	0,5	49	301	625	_	87	160	209	_	0	-8	-15	_	0,403
81	99	100	1	0,5	49	339	718	_	97	187	245	_	0	-8	-15	_	0,365
81	99	100	1	0,5	49	339	718	_	97	187	245	_	0	-8	-15	_	0,365
82	108	110	1	0,6	151	294	796	1 573	70	92	144	202	-7	-14	-31	-49	0,643
82	108	110	1	0,6	165	330	915	1 824	81	107	168	236	-7	-14	-31	-49	0,557
82	108	110	1	0,6	263	519	1 204	2 399	179	230	316	418	-6	-11	-21	-34	0,652
82	108	110	1	0,6	295	594	1 398	2 806	209	269	372	493	-6	-11	-21	-34	0,566
82	108	110	1	0,6	49	288	1 083	2 202	135	241	387	506	0	-5	-15	-25	0,650
82	108	110	1	0,6	49	240	525	_	55	96	131	_	0	-10	-20	_	0,679
82	108	110	1	0,6	49	240	525	_	55	96	131	_	0	-10	-20	_	0,679
82	108	110	1	0,6	49	269	600	_	61	112	153	_	0	-10	-20	_	0,638
82	108	110	1	0,6	49	269	600	_	61 91	112	153	_	0	-10	-20	_	0,638
82 82	108 108	110 110	1	0,6	49 49	506 506	1 034	_	91	203	265 265	_	0	-12 -12	-21 -21	_ _	0,679
82	108	110	1	0,6	49	579	1 199	_	103	238	311	_	0	-12	-21	_	0,679
82	108	110	1	0,6	49	579	1 199	_	103	238	311	_	0	-12	-21		0,638
82	108	110	1	0,6	49	240	525	_	55	96	131	_	0	-10	-20		0,806
82	108	110	1	0,6	49	269	600	_	61	112	153	_	0	-10	-20	_	0,764
82	108	110	1	0,6	49	269	600	_	61	112	153	_	0	-10	-20	_	0,764
82	108	110	1	0,6	49	506	1 034	_	91	203	265	_	0	-12	-21	_	0,806
82	108	110	1	0,6	49	579	1 199	_	103	238	311	_	0	-12	-21	_	0,764
82	108	110	1	0,6	49	579	1 199	_	103	238	311	_	0	-12	-21	_	0,764
84	121	124	1,5	0,8	270	530	1 224	2 445	81	108	157	220	-10	-21	-42	-68	1,19
84	121	124	1,5	0,8	293	593	1 398	2 825	93	124	182	257	-10	-21	-42	-68	0,983
84	121	124	1,5	0,8	422	819	1 961	3 911	199	253	353	467	-8	-15	-30	-49	1,18
84	121	124	1,5	0,8	469	932	2 270	4 565	231	296	415	550	-8	-15	-30	-49	0,973
84	121	124	1,5	0,8	98	1 123	2 780	4 170	159	367	512	598	0	-15	-30	-40	1,20

•	Tabel	le A			
		EL	L	М	Н
	15°	6,5	6,0	5,0	4,5
	25°		2	,0	•
	30°		1	,4	

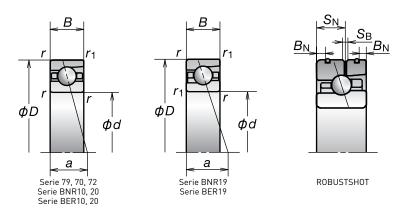
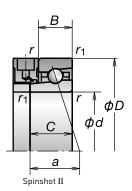
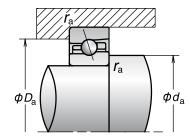

Vorspa Axial 1,4 Radiale Steifigkeit 1,54 2

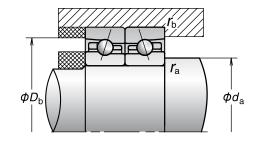
Tabelle ${f B}$ Für weitere Informationen:

	DBD	DBB	● Dynamisch äquivalente Lagerbelastung········S. 193	
pannungsfaktor	1,36	2	● Statisch äquivalente Lagerbelastung······· S. 200	
ıle Steifigkeit	1,48	2	Abmessungen der Zwischenringe und	
ala Staifiakait	15/	2	Position der Schmierdüse······ S. 239	

• Empfohlene Fettmengen ····· S. 259

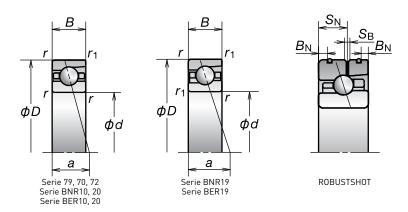

Bohrungsdurchmesser 80 mm




Lagerbe-			Н	aupta	bmes (mn	sung n)	en (²)				ahlen N)	Zulässige Axiallast (3)	Druck- winkel	Faktor	Last- angriffs- punkt		hzahlen (4) in ⁻¹)
zeichnung (¹)	d	D	В	С	B _N	S _N	S _B	r (min.)	r ₁ (min.)	C _r (dynamisch)	C _{or} (statisch)	(kN)	(Grad)	t _o	(mm) a	Fett	Öl
* 7916C	80	110	16	_	_	_	_	1	0,6	30,5	30,5	18,7	15	16,7	20,7	12 200	18 500
* 7916CSN24	80	110	16	_	_	_	_	1	0,6	29,0	29,4	22,2	15	16,7	20,7	15 800	24 000
* 7916A5	80	110	16	_	_	_	_	1	0,6	28,7	29,0	22,1	25	_	30,2	10 600	15 800
* 7916A5SN24	80	110	16	_	_	_	_	1	0,6	27,3	27,8	26,2	25	_	30,2	13 700	20 600
* 80BNR19S	80	110	16	_	_	_	_	1	0,6	22,0	19.9	28,9	18	11.0	23.4	14 800	21 100
* 80BNR19E	80	110	16	_	_	_	_	1	0,6	22,0	19,9	28,9	18	11,0	23,4	15 800	22 600
* 80BNR19H	80	110	16	_	3.1	9.3	1.4	1	0,6	22.0	19.1	18.9	18	11.0	23.4	19 000	29 500
* 80BNR19X	80	110	16	21	3,1	9,3	1,4	1	0,6	22,0	19,1	18,9	18	11.0	23,4	22 200	34 800
* 80BER19S	80	110	16	_	_	_	_	1	0,6	21,0	19,1	34,0	25	_	30,2	12 700	17 900
* 80BER19E	80	110	16	_	_	_	_	1	0,6	21,0	19,1	34,0	25	_	30,2	13 600	19 200
* 80BER19H	80	110	16	_	3.1	9,3	1.4	1	0,6	21,0	18,3	22,8	25	_	30.2	16 900	26 400
* 80BER19X	80	110	16	21	3.1	9,3	1.4	1	0.6	21,0	18.3	22,8	25	_	30.2	20 000	31 600
* 80BNR29EV1V	80	110	19	_	_	-	-,-	1	0,6	22,0	19,9	28,9	18	11.0	24,9	15 800	_
* 80BNR29HV1V	80	110	19	_	_	_	_	1	0,6	22,0	19,1	18,9	18	11,0	24,7	19 000	_
* 80BNR29XV1V	80	110	19	_	_		_	1	0,6	22,0	19.1	18,9	18	11.0	24,7	22 200	_
* 80BER29EV1V	80	110	19					1	0,6	21,0	19,1	34,0	25	-	31,7	13 600	
* 80BER29HV1V	80	110	19					1	0,6	21,0	18,3	22,8	25	_	31,7	16 900	_
* 80BER29XV1V	80	110	19					1	0,6	21,0	18,3	22,8	25		31,7	20 000	_
* 7016C	80	125	22					1.1	0,6	61,5	55,5	34,5	15	15.7	24,7	11 300	17 100
* 7016CSN24	80	125	22	_			_	1,1	0,6	58,5	52,5	40,9	15	15,7	24,7	14 700	22 300
	80	125	22		_	_			,				25	15,7		9 800	14 700
* 7016A5	80	125	22		_	_	_	1,1	0,6	58,5	52,5	41,0	25	_	34,9	12 700	19 100
* 7016A5SN24					_	_	_	1,1	0,6	55,5	50,0	48,3					
* 7016A	80	125	22		_	_	_	1,1	0,6	56,0	50,5	31,5	30	-	40,6	7 400	9 800
* 80BNR10S	80	125	22	_	_	_	_	1,1	0,6	26,5	24,5	35,5	18	10,9	27,5	13 700	19 600
* 80BNR10E	80	125	22	_	_	_	_	1,1	0,6	26,5	24,5	35,5	18	10,9	27,5	14 700	20 900
* 80BNR10H	80	125	22	_	4,7	12,2	2,2	1,1	0,6	26,5	23,5	23,4	18	10,9	27,5	17 600	27 400
* 80BNR10X	80	125	22	27	4,7	12,2	2,2	1,1	0,6	26,5	23,5	23,4	18	10,9	27,5	20 500	32 200
* 80BER10S	80	125	22	_	_	_	_	1,1	0,6	25,3	23,5	42,0	25	_	34,6	11 800	16 600
* 80BER10E	80	125	22	_		_	_	1,1	0,6	25,3	23,5	42,0	25	_	34,6	12 600	17 800
* 80BER10H	80	125	22	_	4,7	12,2	2,2	1,1	0,6	25,3	22,5	28,2	25	_	34,6	15 700	24 400
* 80BER10X	80	125	22	27	4,7	12,2	2,2	1,1	0,6	25,3	22,5	28,2	25		34,6	18 600	29 300
* 80BNR20EV1V	80	125	27	_	_	_	_	1,1	0,6	26,5	24,5	35,5	18	10,9	30,0	14 700	_
* 80BNR20HV1V	80	125	27	_	_	_	_	1,1	0,6	26,5	23,5	23,4	18	10,9	30,0	17 600	_
* 80BNR20XV1V	80	125	27	_	-	_	_	1,1	0,6	26,5	23,5	23,4	18	10,9	30,0	20 500	_
* 80BER20EV1V	80	125	27	_	_	_	_	1,1	0,6	25,3	23,5	42,0	25	_	37,1	12 600	_
* 80BER20HV1V	80	125	27	_	_	_	_	1,1	0,6	25,3	22,5	28,2	25	_	37,1	15 700	_
* 80BER20XV1V	80	125	27	_	_	_	_	1,1	0,6	25,3	22,5	28,2	25	_	37,1	18 600	
7216C	80	140	26	_	_	_	_	2	1	97,5	77,5	54,5	15	14,7	27,7	10 500	16 000
7216CSN24	80	140	26	_	_	_	_	2	1	92,5	73,5	64,5	15	14,7	27,7	13 700	20 800
7216A5	80	140	26	_	_	_	_	2	1	93,0	74,0	62,0	25	_	38,6	9 100	13 700
7216A5SN24	80	140	26	_	_	_	_	2	1	88,0	70,5	73,5	25	_	38,6	11 900	17 800
7216A	80	140	26	_	_	_	_	2	1	89,5	71,5	47,5	30	_	44,8	6 900	9 100

^[1] Mit einem Sternchen (*) gekennzeichnete Wälzlager sind als abgedichtete Wälzlager erhältlich. Die Serien 20 und 29 enthalten ausschließlich

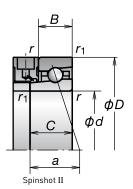
 ^(*) Mit einem Sternchen (*) gekennzeichnete Watztager sind als abgedichtete Watztager erhaltlich. Die Serien 20 und 29 enthalten ausschlieblich abgedichtete Wätztager.
 (2) Ein Wätztager mit Wert in der Spalte C ist als Spinshot II erhältlich; ein Wätztager mit Werten in den Spalten B_N, S_N und S_B ist als ROBUSTSHOT erhältlich.
 (3) Angaben zur zulässigen Axiallast siehe Seite 201.
 (4) Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218.

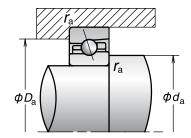

	Ansch	lußmaße	e (mm)		(And	Vorspa ordnung (N	DB und	IDF)		Axiale Sordnung (N/			Ge	messer (µ	ne Axial m)	luft	Gewicht (kg)
d _a (min.)	D _a (max.)	D _b (max.)	r _a (max.)	r _b (max.)	EL	L	М	Н	EL	L	М	Н	EL	L	М	Н	(ca.)
86	104	105	1	0,5	104	195	503	986	63	81	125	173	-4	-9	-21	-34	0,377
86	104	105	1	0,5	111	215	573	1 136	72	94	145	202	-4	-9	-21	-34	0,337
86	104	105	1	0,5	182	366	792	1 603	160	207	278	370	-4	-8	-15	-25	0,381
86	104	105	1	0,5	201	415	913	1 867	186	242	326	436	-4	-8	-15	-25	0,341
86	104	105	1	0,5	49	190	478	_	53	86	123	_	0	-8	-19	_	0,366
86	104	105	1	0,5	49	190	478	_	53	86	123	_	0	-8	-19	_	0,366
86	104	105	1	0,5	49	210	545	_	60	99	143	_	0	-8	-19	_	0,326
86	104	105	1	0,5	49	210	545	_	60	99	143	_	0	-8	-19	_	0,326
86	104	105	1	0,5	49	309	646	_	89	166	217	_	0	-8	-15	_	0,366
86	104	105	1	0,5	49	309	646	_	89	166	217	_	0	-8	-15	_	0,366
86	104	105	1	0,5	49	349	743	_	100	194	254	_	0	-8	-15	_	0,326
86	104	105	1	0,5	49	349	743	_	100	194	254	_	0	-8	-15	_	0,326
86	104	105	1	0,5	49	190	478	_	53	86	123	_	0	-8	-19	_	0,425
86	104	105	1	0,5	49	210	545	_	60	99	143	_	0	-8	-19	_	0,385
86	104	105	1	0,5	49	210	545	_	60	99	143	_	0	-8	-19	_	0,385
86	104	105	1	0,5	49	309	646	_	89	166	217	_	0	-8	-15	_	0,425
86	104	105	1	0,5	49	349	743	_	100	194	254	_	0	-8	-15	_	0,385
86	104	105	1	0,5	49	349	743	_	100	194	254	_	0	-8	-15	_	0,385
87	118	120	1	0,6	202	382	921	1 880	78	102	151	215	-6	-14	-31	-52	0,855
87	118	120	1	0,6	215	422	1 045	2 162	89	118	176	251	-6	-14	-31	-52	0,736
87	118	120	1	0,6	345	624	1 513	2 903	198	246	345	448	-6	-11	-23	-37	0,880
87	118	120	1	0,6	381	704	1 744	3 377	229	286	404	528	-6	-11	-23	-37	0,761
87	118	120	1	0,6	98	752	1 762	3 060	170	340	464	573	0	-10	-20	-30	0,864
87	118	120	1	0,6	98	327	611	_	72	111	141	_	0	-10	-19	_	0,921
87	118	120	1	0,6	98	327	611	_	72	111	141	_	0	-10	-19	_	0,921
87	118	120	1	0,6	98	359	688	_	80	127	164	_	0	-10	-19	_	0,867
87	118	120	1	0,6	98	359	688	_	80	127	164	_	0	-10	-19	_	0,867
87	118	120	1	0,6	98	623	1 272	_	118	225	292	_	0	-12	-22	_	0,921
87	118	120	1	0,6	98	623	1 272	_	118	225	292	_	0	-12	-22	_	0,921
87	118	120	1	0,6	98	704	1 461	_	133	262	343	_	0	-12	-22	_	0,867
87	118	120	1	0,6	98	704	1 461	_	133	262	343	_	0	-12	-22	_	0,867
87	118	120	1	0,6	98	327	611	_	72	111	141	_	0	-10	-19	_	1,12
87	118	120	1	0,6	98	359	688	_	80	127	164	_	0	-10	-19	_	1,06
87	118	120	1	0,6	98	359	688	_	80	127	164	_	0	-10	-19	_	1,06
87	118	120	1	0,6	98	623	1 272	_	118	225	292	_	0	-12	-22	_	1,12
87	118	120	1	0,6	98	704	1 461	_	133	262	343	_	0	-12	-22	_	1,06
87	118	120	1	0,6	98	704	1 461	0.750	133	262	343	- 00/	0	-12	-22		1,06
90	130	134	2	1	305	595	1 367	2 752	83	110	159	224	-12	-24	-47	-76	1,43
90	130	134	2	1	333	667	1 566	3 185	96	127	186	262	-12	-24	-47	-76	1,18
90	130	134	2	1	463	925	2 161	4 345	201	259	357	473	-9	-17	-33	-54	1,42
90	130	134	2	1	517	1 056	2 507	5 078	234	303	420	558	-9	-17	-33	-54	1,17
90	130	134	2	1	98	1 095	2 696	4 035	156	356	494	576	0	-15	-30	-40	1,45

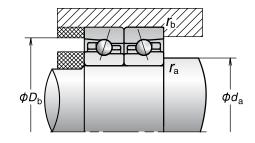
Tabel	le 🗛			
	EL	L	М	Н
15°	6,5	6,0	5,0	4,5
25°		2	,0	
ЗΠ∘		1	/1	

4				Tabelle B		
L	L	М	Н		DBD	DBB
,5	6,0	5,0	4,5	Vorspannungsfaktor	1,36	2
	2	,0		Axiale Steifigkeit	1,48	2
	2,0		Radiale Steifigkeit	1,54	2	

- ◆ Dynamisch äquivalente Lagerbelastung······· S. 193
 ◆ Statisch äquivalente Lagerbelastung····· S. 200
- Abmessungen der Zwischenringe und Position der Schmierdüse- S. 239 • Empfohlene Fettmengen ····· S. 259


Bohrungsdurchmesser 85 mm




Lagerbe-			Ha	aupta	bmes (mn	sung n)	en (²)				ahlen N)	Zulässige Axiallast (3)	Druck- winkel	Faktor	Last- angriffs- punkt		hzahlen (4) in ⁻¹)
zeichnung (¹)	d	D	В	С	B _N	S _N	S _B	r (min.)	r ₁ (min.)	C _r (dynamisch)	C _{or} (statisch)	(kN)	(Grad)	t _o	(mm) a	Fett	Öl
* 7917C	85	120	18	_	_	_	_	1,1	0,6	41,0	40,5	25,9	15	16,5	22,7	11 300	17 100
* 7917CSN24	85	120	18	_	_	_	_	1,1	0,6	38,5	38,5	30,7	15	16,5	22,7	14 700	22 300
* 7917A5	85	120	18	_	_	_	_	1,1	0,6	38,5	38,5	30,0	25	_	32,9	9 800	14 700
* 7917A5SN24	85	120	18	_	_	_	_	1,1	0,6	36,5	36,5	35,6	25	_	32,9	12 700	19 100
* 85BNR19S	85	120	18	_	_	_	_	1,1	0,6	29,4	26,3	38,0	18	10,8	25,7	13 700	19 600
* 85BNR19E	85	120	18	_	_	_	_	1,1	0,6	29,4	26,3	38,0	18	10,8	25.7	14 700	20 900
* 85BNR19H	85	120	18	_	4.0	10,4	2,2	1,1	0,6	29,4	25,1	24,8	18	10,8	25.7	17 600	27 400
* 85BNR19X	85	120	18	23	4,0	10,4	2,2	1,1	0,6	29,4	25,1	24,8	18	10.8	25.7	20 500	32 200
* 85BER19S	85	120	18	_	_	_	_	1,1	0,6	28,1	25,2	35,5	25	_	32,9	11 800	16 600
* 85BER19E	85	120	18	_	_	_	_	1.1	0,6	28,1	25,2	35,5	25	_	32,9	12 600	17 800
* 85BER19H	85	120	18	_	4.0	10.4	2.2	1.1	0,6	28,1	24,1	30.0	25	_	32.9	15 700	24 400
* 85BER19X	85	120	18	23	4.0	10.4	2,2	1.1	0.6	28,1	24.1	30.0	25	_	32,9	18 600	29 300
* 85BNR29EV1V	85	120	22	_	-,0	-		1,1	0,6	29,4	26,3	38,0	18	10.8	27,7	14 700	_
* 85BNR29HV1V	85	120	22	_	_	_	_	1,1	0,6	29,4	25,1	24,8	18	10,8	27,7	17 600	_
* 85BNR29XV1V	85	120	22	_	_		_	1.1	0,6	29.4	25.1	24,8	18	10,8	27,7	20 500	_
* 85BER29EV1V	85	120	22		_		_	1,1	0,6	28,1	25,1	35,5	25	-	34,9	12 600	_
* 85BER29HV1V	85	120	22					1.1	0,6	28,1	24,1	30,0	25	_	34,7	15 700	_
* 85BER29XV1V	85	120	22					1,1	0,6	28,1	24,1	30,0	25		34,7	18 600	_
* 7017C	85	130	22					1,1	0,6	63,0	58,5	38,0	15	15.9	25,4	10 700	16 300
* 7017CSN24	85	130	22	_	_			1,1	0,6	60,0	55,5	45,0	15	15,7	25,4	14 000	21 300
* 7017A5		130	22		_	_	_						25	.,		9 400	14 000
	85				_	_	_	1,1	0,6	60,0	55,5	43,0		_	36,1		
* 7017A5SN24	85	130	22		_	_	_	1,1	0,6	56,5	53,0	50,9	25		36,1	12 100	18 200
* 7017A	85	130	22	_	_	_	_	1,1	0,6	57,5	53,5	33,0	30	_	42,0	7 000	9 400
* 85BNR10S	85	130	22	_	_	_	_	1,1	0,6	26,8	25,7	37,5	18	11,0	28,5	13 100	18 700
* 85BNR10E	85	130	22	_	-	-	_	1,1	0,6	26,8	25,7	37,5	18	11,0	28,5	14 000	20 000
* 85BNR10H	85	130	22	-	4,7	12,2	2,2	1,1	0,6	26,8	24,6	24,5	18	11,0	28,5	16 800	26 100
* 85BNR10X	85	130	22	27	4,7	12,2	2,2	1,1	0,6	26,8	24,6	24,5	18	11,0	28,5	19 600	30 700
* 85BER10S	85	130	22	_	_	_	_	1,1	0,6	25,6	24,6	43,5	25	_	36,1	11 200	15 900
* 85BER10E	85	130	22	_	_	_	_	1,1	0,6	25,6	24,6	43,5	25	_	36,1	12 000	17 000
* 85BER10H	85	130	22	-	4,7	12,2	2,2	1,1	0,6	25,6	23,6	29,5	25	_	36,1	14 900	23 300
* 85BER10X	85	130	22	27	4,7	12,2	2,2	1,1	0,6	25,6	23,6	29,5	25		36,1	17 700	28 000
* 85BNR20EV1V	85	130	27	_	_	_	_	1,1	0,6	26,8	25,7	37,5	18	11,0	31,0	14 000	_
* 85BNR20HV1V	85	130	27	_	_	_	_	1,1	0,6	26,8	24,6	24,5	18	11,0	31,0	16 800	_
* 85BNR20XV1V	85	130	27	_	_	_	_	1,1	0,6	26,8	24,6	24,5	18	11,0	31,0	19 600	_
* 85BER20EV1V	85	130	27	_	_	_	_	1,1	0,6	25,6	24,6	43,5	25	_	38,6	12 000	_
* 85BER20HV1V	85	130	27	_	_	_	_	1,1	0,6	25,6	23,6	29,5	25	_	38,6	14 900	_
* 85BER20XV1V	85	130	27	_	_		_	1,1	0,6	25,6	23,6	29,5	25	_	38,6	17 700	_
7217C	85	150	28	_	_	_	_	2	1	113	90,5	60,5	15	14,7	29,7	9 800	14 900
7217CSN24	85	150	28	_	_	_	_	2	1	108	87,0	71,9	15	14,7	29,7	12 800	19 500
7217A5	85	150	28	_	_	_	_	2	1	107	86,5	70,0	25	_	41,4	8 600	12 800
7217A5SN24	85	150	28	_	_	_	_	2	1	102	83,0	83,1	25	_	41,4	11 100	16 600
7217A	85	150	28	_	_	_	_	2	1	104	83,5	53,5	30	_	47,9	6 400	8 600

^[1] Mit einem Sternchen (*) gekennzeichnete Wälzlager sind als abgedichtete Wälzlager erhältlich. Die Serien 20 und 29 enthalten ausschließlich

 ^(*) Mit einem Sternchen (*) gekennzeichnete Watztager sind als abgedichtete Watztager erhaltlich. Die Serien 20 und 29 enthalten ausschlieblich abgedichtete Wätztager.
 (2) Ein Wätztager mit Wert in der Spalte C ist als Spinshot II erhältlich; ein Wätztager mit Werten in den Spalten B_N, S_N und S_B ist als ROBUSTSHOT erhältlich.
 (3) Angaben zur zulässigen Axiallast siehe Seite 201.
 (4) Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218.

	Anschl	lußmaße	e (mm)		(And	Vorspa ordnung (1)		IDF)		Axiale Sordnung (N/			Ge	messer (µ	ie Axial m)	luft	Gewicht (kg)
d _a (min.)	D _a (max.)	D _b (max.)	r _a (max.)	r _b (max.)	EL	L	М	Н	EL	L	М	Н	EL	L	М	Н	(ca.)
92	113	115	1	0,6	138	307	629	1 281	71	98	135	191	-6	-14	-25	-41	0,534
92	113	115	1	0,6	150	345	719	1 481	81	114	158	224	-6	-14	-25	-41	0,470
92	113	115	1	0,6	227	427	950	1 909	176	222	300	396	-5	-9	-17	-28	0,541
92	113	115	1	0,6	253	486	1 099	2 228	205	259	352	467	-5	-9	-17	-28	0,477
92	113	115	1	0,6	49	193	652	_	55	88	140	_	0	-8	-24	_	0,527
92	113	115	1	0,6	49	193	652	_	55	88	140	_	0	-8	-24	_	0,527
92	113	115	1	0,6	49	214	749	_	61	102	164	_	0	-8	-24	_	0,456
92	113	115	1	0,6	49	214	749	_	61	102	164	_	0	-8	-24	_	0,456
92	113	115	1	0,6	49	317	898	_	91	171	248	_	0	-8	-19	_	0,527
92	113	115	1	0,6	49	317	898	_	91	171	248	_	0	-8	-19	_	0,527
92	113	115	1	0,6	49	358	1 039	_	102	199	292	_	0	-8	-19	_	0,456
92	113	115	1	0,6	49	358	1 039	_	102	199	292	_	0	-8	-19	_	0,456
92	113	115	1	0,6	49	193	652	_	55	88	140	_	0	-8	-24	_	0,617
92	113	115	1	0,6	49	214	749	_	61	102	164	_	0	-8	-24	_	0,554
92	113	115	1	0,6	49	214	749	_	61	102	164	_	0	-8	-24	_	0,554
92	113	115	1	0,6	49	317	898	_	91	171	248	_	0	-8	-19	_	0,617
92	113	115	1	0,6	49	358	1 039	_	102	199	292	_	0	-8	-19	_	0,554
92	113	115	1	0,6	49	358	1 039	_	102	199	292	_	0	-8	-19	_	0,554
92	123	125	1	0,6	205	393	995	1 956	81	106	161	224	-6	-14	-32	-52	0,898
92	123	125	1	0,6	219	434	1 130	2 252	93	122	187	262	-6	-14	-32	-52	0,773
92	123	125	1	0,6	305	646	1 487	2 915	196	257	353	462	-5	-11	-22	-36	0,904
92	123	125	1	0,6	334	729	1 713	3 390	226	299	413	544	-5	-11	-22	-36	0,779
92	123	125	1	0,6	98	780	1 837	3 196	176	355	486	600	0	-10	-20	-30	0,907
92	123	125	1	0,6	98	334	627	_	73	114	146	_	0	-10	-19	_	0,962
92	123	125	1	0,6	98	334	627	_	73	114	146	_	0	-10	-19	_	0,962
92	123	125	1	0,6	98	367	707	_	82	132	170	_	0	-10	-19	_	0,906
92	123	125	1	0,6	98	367	707	_	82	132	170	_	0	-10	-19	_	0,906
92	123	125	1	0,6	98	640	1 311	_	122	232	303	_	0	-12	-22	_	0,962
92	123	125	1	0,6	98	640	1 311	_	122	232	303	_	0	-12	-22	_	0,962
92	123	125	1	0,6	98	723	1 508	_	136	271	355	_	0	-12	-22	_	0,906
92	123	125	1	0,6	98	723	1 508	_	136	271	355	_	0	-12	-22	_	0,906
92	123	125	1	0,6	98	334	627	_	73	114	146	_	0	-10	-19	_	1,16
92	123	125	1	0,6	98	367	707	_	82	132	170	_	0	-10	-19	_	1,11
92	123	125	1	0,6	98	367	707	_	82	132	170	_	0	-10	-19	_	1,11
92	123	125	1	0,6	98	640	1 311	_	122	232	303	_	0	-12	-22	_	1,16
92	123	125	1	0,6	98	723	1 508	_	136	271	355	_	0	-12	-22	_	1,11
92	123	125	1	0,6	98	723	1 508	_	136	271	355	_	0	-12	-22	_	1,11
95	140	144	2	1	355	697	1 658	3 358	90	119	176	250	-14	-27	-53	-85	1,79
95	140	144	2	1	391	786	1 907	3 898	104	139	206	290	-14	-27	-53	-85	1,47
95	140	144	2	1	530	1 095	2 431	4 882	217	283	383	507	-10	-19	-35	-57	1,79
95	140	144	2	1	595	1 255	2 823	5 711	253	331	450	598	-10	-19	-35	-57	1,47
95	140	144	2	1	98	1 135	3 473	5 794	161	370	558	679	0	-15	-35	-50	1,80

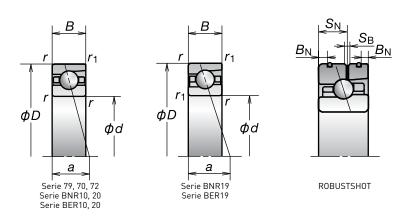
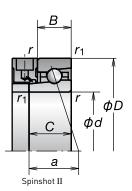
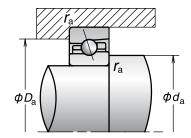

Tabelle $oldsymbol{\mathsf{A}}$ Н М EL 15° 6,0 5,0 4,5 6,5 25° 2,0 30°

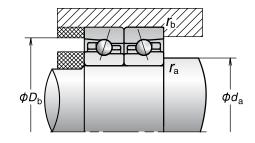
Tabelle **B**

DBD DBB Vorspannungsfaktor 1,36 Axiale Steifigkeit 1,48 2 Radiale Steifigkeit 1,54

- ◆ Dynamisch äquivalente Lagerbelastung······· S. 193
 ◆ Statisch äquivalente Lagerbelastung····· S. 200
- Abmessungen der Zwischenringe und Position der Schmierdüse- S. 239
- Empfohlene Fettmengen ····· S. 259

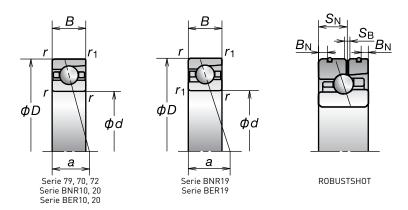

Bohrungsdurchmesser 90 mm




Lagerbe- zeichnung (¹)			Ha	aupta	bmes (mn	sunge n)	en (²)				ahlen N)	Zulässige Axiallast (³)	Druck- winkel	Faktor	Last- angriffs- punkt		nzahlen (4) n-1)
zeichnung (')	d	D	В	С	B _N	S _N	S _B	r (min.)	r ₁ (min.)	C _r (dynamisch)	C _{or} (statisch)	(kN)	(Grad)	f _o	(mm) a	Fett	Öl
* 7918C	90	125	18	_	_	_	_	1,1	0,6	44,0	46,0	29,1	15	16,6	23,4	10 700	16 300
* 7918CSN24	90	125	18	_	_	_	_	1,1	0,6	41,5	43,5	34,6	15	16,6	23,4	14 000	21 300
* 7918A5	90	125	18	_	_	_	_	1,1	0,6	41,0	43,5	33,5	25	_	34,1	9 400	14 000
* 7918A5SN24	90	125	18	_	_	_	_	1,1	0,6	39,0	41,0	40,0	25	_	34,1	12 100	18 200
* 90BNR19S	90	125	18	_	_	_	_	1,1	0,6	31,5	29,7	43,0	18	10,9	26,5	13 100	18 700
* 90BNR19E	90	125	18	_	_	_	_	1,1	0,6	31,5	29,7	43,0	18	10,9	26,5	14 000	20 000
* 90BNR19H	90	125	18	_	4.0	10,4	2,2	1,1	0,6	31,5	28,5	28,1	18	10,9	26,5	16 800	26 100
* 90BNR19X	90	125	18	23	4,0	10,4	2,2	1.1	0.6	31,5	28,5	28,1	18	10.9	26,5	19 600	30 700
* 90BER19S	90	125	18	_	_	_	_	1.1	0.6	30.0	28,5	50.5	25	_	34.1	11 200	15 900
* 90BER19E	90	125	18	_	_	_	_	1,1	0,6	30.0	28.5	50,5	25	_	34,1	12 000	17 000
* 90BER19H	90	125	18	_	4.0	10.4	2,2	1,1	0,6	30,0	27,3	34,0	25	_	34,1	14 900	23 300
* 90BER19X	90	125	18	23	4,0	10.4	2,2	1,1	0,6	30.0	27,3	34,0	25	_	34,1	17 700	28 000
* 90BNR29EV1V	90	125	22	_	-,0	-		1.1	0,6	31,5	29.7	43,0	18	10.9	28,5	14 000	_
* 90BNR29HV1V	90	125	22	_	_	_	_	1,1	0,6	31,5	28.5	28.1	18	10,7	28.5	16 800	_
* 90BNR29XV1V	90	125	22	_	_	_	_	1,1	0,6	31,5	28,5	28,1	18	10,7	28,5	19 600	_
* 90BER29EV1V	90	125	22					1.1	0,6	30.0	28,5	50.5	25	-	36.1	12 000	
* 90BER29HV1V	90	125	22					1,1	0,6	30,0	27,3	34,0	25		36,1	14 900	
* 90BER29XV1V	90	125	22				_	1,1	0,6	30,0	27,3	34,0	25	_	36,1	17 700	_
* 7018C	90	140	24				_	1,1	1	75,5	69.0	44,5	15	15.7	27.4	10 000	15 300
* 7018CSN24	90	140	24	_			_	1,5	1	73,3	66.5	53,2	15	15,7	27,4	13 100	19 900
			24		_			1,5		72,0			25	.,		8 700	13 100
* 7018A5	90	140	24	_	_	_	_	, , ,	1		65,5	52,0	25	_	38,8		
* 7018A5SN24		140			_	_		1,5		68,0	63,0	62,1			38,8	11 400	17 000
* 7018A	90	140	24	_	_	_	_	1,5	1	68,5	63,5	40,5	30	_	45,2	6 600	8 700
* 90BNR10S	90	140	24	_	_	_	_	1,5	1	35,0	33,0	48,0	18	10,9	30,7	12 200	17 400
* 90BNR10E	90	140	24	_	_	_	_	1,5	1	35,0	33,0	48,0	18	10,9	30,7	13 100	18 700
* 90BNR10H	90	140	24	_	5,5	14,5	2,2	1,5	1	35,0	31,5	31,5	18	10,9	30,7	15 700	24 400
* 90BNR10X	90	140	24	29	5,5	14,5	2,2	1,5	1	35,0	31,5	31,5	18	10,9	30,7	18 300	28 700
* 90BER10S	90	140	24	_	_	_	_	1,5	1	33,5	31,5	56,0	25	_	38,8	10 500	14 800
* 90BER10E	90	140	24	_	_	_	_	1,5	1	33,5	31,5	56,0	25	_	38,8	11 300	15 900
* 90BER10H	90	140	24	_	5,5	14,5	2,2	1,5	1	33,5	30,5	38,0	25	_	38,8	14 000	21 800
* 90BER10X	90	140	24	29	5,5	14,5	2,2	1,5	1	33,5	30,5	38,0	25	_	38,8	16 600	26 100
* 90BNR20EV1V	90	140	30	_	_	_	_	1,5	1	35,0	33,0	48,0	18	10,9	33,7	13 100	_
* 90BNR20HV1V	90	140	30	_	_	_	_	1,5	1	35,0	31,5	31,5	18	10,9	33,7	15 700	_
* 90BNR20XV1V	90	140	30	_	_	_	_	1,5	1	35,0	31,5	31,5	18	10,9	33,7	18 300	_
* 90BER20EV1V	90	140	30	_	_	_	_	1,5	1	33,5	31,5	56,0	25	_	41,8	11 300	_
* 90BER20HV1V	90	140	30	_	_	_	_	1,5	1	33,5	30,5	38,0	25	_	41,8	14 000	_
* 90BER20XV1V	90	140	30	_	_	_	_	1,5	1	33,5	30,5	38,0	25	_	41,8	16 600	_
7218C	90	160	30	_	_	_	_	2	1	129	105	72,0	15	14,6	31,7	9 200	14 000
7218CSN24	90	160	30	_	_	_	_	2	1	122	100	85,5	15	14,6	31,7	12 000	18 300
7218A5	90	160	30	_	_	_	_	2	1	123	100	83,5	25	_	44,1	8 000	12 000
7218A5SN24	90	160	30	_	_	_	_	2	1	117	95,5	99,2	25	_	44,1	10 400	15 600
7218A	90	160	30	_	_	_	_	2	1	118	96.5	64,5	30	_	51,1	6 000	8 000

^[1] Mit einem Sternchen (*) gekennzeichnete Wälzlager sind als abgedichtete Wälzlager erhältlich. Die Serien 20 und 29 enthalten ausschließlich

 ^(*) Mit einem Sternchen (*) gekennzeichnete Watztager sind als abgedichtete Watztager erhaltlich. Die Serien 20 und 29 enthalten ausschlieblich abgedichtete Wätztager.
 (2) Ein Wätztager mit Wert in der Spalte C ist als Spinshot II erhältlich; ein Wätztager mit Werten in den Spalten B_N, S_N und S_B ist als ROBUSTSHOT erhältlich.
 (3) Angaben zur zulässigen Axiallast siehe Seite 201.
 (4) Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218.

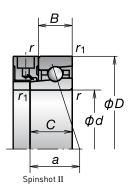

	Anschl	lußmaße	e (mm)		(And	Vorspa ordnung (N	DB und	DF)		Axiale Stordnung (N/	-		Ge	messer (µ	ne Axial m)	luft	Gewicht (kg)
d _a (min.)	D _a (max.)	D_b (max.)	r _a (max.)	r _b (max.)	EL	L	М	Н	EL	L	М	Н	EL	L	М	Н	(ca.)
97	118	120	1	0,6	153	289	740	1 488	79	102	156	219	-3	-9	-23	-39	0,568
97	118	120	1	0,6	159	314	834	1 703	89	117	180	255	-3	-9	-23	-39	0,496
97	118	120	1	0,6	272	500	1 096	2 184	203	253	341	449	-4	-8	-16	-27	0,560
97	118	120	1	0,6	296	560	1 255	2 531	233	294	399	528	-4	-8	-16	-27	0,488
97	118	120	1	0,6	98	282	711	_	75	109	156	_	0	-8	-21	_	0,552
97	118	120	1	0,6	98	282	711	_	75	109	156	_	0	-8	-21	_	0,552
97	118	120	1	0,6	98	308	804	_	84	125	181	_	0	-8	-21	_	0,480
97	118	120	1	0,6	98	308	804	_	84	125	181	_	0	-8	-21	_	0,480
97	118	120	1	0,6	98	432	977	_	124	206	276	_	0	-8	-17	_	0,552
97	118	120	1	0,6	98	432	977	_	124	206	276	_	0	-8	-17	_	0,552
97	118	120	1	0,6	98	482	1 117	_	139	239	323	_	0	-8	-17	_	0,480
97	118	120	1	0,6	98	482	1 117		139	239	323		0	-8	-17		0,480
97	118	120	1	0,6	98	282	711	_	75	109	156	_	0	-8	-21	_	0,653
97	118	120	1	0,6	98	308	804	_	84	125	181	_	0	-8	-21	_	0,582
97	118	120	1	0,6	98	308	804	_	84	125	181	_	0	-8	-21	_	0,582
97	118	120	1	0,6	98	432	977	_	124	206	276	_	0	-8	-17	_	0,653
97	118	120	1	0,6	98	482	1 117	_	139	239	323	_	0	-8	-17	_	0,582
97	118	120	1	0,6	98	482	1 117		139	239	323	_	0	-8	-17	_	0,582
99	131	134	1,5	0,8	247	502	1 187	2 373	87	117	172	241	-8	-18	-37	-60	1,16
99	131	134	1,5	0,8	266	560	1 355	2 741	99	135	200	282	-8	-18	-37	-60	0,994
99	131	134	1,5	0,8	409	779	1 758	3 498	218	275	374	494	-7	-13	-25	-41	1,17
99	131	134	1,5	0,8	454	886	2 031	4 079	252	321	440	582	-7	-13	-25	-41	1,00
99	131	134	1,5	0,8	98	782	2 483	3 977	176	356	543	650	0	-10	-25	-35	1,18
99	131	134	1,5	0,8	98	338	830	_	75	116	164	_	0	-10	-24	_	1,24
99	131	134	1,5	0,8	98	338	830	_	75	116	164	_	0	-10	-24	_	1,24
99	131	134	1,5	0,8	98	372	943	_	83	134	191	_	0	-10	-24	_	1,16
99	131	134	1,5	0,8	98	372	943	_	83	134	191	_	0	-10	-24	_	1,16
99	131	134	1,5	0,8	98	653	1 339	_	124	238	309	_	0	-12	-22	_	1,24
99	131	134	1,5	0,8	98	653	1 339	_	124	238	309	_	0	-12	-22	_	1,24
99	131	134	1,5	0,8	98	739	1 541	_	139	277	362	_	0	-12	-22	_	1,16
99	131	134	1,5	0,8	98	739	1 541		139	277	362	_	0	-12	-22	_	1,16
99	131	134	1,5	0,8	98	338	830	_	75	116	164	_	0	-10	-24	_	1,52
99	131	134	1,5	0,8	98	372	943	_	83	134	191	_	0	-10	-24	_	1,44
99	131	134	1,5	0,8	98	372	943	-	83	134	191	_	0	-10	-24	_	1,44
99	131	134	1,5	0,8	98	653	1 339	_	124	238	309	_	0	-12	-22	_	1,52
99	131	134	1,5	0,8	98	739	1 541	_	139	277	362	_	0	-12	-22	_	1,44
99	131	134	1,5	0,8	98	739	1 541	0.710	139	277	362	-	0	-12	-22	_	1,44
100	150	154	2	1	384	771	1 865	3 713	95	126	187	262	-15	-29	-57	-90	2,20
100	150	154	2	1	425	872	2 150	4 316	109	146	219	308	-15	-29	-57	-90	1,80
100	150	154	2	1	658	1 272	2 899	5 945	240	304	416	556	-12	-21	-39	-64	2,31
100	150	154	2	1	744	1 462	3 375	6 965	279	357	490	657	-12	-21	-39	-64	1,91
100	150	154	2	1	98	1 676	4 314	5 954	165	434	616	697	0	-20	-40	-50	2,23

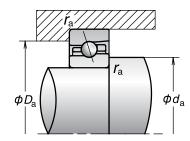
Tabel	le A											
	EL	L	М	Н								
15°	6,5	6,0	5,0	4,5								
25°	2,0											
200		1	7.									

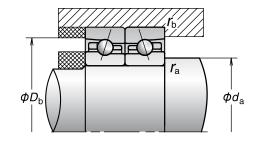
١				Tabelle B	
_	L	М	Н	DBD	DBB
5	6,0	5,0	4,5	Vorspannungsfaktor 1,36	2
	2	,0		Axiale Steifigkeit 1,48	2
	1	,4		Radiale Steifigkeit 1,54	2

- Dynamisch äquivalente Lagerbelastung------- S. 193
 Statisch äquivalente Lagerbelastung------ S. 200
- Abmessungen der Zwischenringe und
- Position der Schmierdüse- S. 239 • Empfohlene Fettmengen ····· S. 259

Bohrungsdurchmesser 95 mm


Lagerbe- zeichnung (¹)			На	aupta	bmes (mn	sunge n)	en (²)			Tragz (k	ahlen N)	Zulässige Axiallast (³)	Druck- winkel	Faktor	punkt		hzahlen (4) in-1)
zeiciniung ()	d	D	В	С	B _N	S _N	S _B	r (min.)	r ₁ (min.)	$\mathbf{C_r}$ (dynamisch)	C _{or} (statisch)	(kN)	(Grad)	10	(mm) a	Fett	Öl
* 7919C	95	130	18	_	_	_	_	1,1	0,6	44,5	48,0	30,0	15	16,7	24,1	10 300	15 600
* 7919CSN24	95	130	18	_	_	_	_	1,1	0,6	42,0	45,5	35,8	15	16,7	24,1	13 400	20 300
* 7919A5	95	130	18	_	_	_	_	1,1	0,6	42,0	45,5	35,0	25	_	35,2	8 900	13 400
* 7919A5SN24	95	130	18	_	_	_	_	1,1	0,6	39,5	43,0	41,5	25	_	35,2	11 600	17 400
95BNR19S	95	130	18	_	_	_	_	1,1	0,6	32,0	31,0	50,0	18	10,9	27,3	12 500	17 800
95BNR19E	95	130	18	_	_	_	_	1,1	0,6	32,0	31,0	50,0	18	10,9	27,3	13 400	19 100
95BNR19H	95	130	18	_	4,0	10,4	2,2	1,1	0,6	32,0	29,7	32,5	18	10,9	27,3	16 000	24 900
95BNR19X	95	130	18	23	4,0	10,4	2,2	1,1	0,6	32,0	29,7	32,5	18	10,9	27,3	18 700	29 400
95BER19S	95	130	18	_	_	_	_	1,1	0,6	30,5	29,7	58,5	25	_	35,2	10 700	15 200
95BER19E	95	130	18	_	_	_	_	1,1	0,6	30,5	29,7	58,5	25	_	35,2	11 500	16 200
95BER19H	95	130	18	_	4,0	10,4	2,2	1,1	0,6	30,5	28,5	39,5	25	_	35,2	14 300	22 300
95BER19X	95	130	18	23	4,0	10,4	2,2	1,1	0,6	30,5	28,5	39,5	25	_	35,2	16 900	26 700
7019C	95	145	24	_	_	_	_	1,5	1	77,0	73,0	47,0	15	15,9	28,1	9 600	14 600
7019CSN24	95	145	24	_	_	_	_	1,5	1	73,5	70,5	55,8	15	15,9	28,1	12 500	19 000
7019A5	95	145	24	_	_	_	_	1,5	1	73,0	69,5	52,5	25	_	40,0	8 400	12 500
7019A5SN24	95	145	24	_	_	_	_	1,5	1	69,5	66,5	62,7	25	_	40,0	10 900	16 300
7019A	95	145	24	_	_	_	_	1,5	1	70,0	67,0	40,5	30	_	46,6	6 300	8 400
95BNR10S	95	145	24	_	_	_	_	1,5	1	35,5	34,5	50,0	18	10,8	31,3	11 700	16 700
95BNR10E	95	145	24	_	_	_	_	1,5	1	35,5	34,5	50,0	18	10,8	31,3	12 500	17 900
95BNR10H	95	145	24	_	5,5	14,5	2,2	1,5	1	35,5	33,0	32,5	18	10,8	31,3	15 000	23 400
95BNR10X	95	145	24	29	5,5	14,5	2,2	1,5	1	35,5	33,0	32,5	18	10,8	31,3	17 500	27 500
95BER10S	95	145	24	_	_	_	_	1,5	1	34,0	33,0	58,5	25	_	39,7	10 000	14 200
95BER10E	95	145	24	_	_	_	_	1,5	1	34,0	33,0	58,5	25	_	39,7	10 800	15 200
95BER10H	95	145	24	_	5,5	14,5	2,2	1,5	1	34,0	31,5	39,5	25	_	39,7	13 400	20 900
95BER10X	95	145	24	29	5,5	14,5	2,2	1,5	1	34,0	31,5	39,5	25	_	39,7	15 900	25 000
7219C	95	170	32	_	_	_	_	2,1	1,1	139	112	76,0	15	14,6	33,7	8 700	13 300
7219CSN24	95	170	32	_	_	_	_	2,1	1,1	133	107	90,0	15	14,6	33,7	11 400	17 300
7219A5	95	170	32	_	_	_	_	2,1	1,1	133	107	87,0	25	_	46,9	7 600	11 400
7219A5SN24	95	170	32	_	_	_	_	2,1	1,1	127	103	103	25	_	46,9	9 900	14 800
7219A	95	170	32	_	-	_	_	2,1	1,1	128	103	67,0	30	_	54,2	5 700	7 600


⁽¹⁾ Mit einem Sternchen (*) gekennzeichnete Wälzlager sind als abgedichtete Wälzlager erhältlich. Die Serien 20 und 29 enthalten ausschließlich abgedichtete Wälzlager.
(2) Ein Wälzlager mit Wert in der Spalte C ist als Spinshot II erhältlich; ein Wälzlager mit Werten in den Spalten B_N, S_N und S_B ist als ROBUSTSHOT


erhältlich.

⁽³⁾ Angaben zur zulässigen Axiallast siehe Seite 201.

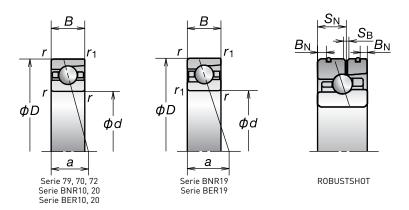
^[4] Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218.

	Ansch	lußmaß	e (mm)		(And	rdnung	innung DB und	i DF)		Axiale Stordnung (N/			Ge	messer (µ	ne Axial m)	luft	Gewicht (kg)
d _a (min.)	D _a (max.)	D₅ (max.)	r _a (max.)	r _b (max.)	EL	L	М	Н	EL	L	М	Н	EL	L	М	Н	(ca.)
102	123	125	1	0,6	154	294	800	1 588	81	105	164	230	-3	-9	-24	-40	0,597
102	123	125	1	0,6	161	320	903	1 819	91	121	191	268	-3	-9	-24	-40	0,522
102	123	125	1	0,6	226	512	1 218	2 371	195	261	363	475	-3	-8	-17	-28	0,603
102	123	125	1	0,6	244	574	1 397	2 751	223	304	425	558	-3	-8	-17	-28	0,528
102	123	125	1	0,6	98	288	775	_	77	112	164	_	0	-8	-22	_	0,571
102	123	125	1	0,6	98	288	775	_	77	112	164	_	0	-8	-22	_	0,571
102	123	125	1	0,6	98	314	878	_	86	129	191	_	0	-8	-22	_	0,497
102	123	125	1	0,6	98	314	878	_	86	129	191	_	0	-8	-22	_	0,497
102	123	125	1	0,6	98	442	1 005	_	127	212	286	_	0	-8	-17	_	0,571
102	123	125	1	0,6	98	442	1 005	_	127	212	286	_	0	-8	-17	_	0,571
102	123	125	1	0,6	98	493	1 150	_	143	247	334	_	0	-8	-17	_	0,497
102	123	125	1	0,6	98	493	1 150	_	143	247	334	_	0	-8	-17	_	0,497
104	136	139	1,5	0,8	275	549	1 188	2 348	94	125	176	246	-9	-19	-36	-58	1,21
104	136	139	1,5	0,8	299	614	1 357	2 712	107	144	205	288	-9	-19	-36	-58	1,04
104	136	139	1,5	0,8	421	808	1 832	3 786	227	287	392	525	-7	-13	-25	-42	1,21
104	136	139	1,5	0,8	469	919	2 119	4 417	263	336	460	619	-7	-13	-25	-42	1,04
104	136	139	1,5	0,8	98	811	2 592	4 157	182	372	569	682	0	-10	-25	-35	1,23
104	136	139	1,5	0,8	98	345	854	_	77	120	170	_	0	-10	-24	_	1,30
104	136	139	1,5	0,8	98	345	854	_	77	120	170	_	0	-10	-24	_	1,30
104	136	139	1,5	0,8	98	380	971	_	86	138	198	_	0	-10	-24	_	1,21
104	136	139	1,5	0,8	98	380	971	_	86	138	198	_	0	-10	-24	_	1,21
104	136	139	1,5	0,8	98	671	1 381	_	127	246	320	_	0	-12	-22	_	1,30
104	136	139	1,5	0,8	98	671	1 381	_	127	246	320	_	0	-12	-22	_	1,30
104	136	139	1,5	0,8	98	760	1 590	_	143	287	375	-	0	-12	-22	-	1,21
104	136	139	1,5	0,8	98	760	1 590	_	143	287	375	_	0	-12	-22	_	1,21
107	158	163	2	1	448	876	2 081	4 153	98	130	192	270	-18	-33	-63	-99	2,64
107	158	163	2	1	498	995	2 404	4 834	114	151	225	317	-18	-33	-63	-99	2,18
107	158	163	2	1	703	1 390	3 124	6 301	240	308	419	557	-13	-23	-42	-68	2,63
107	158	163	2	1	796	1 601	3 639	7 386	280	361	494	657	-13	-23	-42	-68	2,17
107	158	163	2	1	356	1 633	4 191	6 644	248	422	596	711	-5	-20	-40	-55	2,67

Tabelle $oldsymbol{\mathsf{A}}$

EL М Н 15° 6,5 6,0 5,0 4,5 25° 30° 1,4

Tabelle ${f B}$

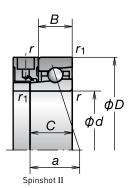

	DBD	DBB
Vorspannungsfaktor	1,36	2
Axiale Steifigkeit	1,48	2
Radiale Steifigkeit	1,54	2

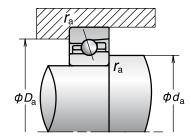
Für weitere Informationen:

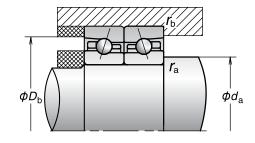
Dynamisch äquivalente Lagerbelastung S. 193	
Dynamisch aquivatente Lagerbetastung	
■ Statisch äquivalente Lagerhelactung	

Statisch äquivalente Lagerbelastung
 Abmessungen der Zwischenringe und Position der Schmierdüse
 Empfohlene Fettmengen
 S. 239

Bohrungsdurchmesser 100 mm


**************************************	Lagerbe- zeichnung (¹)			Ha	aupta	bmes (mm	sunge n)	en (²)			9	ahlen N)	Zulässige Axiallast (³)	Druck- winkel	Faktor	punkt		hzahlen (4) in-1)
**************************************	zeichhang ()	d	D	В	С	B _N	S _N	S _B					(kN)	(Grad)	t _o	(mm) a	Fett	Öl
**P920A5SN24	* 7920C	100	140	20	_	_	_	_	1,1	0,6	52,5	54,0	33,0	15	16,5	26,1	9 600	14 600
P920ASSN24 100 140 20 1,1 0,6 47,5 49,5 46,8 25 - 38,0 10 900 16 300 10 1000BNR19S** 100 140 20 1,1 0,6 38,0 35,0 50,5 18 10,8 29,5 12 500 17 900 1000BNR19F** 100 140 20 1,1 0,6 38,0 33,5 33,0 18 10,8 29,5 12 500 17 900 1000BNR19K** 100 140 20 - 4,0 120 2,2 1,1 0,6 38,0 33,5 33,0 18 10,8 29,5 15 000 27 3400 1000BRR19X** 100 140 20 1,1 0,6 36,0 33,5 33,0 18 10,8 29,5 15 000 27 3400 1000BRR19X** 100 140 20 1,1 0,6 36,0 33,5 59,5 25 - 38,0 10 000 14 200 15 200 14 200 15 200 15 200 15 200 15 200 15 200 18 200 15 200 18 200 15 200 18 200 15 200 18 200 15 200 18 200 15 200 18 200 18 200 18 200 14 200 15 200 18 200 15 200 18 20	* 7920CSN24	100	140	20	_	_	_	_	1,1	0,6	50,5	52,0	39,2	15	16,5	26,1	12 500	19 000
BOBNR19S 100 140 20 1,1 0,6 38,0 35,0 50,5 18 10,8 29,5 11,700 16,700 1000 1000 1000 1000 1000 1000 1000	* 7920A5	100	140	20	_	_	_	_	1,1	0,6	49,5	51,5	39,5	25	_	38,0	8 400	12 500
100BNR19F 100 140 20	* 7920A5SN24	100	140	20	_	_	_	_	1,1	0,6	47,5	49,5	46,8	25	_	38,0	10 900	16 300
***BODBRY 1	* 100BNR19S	100	140	20	_	_	_	_	1,1	0,6	38,0	35,0	50,5	18	10,8	29,5	11 700	16 700
100BRR19X 100 140 20 25 4,0 12,0 2,2 1,1 0,6 38,0 33,5 33,0 18 10,8 29,5 17500 27500 100BER19F** 100 140 20 1,1 0,6 36,0 33,5 59,5 25 - 38,0 10 000 14 200 100BER19F** 100 140 20 1,1 0,6 36,0 33,5 59,5 25 - 38,0 10 800 15 200 100BER19F** 100 140 20 4,0 12,0 2,2 1,1 0,6 36,0 32,0 40,0 25 - 38,0 15 900 25 900 100BER19X** 100 140 20 25 4,0 12,0 2,2 1,1 0,6 36,0 32,0 40,0 25 - 38,0 15 900 25 900 100BER19X** 100 140 24 1,1 0,6 38,0 35,0 50,5 18 10,8 31,5 17 500 - 100BRR29XYIV 100 140 24 1,1 0,6 38,0 33,5 33,0 18 10,8 31,5 17 500 - 100BRR29XYIV 100 140 24 1,1 0,6 38,0 33,5 33,0 18 10,8 31,5 17 500 - 100BRR29XYIV 100 140 24 1,1 0,6 38,0 33,5 59,5 25 - 40,0 18 900 - 100BRR29XYIV 100 140 24 1,1 0,6 38,0 33,5 59,5 25 - 40,0 18 900 - 100BER29XYIV 100 140 24 1,1 0,6 36,0 32,0 40,0 25 - 40,0 18 900 - 100BER29XYIV 100 140 24 1,1 0,6 36,0 32,0 40,0 25 - 40,0 18 900 - 100BER29XYIV 100 140 24 1,1 0,6 36,0 32,0 40,0 25 - 40,0 18 900 - 100BER29XYIV 100 140 24 1,1 0,6 36,0 32,0 40,0 25 - 40,0 18 900 - 100BER29XYIV 100 150 24 1,1 0,6 36,0 32,0 40,0 25 - 40,0 15 900 - 100BER29XYIV 100 150 24 1,1 0,6 36,0 32,0 40,0 25 - 40,0 15 900 - 100BER29XYIV 100 150 24 1,1 5 1 75,5 74,0 58,4 15 16,0 28,7 12 000 18 300 + 7020A5 100 150 24 1,1 5 1 75,5 74,0 58,4 15 16,0 28,7 12 000 18 300 + 7020A5 100 150 24 1,1 5 1 75,5 74,0 58,4 15 16,0 28,7 12 000 18 300 + 7020A5 100 150 24 1,1 5 1 75,5 74,0 58,4 15 16,0 28,7 12 000 18 300 + 7020A5 100 150 24 1,1 5 1 75,5 74,0 58,4 15 16,0 28,7 12 000 18 300 + 7020A5 100 150 24 1,1 5 1 75,5 75,5 75,5 25 - 41,1 10 400 15 600 + 7020A5 100 150 24 1,1 5 1 75,5 70,5 68,3 25 - 41,1 10 400 15 600 + 7020A5 100 150 24 1,1 5 1 75,5 70,5 68,3 25 - 41,1 10 400 15 600 + 7020A5 100 150 24 1,1 5 1 34,5 34,5 34,5 34,0 18 10,9 32,3 14 400 24 400 + 100BR10X 100 150 24 - 5,5 14,5 2,2 1,5 1 36,0 36,0 36,0 36,0 36,0 36,0 36,0 36,0	* 100BNR19E	100	140	20	_	_	_	_	1,1	0,6	38,0	35,0	50,5	18	10,8	29,5	12 500	17 900
100BER19S 100 140 20 1,1 0,6 36,0 33,5 59,5 25 - 38,0 10 800 15 200 10 100 100 100 100 100 100 100 100	* 100BNR19H	100	140	20	_	4,0	12,0	2,2	1,1	0,6	38,0	33,5	33,0	18	10,8	29,5	15 000	23 400
100BER19F 100 140 20 -	* 100BNR19X	100	140	20	25	4,0	12,0	2,2	1,1	0,6	38,0	33,5	33,0	18	10,8	29,5	17 500	27 500
100BER19H 100 140 20 - 4,0 120 2,2 1,1 0,6 36,0 32,0 40,0 25 - 38,0 13 400 20 900 100BER19K** 100 140 20 25 4,0 120 2,2 1,1 0,6 36,0 32,0 40,0 25 - 38,0 15 900 25 000 25 000 100BR19XPVIV 100 140 24 1,1 0,6 38,0 33,5 33,0 18 10,8 31,5 12 500 - 100BRR29KVIV 100 140 24 1,1 0,6 38,0 33,5 33,0 18 10,8 31,5 17 500 - 100BR29KVIV 100 140 24 1,1 0,6 38,0 33,5 33,0 18 10,8 31,5 17 500 - 100BR29KVIV 100 140 24 1,1 0,6 38,0 33,5 59,5 25 - 40,0 10 800 - 100BR29KVIV 100 140 24 1,1 0,6 36,0 32,0 40,0 25 - 40,0 13 400 - 100BR29KVIV 100 140 24 1,1 0,6 36,0 32,0 40,0 25 - 40,0 13 400 - 100BR29KVIV 100 140 24 1,1 0,6 36,0 32,0 40,0 25 - 40,0 13 400 - 100BR29KVIV 100 140 24 1,1 0,6 36,0 32,0 40,0 25 - 40,0 15 900 - 100BR29KVIV 100 140 24 1,1 0,6 36,0 32,0 40,0 25 - 40,0 15 900 - 100BR29KVIV 100 150 24 1,5 1 79,0 77,0 49,0 15 16,0 28,7 9 200 14 000 7002CSN24 100 150 24 1,5 1 75,5 74,0 58,4 15 16,0 28,7 9 200 18 300 7002CSN24 100 150 24 1,5 1 75,0 73,5 57,5 25 - 41,1 80 00 12 000 7002CSN24 100 150 24 1,5 1 75,0 73,5 57,5 25 - 41,1 80 00 12 000 7002CSN24 100 150 24 1,5 1 75,0 70,5 68,3 25 - 41,1 80 00 12 000 7002CSN24 100 150 24 1,5 1 70,0 70,5 68,3 25 - 41,1 80 00 12 000 7002CSN24 100 150 24 1,5 1 70,0 70,5 68,3 25 - 41,1 80 00 150 00 7002CSN24 100 150 24 1,5 1 70,0 70,5 68,3 25 - 41,1 10 400 150 00 7002CSN24 100 150 24 1,5 1 70,0 70,5 68,3 25 - 41,1 10 400 150 00 7002CSN24 100 150 24 1,5 1 36,0 36,0 36,0 52,0 18 10,9 32,3 11 200 18 000 7002CSN24 100 150 24 1,5 1 36,0 36,0 36,0 52,0 18 10,9 32,3 12 000 17 200 7002CSN24 100 150 24 1,5 1 34,5 34,5 34,0 18 10,9 32,3 12 000 17 200 71 0002CSN24 100 150 24 1,5 1 34,5 34,5 34,5 61,0 25 - 41,2 10 400 14 600 71 0002CSN24 100 150 24 1,5 1 34,5 34,5 34,5 61,0 25 - 41,2 10 400 14 600 71 0002CSN24 100 150 24 1,5 1 34,5 34,5 34,5 61,0 25 - 41,2 10 400 14 600 71 0002CSN24 100 150 30 1,5 1 36,0 34,5	* 100BER19S	100	140	20	_	_	_	_	1,1	0,6	36,0	33,5	59,5	25	_	38,0	10 000	14 200
* 100BRR19X	* 100BER19E	100	140	20	_	_	_	_	1,1	0,6	36,0	33,5	59,5	25	_	38,0	10 800	15 200
100BNR29EVIV 100 140 24	* 100BER19H	100	140	20	_	4,0	12,0	2,2	1,1	0,6	36,0	32,0	40,0	25	_	38,0	13 400	20 900
* 100BNR29HVIV	* 100BER19X	100	140	20	25	4,0	12,0	2,2	1,1	0,6	36,0	32,0	40,0	25	_	38,0	15 900	25 000
* 100BNR29XVIV	* 100BNR29EV1V	100	140	24	_	_	_	_	1,1	0,6	38,0	35,0	50,5	18	10,8	31,5	12 500	_
* 100BER29EVIV 100 140 24 1,1 0,6 36,0 33,5 59,5 25 - 40,0 10 800 - 100BER29EVIV 100 140 24 1,1 0,6 36,0 32,0 40,0 25 - 40,0 13 400 - 100BER29EVIV 100 150 24 1,1 0,6 36,0 32,0 40,0 25 - 40,0 15 900 - 100 150 24 1,5 1 77,0 49,0 15 16,0 28,7 9200 14 000 150 24 1,5 1 75,5 74,0 58,4 15 16,0 28,7 9200 14 000 150 24 1,5 1 75,5 74,0 58,4 15 16,0 28,7 12 000 18 300 12 000 150 24 1,5 1 75,5 74,0 58,4 15 16,0 28,7 12 000 18 300 12 000 150 24 1,5 1 75,5 74,0 58,4 15 16,0 28,7 12 000 18 300 12 000 150 24 1,5 1 75,5 74,0 58,4 15 16,0 28,7 12 000 18 300 12 000 150 24 1,5 1 75,5 70,5 68,3 25 - 41,1 10 400 15 600 15 00	* 100BNR29HV1V	100	140	24	_	_	_	_	1,1	0,6	38,0	33,5	33,0	18	10,8	31,5	15 000	_
* 100BER29HVIV 100 140 24 1,1 0,6 36,0 32,0 40,0 25 - 40,0 13 400 - 100BER29XVIV 100 140 24 1,1 0,6 36,0 32,0 40,0 25 - 40,0 15 900 - 100BER29XVIV 100 150 24 1,5 1 75,5 74,0 58,4 15 16,0 28,7 9 200 14 000 15 7020CS 100 150 24 1,5 1 75,5 74,0 58,4 15 16,0 28,7 12 000 18 300 15 024 1,5 1 75,5 74,0 58,4 15 16,0 28,7 12 000 18 300 15 024 1,5 1 75,5 74,0 58,4 15 16,0 28,7 12 000 18 300 15 024 1,5 1 75,5 74,0 58,4 15 16,0 28,7 12 000 18 300 12 000 15 024 1,5 1 75,5 70,5 68,3 25 - 41,1 10 400 15 600 15 00 15 024 1,5 1 75,5 70,5 68,3 25 - 41,1 10 400 15 600 15 00 15 024 1,5 1 72,0 70,5 44,5 30 - 48,1 6000 8 000 15 000 15 00 15 024 1,5 1 36,0 36,0 52,0 18 10,9 32,3 11 200 16 000 17 200 18 100BR10X 100 15 024 - 5,5 14,5 2,2 1,5 1 36,0 34,5 34,0 18 10,9 32,3 16 800 22 400 18 100BR10X 100 15 024 1,5 1 34,5 34,5 61,0 25 - 41,2 9 600 13 600 18 100BR10X 100 15 024 - 5,5 14,5 2,2 1,5 1 34,5 34,5 61,0 25 - 41,2 10 400 14 600 15 024 - 5,5 14,5 2,2 1,5 1 34,5 34,5 61,0 25 - 41,2 10 400 14 600 15 024 - 5,5 14,5 2,2 1,5 1 34,5 34,5 61,0 25 - 41,2 12 800 20 000 18 100BR10X 100 15 024 - 5,5 14,5 2,2 1,5 1 34,5 34,5 34,5 61,0 25 - 41,2 12 800 20 000 18 100BR10X 100 15 024 - 5,5 14,5 2,2 1,5 1 34,5 33,0 41,0 25 - 41,2 15 200 20 000 18 100BR20EVIV 100 15 030 1,5 1 36,0 34,5 34,0 18 10,9 35,3 12 000 - 100BR20EVIV 100 15 030 1,5 1 36,0 34,5 34,0 18 10,9 35,3 12 000 - 100BR20EVIV 100 15 030 1,5 1 36,0 34,5 34,0 18 10,9 35,3 12 000 - 100BR20EVIV 100 15 030 1,5 1 36,0 34,5 34,0 18 10,9 35,3 12 000 - 100BR20EVIV 100 15 030 1,5 1 36,0 34,5 34,0 18 10,9 35,3 12 000 - 100BR20EVIV 100 15 030 1,5 1 36,0 34,5 34,0 18 10,9 35,3 12 000 - 100BR20EVIV 100 15 030 1,5 1 34,5 33,0 41,0 25 - 44,2 12 800 - 100BR20EVIV 100 15 030 1,5 1 34,5 33,0 41,0 25 - 44,2 12 800 - 100BR20EVIV 100 15 030	* 100BNR29XV1V	100	140	24	_	_	_	_	1,1	0,6	38,0	33,5	33,0	18	10,8	31,5	17 500	_
TODBER29XVIV 100 140 24 1,1 0,6 36,0 32,0 40,0 25 - 40,0 15 900 - **TOZOC 100 150 24 1,5 1 75,5 74,0 58,4 15 16,0 28,7 9 200 14 000 15 7020 15 10 15 10 15 10 15 10 15 10 15 10 10 15 10 10 15 10 15 10 10 10 15 10 10 10 15 10 10 15 10 10 10 15 10 10 10 15 10 10 10 15 10 10 10 15 10 10 10 15 10 10 10 15 10 10 10 15 10 10 10 15 10 10 10 15 10 10 10 15 10 10 10 15 10 10 10 15 10 10 10 10 10 10 10 10 10 10 10 10 10	* 100BER29EV1V	100	140	24	_	_	_	_	1,1	0,6	36,0		59,5	25	_	40,0	10 800	_
* 7020C	* 100BER29HV1V	100	140	24	_	_	_	_	1,1	0,6	36,0	32,0	40,0	25	_	40,0	13 400	_
* 7020CSN24	* 100BER29XV1V	100	140	24	_	_	_	_	1,1	0,6	36,0	32,0	40,0	25	_	40,0	15 900	_
* 7020A5	* 7020C	100	150	24	_	_	_	_	1,5	1	79,0	77,0	49,0	15	16,0	28,7	9 200	14 000
* 7020A5SN24	* 7020CSN24	100	150	24	_	_	_	_	1,5	1	75,5	74,0	58,4	15	16,0	28,7	12 000	18 300
* 7020A	* 7020A5	100	150	24	_	_	_	_	1,5	1	75.0	73,5	57.5	25	_	41,1	8 000	12 000
* 100BNR10S	* 7020A5SN24	100	150	24	_	_	_	_	1,5	1	71,5	70,5	68,3	25	_	41,1	10 400	15 600
* 100BNR10E	* 7020A	100	150	24	_	_	_	_	1,5	1	72,0	70,5	44,5	30	_	48,1	6 000	8 000
* 100BNR10E	* 100BNR10S	100	150	24	_	_	_	_	1,5	1	36,0	36,0	52,0	18	10,9	32,3	11 200	16 000
* 100BNR10X	* 100BNR10E	100	150	24	_	_	_	_	1,5	1	36,0	36,0	52,0	18	10,9	32,3	12 000	17 200
* 100BNR10X	* 100BNR10H	100	150	24	_	5,5	14,5	2,2	1,5	1	36,0	34,5	34,0	18	10,9	32,3	14 400	22 400
* 100BER10S	* 100BNR10X	100	150	24	29	5,5			1,5	1	36,0			18	10,9	32,3	16 800	26 400
* 100BER10H	* 100BER10S	100	150	24	_		_	_	1,5	1	34,5	34,5	61,0	25		41,2	9 600	13 600
* 100BER10X	* 100BER10E	100	150	24	_	_	_	_	1,5	1	34,5	34,5	61,0	25	_	41,2	10 400	14 600
* 100BER10X	* 100BER10H	100	150	24	_	5,5	14,5	2,2	1,5	1	34,5	33,0	41,0	25	_	41,2	12 800	20 000
* 100BNR20HV1V		100	150	24	29	5,5	14,5	2,2	1,5	1		33,0	41,0	25	_		15 200	24 000
* 100BNR20HV1V	* 100BNR20EV1V	100	150	30	_	_	_	_	1,5	1	36,0	36,0	52,0	18	10,9	35,3	12 000	_
* 100BRR20XV1V	* 100BNR20HV1V	100	150	30	_	_	_	_		1	36.0	34.5	34.0	18	10.9		14 400	_
* 100BER20EV1V	* 100BNR20XV1V	100	150	30	_	_	_	_	1.5	1				18	10.9	35.3	16 800	_
* 100BER20HV1V 100 150 30 1,5 1 34,5 33,0 41,0 25 - 44,2 12 800 - * 100BER20XV1V 100 150 30 1,5 1 34,5 33,0 41,0 25 - 44,2 15 200 - 7220C 100 180 34 2,1 1,1 157 127 88,5 15 14,5 35,7 8 300 12 500					_	_	_	_		1					,			_
* 100BER20XV1V 100 150 30 - - - - 1,5 1 34,5 33,0 41,0 25 - 44,2 15 200 - 7220C 100 180 34 - - - - 2,1 1,1 157 127 88,5 15 14,5 35,7 8 300 12 500					_			_							_			
7220C 100 180 34 2,1 1,1 157 127 88,5 15 14,5 35,7 8 300 12 500						_	_											_
		-			_	_	_								14.5			12 500
2,1 1,1 121 100 20 47,0 7 200 10 000					_		_								,			
7220A 100 180 34 2,1 1,1 144 117 79,5 30 - 57,4 5 400 7 200																, ,		


^[1] Mit einem Sternchen [*] gekennzeichnete Wälzlager sind als abgedichtete Wälzlager erhältlich. Die Serien 20 und 29 enthalten ausschließlich abgedichtete Wälzlager.


^[2] Ein Wälzlager mit Wert in der Spalte C ist als Spinshot II erhältlich; ein Wälzlager mit Werten in den Spalten B_N . S_N und S_B ist als ROBUSTSHOT erhältlich.

⁽³⁾ Angaben zur zulässigen Axiallast siehe Seite 201.

⁽⁴⁾ Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218.

	Ansch	lußmaße	e (mm)		(And	Vorspa ordnung (N	DB und	IDF)		Axiale Stordnung (N/			Ge		ne Axial m)	luft	Gewicht (kg)
d _a (min.)	D _a (max.)	D _b (max.)	r _a (max.)	r _b (max.)	EL	L	М	Н	EL	L	М	Н	EL	L	М	Н	(ca.)
107	133	135	1	0,6	191	387	905	1 790	84	112	164	230	-5	-13	-28	-46	0,800
107	133	135	1	0,6	203	427	1 026	2 057	95	129	191	268	-5	-13	-28	-46	0,702
107	133	135	1	0,6	318	615	1 229	2 546	209	266	346	463	-5	-10	-18	-31	0,808
107	133	135	1	0,6	348	694	1 410	2 956	241	310	405	545	-5	-10	-18	-31	0,710
107	133	135	1	0,6	98	329	879	_	72	111	162	_	0	-10	-26	_	0,770
107	133	135	1	0,6	98	329	879	_	72	111	162	_	0	-10	-26	_	0,770
107	133	135	1	0,6	98	362	1 000	_	81	128	189	_	0	-10	-26	_	0,673
107	133	135	1	0,6	98	362	1 000	_	81	128	189	_	0	-10	-26	_	0,673
107	133	135	1	0,6	98	522	1 142	_	120	213	282	_	0	-10	-20	_	0,770
107	133	135	1	0,6	98	522	1 142	_	120	213	282	_	0	-10	-20	_	0,770
107	133	135	1	0,6	98	585	1 311	_	135	247	330	_	0	-10	-20	_	0,673
107	133	135	1	0,6	98	585	1 311	_	135	247	330		0	-10	-20		0,673
107	133	135	1	0,6	98	329	879	_	72	111	162	_	0	-10	-26	_	0,902
107	133	135	1	0,6	98	362	1 000	_	81	128	189	_	0	-10	-26	_	0,805
107	133	135	1	0,6	98	362	1 000	_	81	128	189	_	0	-10	-26	_	0,805
107	133	135	1	0,6	98	522	1 142	_	120	213	282	_	0	-10	-20	_	0,902
107	133	135	1	0,6	98	585	1 311	_	135	247	330	_	0	-10	-20	_	0,805
107	133	135	1	0,6	98	585	1 311	_	135	247	330		0	-10	-20		0,805
109	141	144	1,5	0,8	282	534	1 278	2 572	97	126	187	264	-9	-18	-37	-60	1,27
109	141	144	1,5	0,8	306	596	1 462	2 974	111	146	218	309	-9	-18	-37	-60	1,09
109	141	144	1,5	0,8	434	837	2 009	3 948	236	300	418	549	-7	-13	-26	-42	1,45
109	141	144	1,5	0,8	483	953	2 327	4 609	274	350	491	647	-7	-13	-26	-42	1,27
109	141	144	1,5	0,8	98	840	2 701	4 338	188	388	595	713	0	-10	-25	-35	1,28
109	141	144	1,5	0,8	98	352	877	_	78	123	175	_	0	-10	-24	_	1,34
109	141	144	1,5	0,8	98	352	877	_	78	123	175	_	0	-10	-24	_	1,34
109	141	144	1,5	0,8	98	389	999	_	88	142	205	_	0	-10	-24	_	1,25
109	141	144	1,5	0,8	98	389	999	_	88	142	205	_	0	-10	-24	_	1,25
109	141	144	1,5	0,8	98	689	1 423	_	130	254	331	_	0	-12	-22	_	1,34
109	141	144	1,5	0,8	98	689	1 423	_	130	254	331	_	0	-12	-22	_	1,34
109	141	144	1,5	0,8	98	780	1 639	_	146	296	388	_	0	-12	-22	_	1,25
109	141	144	1,5	0,8	98	780	1 639	_	146	296	388	_	0	-12	-22	_	1,25
109	141	144	1,5	0,8	98	352	877	_	78	123	175	_	0	-10	-24	_	1,65
109	141	144	1,5	0,8	98	389	999	_	88	142	205	_	0	-10	-24	_	1,56
109	141	144	1,5	0,8	98	389	999	_	88	142	205	_	0	-10	-24	_	1,56
109	141	144	1,5	0,8	98	689	1 423	_	130	254	331	_	0	-12	-22	_	1,65
109	141	144	1,5	0,8	98	780	1 639	_	146	296	388	_	0	-12	-22	_	1,56
109	141	144	1,5	0,8	98	780	1 639	_	146	296	388	_	0	-12	-22	_	1,56
112	168	173	2	1	503	984	2 337	4 700	104	137	202	284	-20	-36	-68	-107	3,18
112	168	173	2	1	776	1 574	3 500	7 110	252	327	442	588	-14	-25	-45	-73	3,16
112	168	173	2	1	361	1 664	5 052	7 687	253	430	646	758	-5	-20	-45	-60	3,21

Tabelle ${f A}$

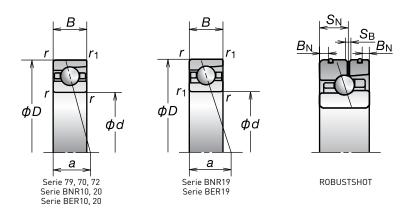

	EL	L	М	Н
15°	6,5	6,0	5,0	4,5
25°		2	,0	
30°		1	,4	

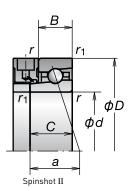
Tabelle ${f B}$

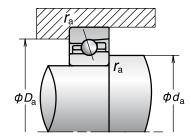
Vorspannungsfaktor 1,36 2 Axiale Steifigkeit 1,48 2 Radiale Steifigkeit 1,54 2		DBD	DBB
	Vorspannungsfaktor	1,36	2
Radiale Steifinkeit 1 5/ 2	Axiale Steifigkeit	1,48	2
Madiate Stelligheit 1,54 Z	Radiale Steifigkeit	1,54	2

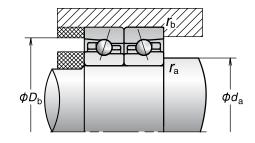
- Abmessungen der Zwischenringe und Position der Schmierdüser S. 239
 Empfohlene Fettmengen S. 259

Bohrungsdurchmesser 105 mm

Lagerbe- zeichnung (¹)			Ha	aupta	bmes (mn	sunge 1)	en (²)				ahlen N)	Zulässige Axiallast (³)	Druck- winkel	Faktor	Last- angriffs- punkt		hzahlen (4) in-1)
zeiciniung ()	d	D	В	С	B _N	S _N	S _B	r (min.)	r ₁ (min.)	C_r (dynamisch)	C _{or} (statisch)	(kN)	(Grad)	f _o	(mm) a	Fett	Öι
7921C	105	145	20	_	_	_	_	1,1	0,6	53,5	57,0	34,5	15	16,6	26,7	9 200	14 000
7921CSN24	105	145	20	_	_	_	_	1,1	0,6	51,0	54,5	40,8	15	16,6	26,7	12 000	18 300
7921A5	105	145	20	_	_	_	_	1,1	0,6	50,5	54,0	41,0	25	_	39,2	8 000	12 000
7921A5SN24	105	145	20	_	_	_	_	1,1	0,6	48,5	51,5	48,7	25	_	39,2	10 400	15 600
105BNR19S	105	145	20	_	_	_	_	1,1	0,6	38,5	36,5	53,0	18	10,8	30,3	11 200	16 000
105BNR19E	105	145	20	_	_	_	_	1,1	0,6	38,5	36,5	53,0	18	10,8	30,3	12 000	17 200
105BNR19H	105	145	20	_	_	_	_	1,1	0,6	38,5	35,0	39,0	18	10,8	30,3	14 400	22 400
105BNR19X	105	145	20	25	_	_	_	1,1	0,6	38,5	35,0	39,0	18	10,8	30,3	16 800	26 400
105BER19S	105	145	20	-	-	_	_	1,1	0,6	37,0	35,0	62,0	25	_	39,2	9 600	13 600
105BER19E	105	145	20	_	_	_	_	1,1	0,6	37,0	35,0	62,0	25	_	39,2	10 400	14 600
105BER19H	105	145	20	_	_	_	_	1,1	0,6	37,0	33,5	42,0	25	_	39,2	12 800	20 000
105BER19X	105	145	20	25	_	_	_	1,1	0,6	37,0	33,5	42,0	25	_	39,2	15 200	24 000
7021C	105	160	26	_	_	_	_	2	1	92,5	89,5	57,0	15	15,9	30,7	8 700	13 300
7021CSN24	105	160	26	_	_	_	_	2	1	88,0	85,5	68,1	15	15,9	30,7	11 400	17 300
7021A5	105	160	26	_	_	_	_	2	1	87,5	85,0	66,5	25	_	43,9	7 600	11 400
7021A5SN24	105	160	26	_	_	_	_	2	1	83,0	81,0	79,0	25	_	43,9	9 900	14 800
7021A	105	160	26	_	_	_	_	2	1	84,0	81,5	51,0	30	_	51,2	5 700	7 600
105BNR10S	105	160	26	_	_	_	_	2	1	41,0	41,0	59,5	18	10,9	34,5	10 600	15 100
105BNR10E	105	160	26	_	_	_	_	2	1	41,0	41,0	59,5	18	10,9	34,5	11 400	16 200
105BNR10H	105	160	26	_	6,0	15,2	2,2	2	1	41,0	39,5	39,0	18	10,9	34,5	13 600	21 200
105BNR10X	105	160	26	31	6,0	15,2	2,2	2	1	41,0	39,5	39,0	18	10,9	34,5	15 900	25 000
105BER10S	105	160	26	_	_	_	_	2	1	39,0	39,5	70,0	25	_	43,9	9 100	12 900
105BER10E	105	160	26	_	_	_	_	2	1	39,0	39,5	70,0	25	_	43,9	9 800	13 800
105BER10H	105	160	26	_	6,0	15,2	2,2	2	1	39,0	38,0	47,5	25	_	43,9	12 100	18 900
105BER10X	105	160	26	31	6,0	15,2	2,2	2	1	39,0	38,0	47,5	25	_	43,9	14 400	22 700
7221C	105	190	36	_	_	_	_	2,1	1,1	171	143	97,5	15	14,5	37,7	7 800	11 900
7221A5	105	190	36	_	_	_	_	2,1	1,1	163	137	111	25	_	52,4	6 800	10 200
7221A	105	190	36	_	_	_	_	2,1	1,1	157	132	85,0	30	_	60,6	5 100	6 800


^[1] Mit einem Sternchen [*] gekennzeichnete Wälzlager sind als abgedichtete Wälzlager erhältlich. Die Serien 20 und 29 enthalten ausschließlich


abgedichtete Wälzlager.


[2] Ein Wälzlager mit Wert in der Spalte C ist als Spinshot II erhältlich; ein Wälzlager mit Werten in den Spalten B_N , S_N und S_B ist als ROBUSTSHOT erhältlich.

[3] Angaben zur zulässigen Axiallast siehe Seite 201.

^[4] Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218.

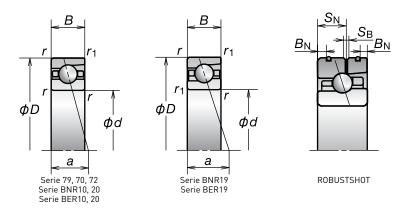
	Ansch	lußmaß	e (mm)		(And	Vorspa ordnung (1)		i DF)		Axiale Soordnung (N/			Gemessene Axialluft (μm)				Gewicht (kg) (ca.)
d _a (min.)	D _a (max.)	D _b (max.)	r _a (max.)	r _b (max.)	EL	L	М	Н	EL	L	М	Н	EL	L	М	Н	(ca.)
112	138	140	1	0,6	194	396	890	1 791	86	116	167	235	-5	-13	-27	-45	0,831
112	138	140	1	0,6	206	437	1 009	2 058	98	133	193	274	-5	-13	-27	-45	0,729
112	138	140	1	0,6	272	565	1 361	2 760	203	265	369	491	-4	-9	-19	-32	0,820
112	138	140	1	0,6	296	636	1 565	3 208	234	308	432	577	-4	-9	-19	-32	0,718
112	138	140	1	0,6	98	336	906	_	74	115	168	_	0	-10	-26	_	0,795
112	138	140	1	0,6	98	336	906	_	74	115	168	_	0	-10	-26	_	0,795
112	138	140	1	0,6	98	370	1 032	_	83	133	196	_	0	-10	-26	_	0,693
112	138	140	1	0,6	98	370	1 032	_	83	133	196	_	0	-10	-26	_	0,693
112	138	140	1	0,6	98	536	1 180	_	124	220	293	_	0	-10	-20	_	0,795
112	138	140	1	0,6	98	536	1 180	_	124	220	293	_	0	-10	-20	_	0,795
112	138	140	1	0,6	98	602	1 355	_	139	256	343	_	0	-10	-20	_	0,693
112	138	140	1	0,6	98	602	1 355	_	139	256	343	_	0	-10	-20	_	0,693
115	150	154	2	1	330	625	1 494	2 973	103	134	197	276	-11	-21	-42	-67	1,58
115	150	154	2	1	362	703	1 715	3 446	118	155	230	324	-11	-21	-42	-67	1,34
115	150	154	2	1	493	989	2 211	4 473	247	318	431	572	-8	-15	-28	-46	1,82
115	150	154	2	1	553	1 131	2 564	5 228	287	372	507	674	-8	-15	-28	-46	1,58
115	150	154	2	1	98	840	2 693	4 318	188	388	591	707	0	-10	-25	-35	1,60
115	150	154	2	1	98	424	1 034	_	80	135	190	_	0	-12	-27	_	1,70
115	150	154	2	1	98	424	1 034	_	80	135	190	_	0	-12	-27	_	1,70
115	150	154	2	1	98	471	1 182	_	89	156	222	_	0	-12	-27	_	1,59
115	150	154	2	1	98	471	1 182	_	89	156	222	_	0	-12	-27	_	1,59
115	150	154	2	1	98	911	1 815	_	133	286	369	_	0	-15	-26	_	1,70
115	150	154	2	1	98	911	1 815	_	133	286	369	_	0	-15	-26	_	1,70
115	150	154	2	1	98	1 039	2 100	_	149	335	434	_	0	-15	-26	_	1,59
115	150	154	2	1	98	1 039	2 100	_	149	335	434	_	0	-15	-26	_	1,59
117	178	183	2	1	540	1 077	2 651	5 311	108	144	216	304	-21	-38	-73	-114	3,78
117	178	183	2	1	862	1 790	3 950	7 929	268	348	471	625	-15	-27	-48	-77	3,77
117	178	183	2	1	368	2 298	5 208	8 924	260	493	666	818	-5	-25	-45	-65	3,82

ianei	16 A			
	EL	L	М	Н
15°	6,5	6,0	5,0	4,5
25°		2	,0	
30°		1	,4	

Tabelle ${f B}$

	DBD	DBB
Vorspannungsfaktor	1,36	2
Axiale Steifigkeit	1,48	2
Radiale Steifigkeit	1,54	2

Für weitere Informationen:


)	Dynar	misch	äquiva	lente	Lage	rbelas	tung	S.	193	
								_		

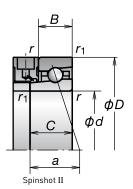
• Statisch äquivalente Lagerbelastung..... S. 200 • Abmessungen der Zwischenringe und

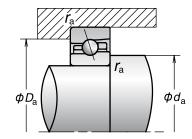
Position der Schmierdüse·····S. 239

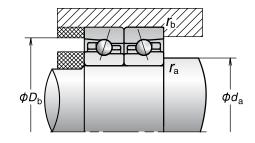
◆ Empfohlene Fettmengen····S. 259

Bohrungsdurchmesser 110 mm

Lagerbe- zeichnung (¹)			Ha	aupta	bmes (mm	sunge n)	en (²)				ahlen N)	Zulässige Axiallast (3)	Druck- winkel	Faktor	Last- angriffs- punkt		hzahlen (4) n-1)
zeiciiliulig ()	d	D	В	С	B _N	S _N	S _B	r (min.)	r ₁ (min.)	\mathbf{C}_{r} (dynamisch)	C _{or} (statisch)	(kN)	(Grad)	f _o	(mm) a	Fett	Öl
7922C	110	150	20	_	_	_	_	1,1	0,6	54,5	59,5	35,5	15	16,7	27,4	8 900	13 500
7922CSN24	110	150	20	_	_	_	_	1,1	0,6	52,0	57,0	42,4	15	16,7	27,4	11 600	17 600
7922A5	110	150	20	_	_	_	_	1,1	0,6	51,5	56,0	43,0	25	_	40,3	7 700	11 600
7922A5SN24	110	150	20	_	_	_	_	1,1	0,6	49,0	54,0	50,7	25	_	40,3	10 000	15 000
* 110BNR19S	110	150	20	_	_	_	_	1,1	0,6	39,0	38,0	55,5	18	10,9	31,1	10 800	15 400
* 110BNR19E	110	150	20	_	_	_	_	1,1	0,6	39,0	38,0	55,5	18	10,9	31,1	11 600	16 500
* 110BNR19H	110	150	20	_	4,0	12,0	2,2	1,1	0,6	39,0	36,5	36,5	18	10,9	31,1	13 900	21 600
* 110BNR19X	110	150	20	25	4,0	12,0	2,2	1,1	0,6	39,0	36,5	36,5	18	10,9	31,1	16 200	25 400
* 110BER19S	110	150	20	_	_	_	_	1,1	0,6	37,5	36,5	65,0	25	_	40,3	9 300	13 100
* 110BER19E	110	150	20	_	_	_	_	1,1	0,6	37,5	36,5	65,0	25	_	40,3	10 000	14 000
* 110BER19H	110	150	20	_	4,0	12,0	2,2	1,1	0,6	37,5	35,0	44,0	25	_	40,3	12 400	19 300
* 110BER19X	110	150	20	25	4,0	12,0	2,2	1,1	0,6	37,5	35,0	44,0	25	_	40,3	14 700	23 100
7022C	110	170	28	_	_	_	_	2	1	111	104	68,5	15	15,6	32,7	8 300	12 500
7022CSN24	110	170	28	_	_	_	_	2	1	106	99,0	81,0	15	15,6	32,7	10 800	16 300
7022A5	110	170	28	_	_	_	_	2	1	105	99,0	79,5	25	_	46,6	7 200	10 800
7022A5SN24	110	170	28	_	_	_	_	2	1	100	94,0	94,1	25	_	46,6	9 300	14 000
7022A	110	170	28	_	_	_	_	2	1	101	95,5	61,0	30	_	54,4	5 400	7 200
110BNR10S	110	170	28	_	_	_	_	2	1	46,0	47,0	68,0	18	10,9	36,7	10 000	14 300
110BNR10E	110	170	28	_	_	_	_	2	1	46,0	47,0	68,0	18	10,9	36,7	10 800	15 300
110BNR10H	110	170	28	_	6,0	16,2	2,2	2	1	46,0	45,0	44,5	18	10,9	36,7	12 900	20 000
110BNR10X	110	170	28	33	6,0	16,2	2,2	2	1	46,0	45,0	44,5	18	10,9	36,7	15 000	23 600
110BER10S	110	170	28	_	_	_	_	2	1	44,0	45,0	79,5	25	_	46,7	8 600	12 200
110BER10E	110	170	28	_	_	_	_	2	1	44,0	45,0	79,5	25	_	46,7	9 300	13 000
110BER10H	110	170	28	_	6,0	16,2	2,2	2	1	44,0	43,0	54,0	25	_	46,7	11 500	17 900
110BER10X	110	170	28	33	6,0	16,2	2,2	2	1	44,0	43,0	54,0	25	_	46,7	13 600	21 500
7222C	110	200	38	_	_	_	_	2,1	1,1	185	160	108	15	14,5	39,8	7 500	11 300
7222A5	110	200	38	_	_	_	_	2,1	1,1	176	153	126	25	_	55,1	6 500	9 700
7222A	110	200	38	_	_	_	_	2,1	1,1	170	148	97,0	30	_	63,7	4 900	6 500


⁽¹⁾ Mit einem Sternchen (*) gekennzeichnete Wälzlager sind als abgedichtete Wälzlager erhältlich. Die Serien 20 und 29 enthalten ausschließlich


abgedichtete Wälzlager.


[2] Ein Wälzlager mit Wert in der Spalte C ist als Spinshot II erhältlich; ein Wälzlager mit Werten in den Spalten B_N , S_N und S_B ist als ROBUSTSHOT erhältlich.

[3] Angaben zur zulässigen Axiallast siehe Seite 201.

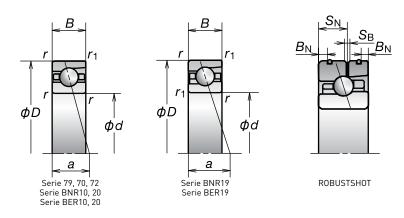
^[4] Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218.

	Anschi	lußmaße	e (mm)		(Ar	nordnun	annung g DB un [N]			ordnung	teifigkei DB und µm)		Ge		ne Axial m)	luft	Gewicht (kg)
d _a (min.)	D _a (max.)	D _b (max.)	r _a (max.)	r _b (max.)	EL	L	М	Н	EL	L	М	Н	EL	L	М	Н	(ca.)
117	143	145	1	0,6	196	405	916	1 849	89	120	173	243	-5	-13	-27	-45	0,867
117	143	145	1	0,6	209	447	1 039	2 126	101	138	200	284	-5	-13	-27	-45	0,761
117	143	145	1	0,6	332	651	1 502	2 985	224	286	393	519	-5	-10	-20	-33	0,877
117	143	145	1	0,6	365	735	1 731	3 474	258	333	461	610	-5	-10	-20	-33	0,771
117	143	145	1	0,6	98	405	933	_	76	126	174	_	0	-12	-26	_	0,838
117	143	145	1	0,6	98	405	933	_	76	126	174	_	0	-12	-26	_	0,838
117	143	145	1	0,6	98	450	1 064	_	85	146	204	_	0	-12	-26	_	0,733
117	143	145	1	0,6	98	450	1 064	_	85	146	204	_	0	-12	-26	_	0,733
117	143	145	1	0,6	98	550	1 218	_	127	228	304	_	0	-10	-20	_	0,838
117	143	145	1	0,6	98	550	1 218	_	127	228	304	_	0	-10	-20	_	0,838
117	143	145	1	0,6	98	619	1 400	_	142	266	356	_	0	-10	-20	_	0,733
117	143	145	1	0,6	98	619	1 400	_	142	266	356	_	0	-10	-20	_	0,733
120	160	164	2	1	371	733	1 752	3 516	104	137	203	285	-13	-25	-49	-78	1,97
120	160	164	2	1	409	829	2 018	4 085	120	160	237	334	-13	-25	-49	-78	1,65
120	160	164	2	1	604	1 194	2 657	5 250	258	330	447	588	-10	-18	-33	-53	1,97
120	160	164	2	1	682	1 371	3 090	6 146	300	387	527	694	-10	-18	-33	-53	1,65
120	160	164	2	1	98	1 325	3 331	5 949	183	443	620	774	0	-15	-30	-45	1,97
120	160	164	2	1	98	539	1 154	_	82	150	201	_	0	-15	-29	_	2,13
120	160	164	2	1	98	539	1 154	_	82	150	201	_	0	-15	-29	_	2,13
120	160	164	2	1	98	605	1 323	_	91	174	235	_	0	-15	-29	_	2,00
120	160	164	2	1	98	605	1 323	_	91	174	235	_	0	-15	-29	_	2,00
120	160	164	2	1	98	932	1 860	_	136	294	379	_	0	-15	-26	_	2,13
120	160	164	2	1	98	932	1 860	_	136	294	379	_	0	-15	-26	_	2,13
120	160	164	2	1	98	1 065	2 153	_	153	344	445	_	0	-15	-26	_	2,00
120	160	164	2	1	98	1 065	2 153	_	153	344	445	_	0	-15	-26	_	2,00
122	188	193	2	1	632	1 281	2 962	5 901	117	156	228	320	-24	-43	-78	-121	4,45
122	188	193	2	1	948	2 009	4 400	9 396	281	369	497	676	-16	-29	-51	-85	4,45
122	188	193	2	1	374	2 350	6 201	10 187	266	505	721	872	-5	-25	-50	-70	4,49

Tabelle **A**

EL МН L 15° 6,5 6,0 5,0 4,5 25° 2,0 30° 1,4

Tabelle ${f B}$

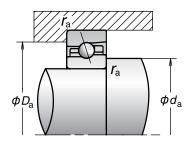

	DBD	DBB
Vorspannungsfaktor	1,36	2
Axiale Steifigkeit	1,48	2
Radiale Steifigkeit	1,54	2

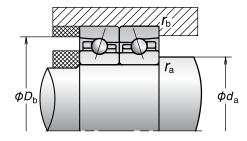
Für weitere Informationen:

Position der Schmierdüse·····S. 239

◆ Empfohlene Fettmengen····S. 259

Bohrungsdurchmesser 120 mm


Lagerbe- zeichnung (¹)			Нас		messu (mm)	ngen	(²)			ahlen N)	Zulässige Axiallast (3)	Druck- winkel	Faktor	punkt		hzahlen (4) in-1)
zeichhung (*)	d	D	В	B _N	S _N	S _B	r (min.)	r ₁ (min.)	C _r (dynamisch)	C _{or} (statisch)	(kN)	(Grad)	f _o	(mm) a	Fett	Öl
7924C	120	165	22	_	_	_	1,1	0,6	75,5	81,0	50,5	15	16,5	30,1	8 100	12 300
7924CSN24	120	165	22	_	_	_	1,1	0,6	72,0	77,5	59,8	15	16,5	30,1	10 600	16 000
7924A5	120	165	22	_	_	_	1,1	0,6	71,0	77,0	59,5	25	_	44,2	7 100	10 600
7924A5SN24	120	165	22	_	_	_	1,1	0,6	67,5	73,5	70,8	25	_	44,2	9 200	13 700
120BNR19S	120	165	22	_	_	_	1,1	0,6	54,0	52,0	75,0	18	10,8	34,2	9 900	14 100
120BNR19H	120	165	22	_	_	_	1,1	0,6	54,0	50,0	49,0	18	10,8	34,2	12 700	19 700
120BNR19X	120	165	22	_	_	_	1,1	0,6	54,0	50,0	49,0	18	10,8	34,2	14 800	23 200
120BER19S	120	165	22	_	_	_	1,1	0,6	51,5	50,0	88,0	25	_	44,2	8 500	12 000
120BER19H	120	165	22	_	_	_	1,1	0,6	51,5	48,0	59,5	25	_	44,2	11 300	17 600
120BER19X	120	165	22	_	_	_	1,1	0,6	51,5	48,0	59,5	25	_	44,2	13 400	21 100
7024C	120	180	28	_	_	_	2	1	118	117	75,5	15	15,8	34,1	7 700	11 700
7024CSN24	120	180	28	_	_	_	2	1	112	111	89,4	15	15,8	34,1	10 000	15 200
7024A5	120	180	28	_	_	_	2	1	111	111	87,5	25	_	49,0	6 700	10 000
7024A5SN24	120	180	28	_	_	_	2	1	106	105	104	25	_	49,0	8 700	13 000
7024A	120	180	28	_	_	_	2	1	107	107	67,5	30	_	57,3	5 000	6 700
* 120BNR10E	120	180	28	_	_	_	2	1	47,5	50,5	73,5	18	11,0	38,4	9 400	13 400
* 120BNR10H	120	180	28	6,0	16,2	2,2	2	1	47,5	48,5	48,0	18	11,0	38,4	12 000	18 700
* 120BNR10X	120	180	28	6,0	16,2	2,2	2	1	47,5	48,5	48,0	18	11,0	38,4	14 000	22 000
* 120BER10E	120	180	28	_	_	_	2	1	45,5	48,5	86,0	25	_	49,0	8 000	11 400
* 120BER10H	120	180	28	6,0	16,2	2,2	2	1	45,5	46,5	58,0	25	_	49,0	10 700	16 700
* 120BER10X	120	180	28	6,0	16,2	2,2	2	1	45,5	46,5	58,0	25	_	49,0	12 700	20 000
7224C	120	215	40	_	_	_	2,1	1,1	209	192	132	15	14,6	42,4	6 900	10 500
7224A5	120	215	40	_	_	_	2,1	1,1	199	184	150	25	_	59,1	6 000	9 000
7224A	120	215	40	_	_	_	2,1	1,1	192	177	116	30	_	68,3	4 500	6 000


^[1] Mit einem Sternchen (*) gekennzeichnete Wälzlager sind als abgedichtete Wälzlager erhältlich. Die Serie 20 enthält ausschließlich abgedichtete Wälzlager.

 $^{\ \ \, \}text{[2] Wenn für ein W\"{a}lzlager Werte in den Spalten } \, \, \text{B}_{\text{N}}, \, \text{S}_{\text{N}} \, \, \text{und S}_{\text{B}} \, \, \text{angegeben sind, ist es als ROBUSTSHOT erh\"{a}ltlich.}$

⁽³⁾ Angaben zur zulässigen Axiallast siehe Seite 201.

^[4] Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218.

	Ansch	lußmaße	e (mm)		(Ar	nordnun	annung g DB un (N)			ordnung	15 199 278 -8 -17 -35 -56 16 232 325 -8 -17 -35 -56 18 441 580 -7 -13 -24 -39 19 200 - 0 -12 -33 - 19 234 - 0 -12 -33 - 19 234 - 0 -12 -33 - 19 234 - 0 -12 -33 - 10 234 - 0 -12 -26 - 10 417 - 0 -12 -26 - 10 417 - 0 -12 -26 - 10 417 - 0 -12 -26 -						
d _a (min.)	D _a (max.)	D _b (max.)	r _a (max.)	r _b (max.)	EL	L	М	Н	EL	L	М	Н	EL	L	М	Н	(ca.)
127	158	160	1	0,6	270	536	1 288	2 539	102	135	199	278	-8	-17	-35	-56	1,16
127	158	160	1	0,6	293	600	1 474	2 935	116	156	232	325	-8	-17	-35	-56	0,983
127	158	160	1	0,6	461	902	1 964	3 884	257	328	441	580	-7	-13	-24	-39	1,15
127	158	160	1	0,6	515	1 029	2 275	4 533	299	384	518	684	-7	-13	-24	-39	0,973
127	158	160	1	0,6	98	414	1 287	_	78	130	200	_	0	-12	-33	_	1,12
127	158	160	1	0,6	98	460	1 477	_	88	150	234	_	0	-12	-33	_	0,949
127	158	160	1	0,6	98	460	1 477	_	88	150	234	_	0	-12	-33	_	0,949
127	158	160	1	0,6	98	689	1 761	_	131	253	355	_	0	-12	-26	_	1,12
127	158	160	1	0,6	98	781	2 037	_	147	296	417	_	0	-12	-26	_	0,949
127	158	160	1	0,6	98	781	2 037	_	147	296	417	_	0	-12	-26	_	0,949
130	170	174	2	1	422	825	1 959	3 918	116	153	225	316	-14	-26	-50	-79	2,09
130	170	174	2	1	468	936	2 260	4 557	134	178	264	371	-14	-26	-50	-79	1,74
130	170	174	2	1	648	1 295	2 903	5 921	282	363	492	656	-10	-18	-33	-54	2,43
130	170	174	2	1	733	1 489	3 380	6 939	329	425	580	774	-10	-18	-33	-54	2,08
130	170	174	2	1	98	1 439	3 645	6 531	196	487	683	853	0	-15	-30	-45	2,12
130	170	174	2	1	98	565	1 220	_	85	159	214	_	0	-15	-29	_	2,29
130	170	174	2	1	98	634	1 399	_	96	185	251	_	0	-15	-29	_	2,14
130	170	174	2	1	98	634	1 399	_	96	185	251	_	0	-15	-29	_	2,14
130	170	174	2	1	98	983	1 973	_	143	313	404	_	0	-15	-26	_	2,29
130	170	174	2	1	98	1 125	2 286	_	160	367	475	_	0	-15	-26	_	2,14
130	170	174	2	1	98	1 125	2 286	_	160	367	475	_	0	-15	-26	_	2,14
132	203	208	2	1	690	1 395	3 212	6371	127	170	246	343	-19	-38	-73	-116	5,42
132	203	208	2	1	1 137	2 327	5 259	1 0296	318	412	562	736	-15	-28	-52	-83	5,42
132	203	208	2	1	542	2 817	8 158	1 1550	321	570	844	964	-5	-25	-55	-70	5,45

Tabelle $oldsymbol{\mathsf{A}}$

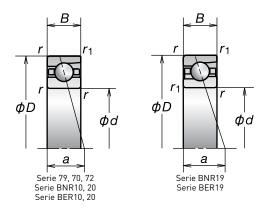
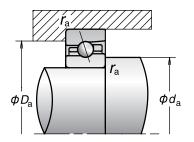
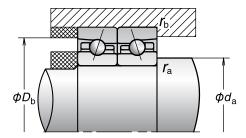

	EL	L	М	Н
15°	6,5	6,0	5,0	4,5
25°		2	,0	
30°		1	,4	

Tabelle ${f B}$

	DBD	DBB
Vorspannungsfaktor	1,36	2
Axiale Steifigkeit	1,48	2
Radiale Steifigkeit	1,54	2

• Dynamisch äquivalente Lagerbelastung S. 193
• Statisch äquivalente Lagerbelastung S. 200
 Abmessungen der Zwischenringe und
Position der Schmierdüse·····S. 239
• Empfohlene Fettmengen S. 259


Bohrungsdurchmesser 130 mm



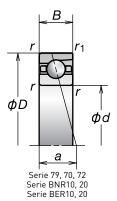
Lagerbe- zeichnung	Hauptabmessungen (mm)						Tragzahlen (kN)		Druck- winkel	Faktor	Last- angriffs- punkt		nzahlen (²) n ⁻¹)
Zeicillalig	d	D	В	r (min.)	r ₁ (min.)	C _r (dynamisch)	C _{or} (statisch)	(kN)	(Grad)	10	(mm) a	Fett	Öl
7926C	130	180	24	1,5	1	82,5	91,0	55,0	15	16,5	32,8	7 500	11 300
7926CSN24	130	180	24	1,5	1	79,0	87,0	65,6	15	16,5	32,8	9 700	14 800
7926A5	130	180	24	1,5	1	78,0	86,0	63,5	25	_	48,1	6 500	9 700
7926A5SN24	130	180	24	1,5	1	74,5	82,5	75,6	25	_	48,1	8 400	12 600
130BNR19E	130	180	24	1,5	1	59,5	58,5	85,0	18	10,9	37,2	9 700	13 900
130BNR19H	130	180	24	1,5	1	59,5	56,0	56,0	18	10,9	37,2	11 700	18 100
130BER19E	130	180	24	1,5	1	57,0	56,5	100	25	_	48,1	8 400	11 800
130BER19H	130	180	24	1,5	1	57,0	54,0	67,5	25	_	48,1	10 400	16 200
7026C	130	200	33	2	1	136	137	86,0	15	15,9	38,6	7 000	10 700
7026CSN24	130	200	33	2	1	129	132	102	15	15,9	38,6	9 100	13 900
7026A5	130	200	33	2	1	128	130	99,5	25	_	55,0	6 100	9 100
7026A5SN24	130	200	33	2	1	122	125	118	25	_	55,0	7 900	11 900
7026A	130	200	33	2	1	123	125	76,5	30	_	64,1	4 600	6 100
130BNR10E	130	200	33	2	1	60,0	61,5	89,5	18	11,0	43,0	9 100	13 000
130BNR10H	130	200	33	2	1	60,0	59,0	58,5	18	11,0	43,0	11 000	17 000
130BER10E	130	200	33	2	1	57,5	59,0	105	25	_	55,0	7 900	11 100
130BER10H	130	200	33	2	1	57,5	56,5	70,5	25	_	55,0	9 700	15 200
7226C	130	230	40	3	1,1	217	209	144	15	14,9	44,1	6 400	9 800
7226A5	130	230	40	3	1,1	206	199	163	25	_	62,0	5 600	8 400
7226A	130	230	40	3	1,1	199	193	127	30	_	72,0	4 200	5 600

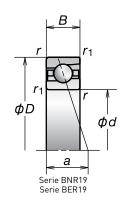
[[]¹] Angaben zur zulässigen Axiallast siehe Seite 201.

⁽²) Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218.

	Ansch	lußmaß	e (mm)		Vorspannung (Anordnung DB und DF) (N)			Axiale Steifigkeit (Anordnung DB und DF) (N/µm)			Gemessene Axialluft (µm)				Gewicht (kg)		
d _a (min.)	D _a (max.)	D _b (max.)	r _a (max.)	r _b (max.)	EL	L	М	Н	EL	L	М	Н	EL	L	М	Н	(ca.)
139	171	174	1,5	0,8	327	652	1 466	2 943	111	148	213	301	-10	-20	-38	-61	1,50
139	171	174	1,5	0,8	358	734	1 682	3 410	128	172	249	352	-10	-20	-38	-61	1,29
139	171	174	1,5	0,8	470	1 008	2 126	4 280	264	348	462	612	-7	-14	-25	-41	1,54
139	171	174	1,5	0,8	525	1 153	2 465	5 001	307	408	543	722	-7	-14	-25	-41	1,33
139	171	174	1,5	0,8	98	718	1 420	_	80	162	212	_	0	-20	-35	_	1,48
139	171	174	1,5	0,8	98	813	1 635	_	89	189	248	_	0	-20	-35	_	1,27
139	171	174	1,5	0,8	98	982	1 899	_	134	293	372	_	0	-16	-27	_	1,48
139	171	174	1,5	0,8	98	1 123	2 199	_	150	343	437	_	0	-16	-27	_	1,27
140	190	194	2	1	493	970	2 252	4 518	126	167	244	343	-16	-29	-54	-85	3,22
140	190	194	2	1	551	1 105	2 605	5 265	146	195	285	403	-16	-29	-54	-85	2,77
140	190	194	2	1	821	1 535	3 407	6 842	316	396	537	710	-12	-20	-36	-58	3,66
140	190	194	2	1	935	1 772	3 974	8 025	369	466	632	839	-12	-20	-36	-58	3,21
140	190	194	2	1	98	1 494	4 721	7 942	202	508	772	943	0	-15	-35	-50	3,26
140	190	194	2	1	98	739	1 522	_	82	168	223	_	0	-20	-36	_	3,41
140	190	194	2	1	98	837	1 754	_	92	196	261	_	0	-20	-36	_	3,19
140	190	194	2	1	98	1 013	1 964	_	137	304	386	_	0	-16	-27	_	3,41
140	190	194	2	1	98	1 159	2 276	_	154	356	454	_	0	-16	-27	_	3,19
144	216	223	2,5	1	749	1 506	3 386	6 740	136	182	261	364	-20	-39	-73	-116	6,23
144	216	223	2,5	1	1 189	2 452	5 569	10 929	337	438	597	783	-15	-28	-52	-83	6,22
144	216	223	2,5	1	559	3 764	9 804	13 576	339	660	942	1 068	-5	-30	-60	-75	6,28

Tahell	Δ Δ	

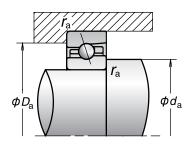

	EL	L	М	Н
15°	6,5	6,0	5,0	4,5
25°		2	,0	
30°		1	,4	

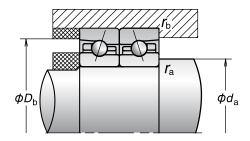

Tabelle ${f B}$

	חפח	DRE
Vorspannungsfaktor	1,36	2
Axiale Steifigkeit	1,48	2
Radiale Steifigkeit	1,54	2

Dynamisch äquivalente Lagerbelastung S. 193 Statisch äquivalente Lagerbelastung S. 200
 Abmessungen der Zwischenringe und
Position der SchmierdüseS. 239
• Empfohlene Fettmengen ······ S. 259

Bohrungsdurchmesser 140-150 mm





Lagerbe- zeichnung	Hauptabmessungen (mm)						Tragzahlen (kN)		Druck- winkel	Faktor	Last- angriffs- punkt		nzahlen (²) n-¹)
zeiciiiuiig	d	D	В	r (min.)	r ₁ (min.)	C _r (dynamisch)	C _{or} (statisch)	(kN)	(Grad)	f _o	(mm) a	Fett	Öl
7928C	140	190	24	1,5	1	83,5	95,5	58,0	15	16,7	34,1	7 000	10 700
7928CSN24	140	190	24	1,5	1	79,5	91,5	69,1	15	16,7	34,1	9 100	13 900
7928A5	140	190	24	1,5	1	78,5	90,0	68,0	25	_	50,5	6 100	9 100
7928A5SN24	140	190	24	1,5	1	75,0	86,5	80,7	25	_	50,5	7 900	11 900
140BNR19E	140	190	24	1,5	1	60,0	61,5	89,5	18	11,0	38,8	9 100	13 000
140BNR19H	140	190	24	1,5	1	60,0	59,0	58,5	18	11,0	38,8	11 000	17 000
140BER19E	140	190	24	1,5	1	57,5	59,0	105	25	_	50,5	7 900	11 100
140BER19H	140	190	24	1,5	1	57,5	56,5	70,5	25	_	50,5	9 700	15 200
7028C	140	210	33	2	1	139	145	90,0	15	16,0	39,9	6 600	10 000
7028CSN24	140	210	33	2	1	132	139	107	15	16,0	39,9	8 600	13 100
7028A5	140	210	33	2	1	131	138	104	25	_	57,3	5 800	8 600
7028A5SN24	140	210	33	2	1	125	132	124	25	_	57,3	7 500	11 200
7028A	140	210	33	2	1	126	133	80,5	30	_	67,0	4 300	5 800
140BNR10E	140	210	33	2	1	65,0	71,5	97,0	18	11,0	44,9	8 600	12 300
140BNR10H	140	210	33	2	1	65,0	68,5	63,5	18	11.0	44,9	10 300	16 000
140BER10E	140	210	33	2	1	62,5	68,5	113	25	_	57,3	7 400	10 400
140BER10H	140	210	33	2	1	62,5	65,5	76,5	25	_	57,3	9 200	14 300
7228C	140	250	42	3	1,1	250	254	172	15	14.8	47,1	5 900	9 000
7228A5	140	250	42	3	1,1	238	242	194	25	_	66,5	5 200	7 700
7228A	140	250	42	3	1,1	229	234	150	30	_	77,3	3 900	5 200
7930C	150	210	28	2	1	107	122	74,0	15	16,6	38,1	6 400	9 800
7930CSN24	150	210	28	2	1	102	117	87,9	15	16,6	38,1	8 400	12 700
7930A5	150	210	28	2	1	101	115	84,5	25	_	56,0	5 600	8 400
7930A5SN24	150	210	28	2	1	96,5	110	103	25	_	56,0	7 300	10 900
150BNR19S	150	210	28	2	1	77,0	78,5	114	18	10,8	43,2	7 800	11 200
150BNR19H	150	210	28	2	1	77,0	75,0	75.0	18	10.8	43,2	10 000	15 600
150BER19S	150	210	28	2	1	73,5	75,5	134	25	_	55,9	6 700	9 500
150BER19H	150	210	28	2	1	73,5	72,0	90,5	25	_	55,9	8 900	13 900
7030C	150	225	35	2,1	1,1	158	168	105	15	16,0	42,6	6 200	9 400
7030CSN24	150	225	35	2,1	1,1	151	161	125	15	16,0	42,6	8 000	12 200
7030A5	150	225	35	2,1	1,1	150	160	123	25	_	61,2	5 400	8 000
7030A5SN24	150	225	35	2,1	1,1	142	152	146	25	_	61,2	7 000	10 400
7030A	150	225	35	2,1	1,1	144	154	95,0	30	_	71,6	4 000	5 400
150BNR10S	150	225	35	2,1	1,1	77,0	84,0	114	18	11,0	48,0	7 500	10 700
150BNR10H	150	225	35	2,1	1,1	77,0	80,5	74,5	18	11,0	48,0	9 600	15 000
150BER10S	150	225	35	2,1	1,1	73,5	80,5	143	25	-	61,2	6 400	9 100
150BER10H	150	225	35	2,1	1,1	73,5	77.0	96,5	25	_	61,2	8 600	13 400
7230C	150	270	45	3	1,1	284	305	205	15	14.7	50,6	5 500	8 400
7230A5	150	270	45	3	1,1	270	290	231	25	- 14,7	71,5	4 800	7 200
7230A	150	270	45	3	1,1	261	280	179	30	_	83,1	3 600	4 800

⁽¹) Angaben zur zulässigen Axiallast siehe Seite 201.

⁽²) Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218.

	Anschlußmaße (mm)					Vorspannung (Anordnung DB und DF) (N)			Axiale Steifigkeit (Anordnung DB und DF) (N/µm)			Gemessene Axialluft (µm)				Gewicht (kg)	
d _a (min.)	D _a (max.)	D _b (max.)	r _a (max.)	r _b (max.)	EL	L	М	Н	EL	L	М	Н	EL	L	М	Н	(ca.)
149	181	184	1,5	0,8	334	632	1 459	2 967	115	150	217	308	-10	-19	-37	-60	1,63
149	181	184	1,5	0,8	366	711	1 673	3 438	132	174	254	361	-10	-19	-37	-60	1,41
149	181	184	1,5	0,8	482	950	2 200	4 436	273	349	480	636	-7	-13	-25	-41	1,63
149	181	184	1,5	0,8	539	1 086	2 552	5 185	317	409	564	749	-7	-13	-25	-41	1,41
149	181	184	1,5	0,8	98	739	1 522	_	82	168	223	_	0	-20	-36	_	1,57
149	181	184	1,5	0,8	98	837	1 754	_	92	196	261	_	0	-20	-36	_	1,35
149	181	184	1,5	0,8	98	1 013	1 964	_	137	304	386	_	0	-16	-27	_	1,57
149	181	184	1,5	0,8	98	1 159	2 276	_	154	356	454	_	0	-16	-27	_	1,35
150	200	204	2	1	503	998	2 332	4 785	131	174	254	361	-11	-24	-49	-81	3,41
150	200	204	2	1	543	1 113	2 662	5 527	150	201	296	422	-11	-24	-49	-81	2,94
150	200	204	2	1	787	1 516	3 444	6 817	320	406	554	729	-9	-17	-33	-54	3,87
150	200	204	2	1	873	1 721	3 979	7 947	371	474	651	859	-9	-17	-33	-54	3,40
150	200	204	2	1	196	1 782	5 273	8 717	262	557	829	1 006	0	-15	-35	-50	3,44
150	200	204	2	1	196	766	1 642	_	114	186	250	_	0	-15	-31	_	3,65
150	200	204	2	1	196	848	1 865	_	128	215	292	_	0	-15	-31	_	3,42
150	200	204	2	1	196	1 075	2 257	_	190	340	445	_	0	-13	-25	_	3,65
150	200	204	2	1	196	1 208	2 589	_	213	396	521	_	0	-13	-25	_	3,42
154	236	243	2,5	1	910	1 832	4 081	8 296	150	200	286	404	-24	-45	-82	-131	7,91
154	236	243	2,5	1	1 499	3 010	6 731	13 407	376	484	657	867	-18	-32	-58	-93	7,91
154	236	243	2,5	1	573	4 992	11 447	15 522	352	751	1 022	1 149	-5	-36	-65	-80	7,97
160	200	204	2	1	387	825	1 969	3 990	123	168	248	351	-7	-19	-41	-68	2,96
160	200	204	2	1	411	912	2 238	4 593	140	193	288	410	-7	-19	-41	-68	2,64
160	200	204	2	1	651	1 269	2 914	5 914	310	395	541	720	-7	-14	-28	-47	2,97
160	200	204	2	1	715	1 433	3 355	6 881	358	460	634	847	-7	-14	-28	-47	2,65
160	200	204	2	1	196	937	1 910	_	106	186	245	_	0	-20	-38	_	2,46
160	200	204	2	1	196	1 046	2 179	_	119	216	286	_	0	-20	-38	_	2,14
160	200	204	2	1	196	1 321	2 580	_	177	340	433	_	0	-17	-30	_	2,46
160	200	204	2	1	196	1 494	2 967	_	198	396	508	_	0	-17	-30	_	2,14
162	213	218	2	1	577	1 149	2 764	5 487	140	186	276	386	-13	-27	-55	-88	4,15
162	213	218	2	1	629	1 288	3 167	6 352	161	215	322	452	-13	-27	-55	-88	3,56
162	213	218	2	1	973	1 877	4 118	8 340	353	448	603	802	-11	-20	-37	-61	4,69
162	213	218	2	1	1089	2 142	4 771	9 741	410	524	709	945	-11	-20	-37	-61	4,10
162	213	218	2	1	196	1 828	5 852	11 679	268	574	877	1 145	0	-15	-37	-60	4,19
162	213	218	2	1	196	916	1 908	_	115	200	266	_	0	-18	-35	_	4,41
162	213	218	2	1	196	1 021	2 177	_	129	232	310	_	0	-18	-35	_	4,13
162	213	218	2	1	196	1 262	2 624	_	192	363	473	_	0	-15	-28	_	4,41
162	213	218	2	1	196	1 425	3 019	_	215	423	554	_	0	-15	-28	_	4,13
164	256	263	2,5	1	1 093	2 203	4 952	9 979	165	220	316	444	-28	-51	-92	-145	11,10
164	256	263	2,5	1	1 854	3 642	8 044	16 467	417	533	720	961	-21	-36	-64	-104	11,10
164	256	263	2,5	1	587	5 000	11 917	16 154	366	772	1 063	1 194	-5	-35	-65	-80	11,20

Tabelle A

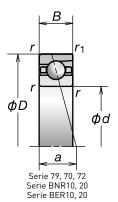
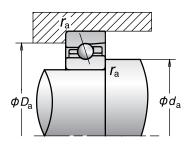

iabei	te A									
	EL	L	М	Н						
15°	6,5	6,0	5,0	4,5						
25°		2,0								
30°)° 1,4									

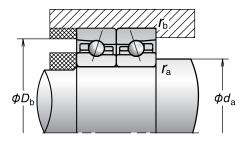
Tabelle ${f B}$

	DBD	DBB
Vorspannungsfaktor	1,36	2
Axiale Steifigkeit	1,48	2
Radiale Steifigkeit	1,54	2

- Abmessungen der Zwischenringe und Position der Schmierdüse------ S. 239 • Empfohlene Fettmengen ····· S. 259

Bohrungsdurchmesser 160-180 mm





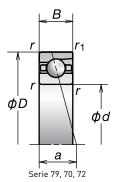
Lagerbe-		Hau		nessungei im)	n		ahlen N)	Zulässige Axiallast (¹)	Druck- winkel	Faktor	Last- angriffs- punkt		hzahlen (²) in-¹)
zeichnung	d	D	В	r (min.)	r ₁ (min.)	C _r (dynamisch)	C _{or} (statisch)	(kN)	(Grad)	f _o	(mm) a	Fett	Öl
7932C	160	220	28	2	1	112	133	80,0	15	16,7	39,4	5 600	8 700
7932CSN24	160	220	28	2	1	106	127	94,8	15	16,7	39,4	7 400	11 500
7932A5	160	220	28	2	1	105	125	93,5	25	_	58,3	4 800	7 400
7932A5SN24	160	220	28	2	1	100	120	111	25	_	58,3	6 400	9 800
160BNR19S	160	220	28	2	1	80,0	85,5	124	18	10,9	44,9	6 900	10 000
160BNR19H	160	220	28	2	1	80,0	81,5	81,5	18	10,9	44,9	9 000	14 300
160BER19S	160	220	28	2	1	76,5	82,0	146	25	_	58,3	5 800	8 500
160BER19H	160	220	28	2	1	76,5	78,5	98,5	25	_	58,3	7 900	12 700
7032C	160	240	38	2,1	1,1	180	193	118	15	16,0	45,8	5 300	8 300
7032CSN24	160	240	38	2,1	1,1	171	185	140	15	16,0	45,8	7 000	10 900
7032A5	160	240	38	2,1	1,1	170	183	138	25	_	65,6	4 500	7 000
7032A5SN24	160	240	38	2,1	1,1	162	176	168	25	_	65,6	6 000	9 300
7032A	160	240	38	2,1	1,1	163	176	106	30	_	76,7	3 300	4 500
160BNR10S	160	240	38	2,1	1,1	83,0	92,5	134	18	11,0	51,5	6 500	9 500
160BNR10H	160	240	38	2,1	1,1	83,0	88,5	88,0	18	11,0	51,5	8 500	13 500
160BER10S	160	240	38	2,1	1,1	79,5	88,5	158	25	_	65,6	5 500	8 000
160BER10H	160	240	38	2,1	1,1	79,5	84,5	106	25	_	65,6	7 500	12 000
7232A	160	290	48	3	1,1	263	305	195	30	_	89	2 900	4 000
7934C	170	230	28	2	1	118	148	88,5	15	16,8	40,8	5 300	8 300
7934CSN24	170	230	28	2	1	113	142	105	15	16,8	40,8	7 000	10 900
7934A5	170	230	28	2	1	112	140	103	25		60,6	4 500	7 000
7934A5SN24	170	230	28	2	1	106	134	124	25	_	60,6	6 000	9 300
170BNR19S	170	230	28	2	1	85,0	95,5	104	18	11,0	46,5	6 500	9 500
170BNR19H	170	230	28	2	1	85,0	91,5	91,0	18	11,0	46,5	8 500	13 500
170BER19S	170	230	28	2	1	81,0	91,5	163	25	_	60,6	5 500	8 000
170BER19H	170	230	28	2	1	81,0	87,5	110	25	_	60,6	7 500	12 000
7034C	170	260	42	2,1	1,1	215	234	149	15	15,9	49,8	4 900	7 700
7034A5	170	260	42	2,1	1,1	203	223	168	25	_	71,1	4 200	6 600
7034A	170	260	42	2,1	1,1	195	214	129	30	_	83,1	3 100	4 200
7234C	170	310	52	4	1,5	320	390	265	15	14,7	58,2	4 400	6 900
7234A	170	310	52	4	1,5	295	360	231	30	_	95,3	2 800	3 800
7936C	180	250	33	2	1	152	184	111	15	16,6	45,3	4 900	7 700
7936CSN24	180	250	33	2	1	145	177	132	15	16,6	45,3	6 600	10 200
7936A5	180	250	33	2	1	144	174	128	25	_	66,6	4 200	6 600
7936A5SN24	180	250	33	2	1	137	167	152	25	_	66,6	5 600	8 700
180BNR19S	180	250	33	2	1	110	119	173	18	10,9	51,4	6 100	8 900
180BNR19H	180	250	33	2	1	110	114	114	18	10,9	51,4	8 000	12 600
180BER19S	180	250	33	2	1	105	114	203	25	_	66,6	5 200	7 500
180BER19H	180	250	33	2	1	105	109	137	25	_	66,6	7 000	11 200
7036C	180	280	46	2,1	1,1	240	276	175	15	15,8	53,8	4 600	7 200
7036A5	180	280	46	2,1	1,1	227	262	195	25	_	76,6	4 000	6 100
7036A	180	280	46	2,1	1,1	218	252	151	30	_	89,4	2 900	4 000
7236A	180	320	52	4	1,5	305	385	246	30	_	98,2	2 600	3 600

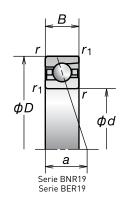
[[]¹] Angaben zur zulässigen Axiallast siehe Seite 201.

⁽²) Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218.

	Ansch	lußmaß	e (mm)		(An	ordnun	annung g DB und N)	IDF)		ordnung	Steifigke g DB und /µm)		Ge		ne Axiall im)	luft	Gewicht (kg)
d _a (min.)	D _a (max.)	D _b (max.)	r _a (max.)	r _b (max.)	EL	L	М	Н	EL	L	М	Н	EL	L	М	Н	(ca.)
170	210	214	2	1	431	863	1 954	3 882	134	179	258	360	-8	-19	-39	-64	3,10
170	210	214	2	1	461	956	2 222	4 469	153	206	299	420	-8	-19	-39	-64	2,75
170	210	214	2	1	678	1 340	3 252	6 333	330	423	592	774	-7	-14	-29	-47	3,12
170	210	214	2	1	747	1 516	3 753	7 375	382	493	695	912	-7	-14	-29	-47	2,77
170	210	214	2	1	196	1 035	2 093	_	112	203	266	_	0	-21	-39	_	2,65
170	210	214	2	1	196	1 159	2 392	_	125	235	311	_	0	-21	-39	_	2,31
170	210	214	2	1	196	1 396	2 747	_	186	364	465	_	0	-17	-30	_	2,65
170	210	214	2	1	196	1 581	3 163	_	208	425	546	_	0	-17	-30		2,31
172	228	233	2	1	623	1 270	2 968	5 798	147	197	288	399	-14	-29	-57	-90	5,11
172	228	233	2	1	681	1 429	3 407	6 718	169	229	336	468	-14	-29	-57	-90	4,29
172	228	233	2	1	1 090	2 168	4 725	9 446	376	483	649	858	-12	-22	-40	-65	5,71
172	228	233	2	1	1 225	2 484	5 485	11 045	438	566	764	1 012	-12	-22	-40	-65	4,99
172	228	233	2	1	196	1 883	5 601	12 072	276	594	882	1 183	0	-15	-35	-60	5,16
172	228	233	2	1	196	1 085	2 284	_	117	216	288	_	0	-21	-40	_	5,50
172	228	233	2	1	196	1 217	2 616	_	131	251	337	_	0	-21	-40	_	5,20
172	228	233	2	1	196	1 470	3 039	_	195	388	505	_	0	-17	-31	_	5,50
172	228	233	2	1	196	1 668	3 506	_	218	453	593		0	-17	-31	_	5,20
174	276	283	2,5	1	1 120	4 154	15 301	23 729	464	733	1 185	1 405	-10	-30	-76	-102	14,1
180	220	224	2	1	486	968	2 186	4 334	150	200	287	400	-9	-20	-40	-65	3,36
180	220	224	2	1	524	1 079	2 492	4 998	172	231	334	468	-9	-20	-40	-65	2,97
180	220	224	2	1	812	1 564	3 553	7 173	377	478	653	867	-8	-15	-29	-48	3,36
180	220	224	2	1	902	1 777	4 106	8 365	437	558	767	1 021	-8	-15	-29	-48	2,97
180	220	224	2	1	196	1 166	2 346	_	120	226	297	_	0	-22	-40	_	2,86
180	220	224	2	1	196	1 311	2 689	_	134	263	346	_	0	-22	-40	_	2,47
180	220	224	2	1	196	1 507	3 126	_	199	400	521	_	0	-17	-31	_	2,86
180	220	224	2	1	196	1 712	3 609	_	223	468	612	-	0	-17	-31	-	2,47
182	248	253	2	1	777	1 572	3 598	7 104	160	214	309	431	-18	-35	-66	-104	6,88
182	248	253	2	1	1 292	2 555	5 927	11 666	401	514	708	930	-14	-25	-47	-75	7,83
182	248	253	2	1	196	2 697	6 086	12 116	278	678	910	1 181	0	-20	-37	-60	6,94
188	292	301	3	1,5	1 493	3 005	6 205	12 460	192	256	354	496	-36	-63	-105	-164	19,4
188	292	301	3	1,5	1 394	6 746	17 921	28 082	512	890	1 278	1 522	-12	-42	-83	-112	17,3
190	240	244	2		591	1 138	2 659	5 370	158	206	301	423	-12	-24	-48	-78	4,90
190 190	240	244	2	1	645 990	1 276	3 047	6 217	181 397	239 514	351 694	496 917	-12 -10	-24 -19	-48 -35	-78 -57	4,33 4,94
190		244	2	1		2 017		8 876		602			-10 -10	-19 -19	-35 -35		
	240	244		1	1 108	2 307	5 150	10 373	461		816	1 081				-57 —	4,37
190	240	244	2		196	1 427	2 958		118	239	317		0	-27	-49		4,17
190	240	244		1	196	1 617	3 408	_	132	278	371	_	0	-27	-49	_	3,60
190 190	240	244	2	1	196 196	1 887	3 847	_	196 220	426 498	551	_	0	-21 -21	-37 -37	_	4,17
190	240	244		1	938	2 156	4 456	0 277	179	239	648 342	475	-21	-21	-3 <i>/</i> -71	111	3,60
	268		2	1			4 201	8 277				-	-21 -16			-111	10,4
192 192	268	273 273	2	1	1 580	3 130	6 880 7 232	13 679	451 292	579	781	1 030	-16	-28 -24	-50 -40	-80	10,4 9,27
192	268 302	311	3	1,5	196 1 458	3 618 7 364	18 983	14 216 29 769	541	788 955	1 013	1 309	-12	-24	-40	-64 -112	18,1
170	302	311	J	1,0	1 408	/ 304	10 703	L7 /07	041	700	1 30/	1010	-12	-43	-03	-112	10,1

Tabelle A

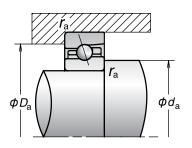

lanet				
	EL	L	М	Н
15°	6,5	6,0	5,0	4,5
25°		2	,0	
30°		1.	.4	

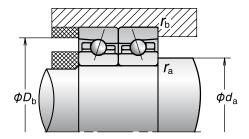

Tabelle ${f B}$

	DBD	DBE
Vorspannungsfaktor	1,36	2
Axiale Steifigkeit	1,48	2
Radiale Steifigkeit	1,54	2

- Abmessungen der Zwischenringe und Position der Schmierdüse------ S. 239 • Empfohlene Fettmengen ····· S. 259

Bohrungsdurchmesser 190-260 mm





Lagerbe- zeichnung		Hau		nessungei im)	า		rahlen N)	Zulässige Axiallast (¹)	Druck- winkel	Faktor	Last- angriffs- punkt		hzahlen (²) in-¹)
zeiciiliulig	d	D	В	r (min.)	r ₁ (min.)	C _r (dynamisch)	C _{or} (statisch)	(kN)	(Grad)	f _o	(mm) a	Fett	Öl
7938C	190	260	33	2	1	155	192		15	16,7	46,6	4 700	7 400
7938CSN24	190	260	33	2	1	147	184		15	16,7	46,6	6 300	9 700
7938A5	190	260	33	2	1	146	182		25	_	69,0	4 000	6 300
7938A5SN24	190	260	33	2	1	139	174		25	_	69,0	5 400	8 300
190BNR19S	190	260	33	2	1	111	124		18	10,9	53,1	5 800	8 500
190BNR19H	190	260	33	2	1	111	119		18	10,9	53,1	7 600	12 000
190BER19S	190	260	33	2	1	106	119		25	_	69,0	4 900	7 200
190BER19H	190	260	33	2	1	106	114		25	_	69,0	6 700	10 700
7038C	190	290	46	2,1	1,1	259	305		15	15,9	55,2	4 400	6 900
7038A5	190	290	46	2,1	1,1	245	291		25	_	79,0	3 800	5 900
7038A	190	290	46	2,1	1,1	235	280		30	_	92,3	2 800	3 800
7238C	190	340	55	4	1,5	345	450		15	15,2	63,0	4 000	6 300
7238A	190	340	55	4	1,5	315	410		30	_	104,0	2 500	3 400
7940C	200	280	38	2,1	1,1	199	244		15	16,5	51,2	4 400	6 900
7940CSN24	200	280	38	2,1	1,1	189	234		15	16,5	51,2	5 900	9 100
7940A5	200	280	38	2,1	1,1	187	231		25	_	75,0	3 800	5 900
7940A5SN24	200	280	38	2,1	1,1	179	222		25	_	75,0	5 000	7 800
200BNR19S	200	280	38	2,1	1,1	142	157		18	10,8	58,0	5 500	8 000
200BNR19H	200	280	38	2,1	1,1	142	150		18	10,8	58,0	7 100	11 300
200BER19S	200	280	38	2,1	1,1	136	151		25	_	75,0	4 600	6 700
200BER19H	200	280	38	2,1	1,1	136	144		25	_	75,0	6 300	10 000
7040C	200	310	51	2,1	1,1	278	340		15	15,9	59,7	4 200	6 500
7040A5	200	310	51	2,1	1,1	263	325		25	_	85,0	3 600	5 500
7040A	200	310	51	2,1	1,1	252	310		30	_	99,1	2 600	3 600
7240C	200	360	58	4	1,5	370	490		15	15,1	66,5	3 800	5 900
7240A	200	360	58	4	1,5	335	450		30	-	109,8	2 400	3 300
7944C	220	300	38	2,1	1,1	200	256		15	16.7	53,8	4 100	6 400
7944CSN24	220	300	38	2,1	1,1	191	246		15	16,7	53,8	5 400	8 400
7944A5	220	300	38	2,1	1,1	188	242		25	-	79,6	3 500	5 400
7944A5SN24	220	300	38	2,1	1,1	180	232		25		79,6	4 700	7 200
7044C	220	340	56	3	1.1	310	430		15	15,9	65,5	3 800	5 900
7044A	220	340	56	3	1,1	283	395		30	13,7	108,8	2 400	3 300
7244A	220	400	65	4	1,1	410	585		30		122,0	2 100	3 000
7948C	240	320	38	2,1	1,1	210	286		15	16,8	56,5	3 800	5 900
7948C 7948CSN24	240	320	38	2,1		201	286		15			5 000	7 800
7948CSN24 7948A5	240	320	38	2,1	1,1	198	274		25	16,8	56,5	3 300	5 000
	240	320	38	2,1	1,1 1,1	198	259		25 25	_	84,3 84,3	4 300	6 700
7948A5SN24 7048C			56	3	<u> </u>		475		15				
	240	360		_	1,1	330			30	15,9	68,2	3 500	5 500
7048A	240	360	56	3	1,1	300	430				114,6	2 200	3 000
7952C	260	360	46	2,1	1,1	268	365		15	16,6	64,5	3 400	5 400
7952A5	260	360	46	2,1	1,1	253	345		25	_	95,3	3 000	4 600
7052A5	260	400	65	4	1,5	360	545		25	_	109,4	2 800	4 300
7052A	260	400	65	4	1,5	345	525		30	_	127,8	2 000	2 800
7252A	260	480	80	5	2	480	750		30	_	146,8	1 800	2 500

⁽¹) Angaben zur zulässigen Axiallast siehe Seite 201.

^[2] Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218.

	Ansch	lußmaße	e (mm)		(An	ordnung	annung g DB und N)	IDF)		Axiale Steifigkeit (Anordnung DB und DF) (N/μm) (μm)						uft	Gewicht (kg)
d _a (min.)	D _a (max.)	D _b (max.)	r _a (max.)	r _b (max.)	EL	L	М	Н	EL	L	М	Н	EL	L	М	Н	(ca.)
200	250	254	2	1	602	1 219	2 815	5 649	163	217	315	442	-12	-25	-49	-79	4,98
200	250	254	2	1	657	1 370	3 228	6 543	187	252	368	518	-12	-25	-49	-79	4,38
200	250	254	2	1	1 013	2 075	4 582	9 175	410	531	718	950	-10	-19	-35	-57	5,12
200	250	254	2	1	1 136	2 375	5 318	10 726	476	622	845	1 120	-10	-19	-35	-57	4,52
200	250	254	2	1	196	1 466	3 049	_	120	247	328	_	0	-27	-49	_	4,38
200	250	254	2	1	196	1 661	3 512	_	135	288	384	_	0	-27	-49	_	3,78
200	250	254	2	1	196	2 052	4 112	_	201	449	578	_	0	-22	-38	_	4,38
200	250	254	2	1	196	2 349	4 768	_	226	526	679		0	-22	-38	_	3,78
202	278	283	2	1	1 042	2 087	4 682	9 306	189	251	360	502	-23	-42	-76	-119	11,2
202	278	283	2	1	1 723	3 640	7 610	15 239	472	619	820	1 084	-17	-31	-53	-85	11,2
202	278	283	2	1	196	3 890	8 161	16 183	287	819	1 073	1 390	0	-25	-43	-69	11,3
208	322	331	3	1,5	1 680	3 382	6 984	14 023	216	288	398	558	-37	-64	-106	-165	22,2
208	322	331	3	1,5	1 520	7 758	20 405	31 456	570	1 009	1 445	1 710	-12	-43	-84	-112	22,4
212	268	273	2	1	784	1 584	3 592	7 168	183	244	351	492	-16	-31	-58	-92	5,95
212	268	273	2	1	867	1 794	4 138	8 330	211	284	411	577	-16	-31	-58	-92	5,07
212	268	273	2	1	1 256	2 554	5 855	11 667	451	584	800	1 056	-12	-22	-41	-66	5,95
212	268	273	2	1	1 418	2 938	6 817	13 669	526	685	942	1 247	-12	-22	-41	-66	5,07
212	268	273	2	1	196	1 888	3 887	_	123	275	364	_	0	-33	-58	_	5,95
212	268	273	2	1	196	2 156	4 499	_	138	321	427	_	0	-33	-58	_	5,07
212	268	273	2	1	196	2 581	5 136	_	206	496	636	_	0	-26	-44	_	5,95
212	268	273	2	1	196	2 970	5 974	_	230	582	749	_	0	-26	-44	_	5,07
212	298	303	2	1	1 153	2 310	5 202	10 293	198	264	379	527	-25	-45	-81	-126	13,6
212	298	303	2	1	1 876	3 710	8 392	16 917	493	632	861	1 141	-18	-31	-56	-90	13,7
212	298	303	2	1 -	196	5 065	13 451	26 693	302	913	1 310	1 711	0	-30	-60	-95 457	13,7
218	342	351	3	1,5	1 811	3 665	7 583	15 074	219	292	404	564	-40	-69	-114	-176	26,3
218	342	351	3	1,5	1 641	8 371	22 145	34 607	577	1 023	1 467	1 746	-13	-46	-90	-121	26,5
232	288	293	2	1	848	1 690	3 793	7 530	193	256	367	513	-17	-32	-59	-93	7,50
232	288	293	2	1	941	1 918	4 374	8 755	222	297	430	603	-17	-32	-59	-93	6,58
232 232	288	293 293	2 2	1	1 288 1 456	2 631	6 047	12 067	465 544	604	828	1 094	-12 -12	-22 -22	-41 -41	-66	7,50
	288	333	2,5	1	1 436	3 028	7 044	14 142	228	709 304	976 435	1 292		- <u>22</u>	-41 -90	-66 -140	6,58
234	326 326	333	2,5	1	1 443	7 065	6 509 18 373	13 026 29 052	618	1 091	1 555	1 858	-29 -10	-36	- 7 0	-140 -95	18,5 18,5
234	382	391	3	1,5	2 187	11 037	28 837	44 290	661	1 167	1 666	1 967	-10	-30	-/0	-73 -	36,5
252	308	313	2	1,0	902	1 822	4 129	8 237	210	280	403	565	-17	-32	-59	-93	8,30
252	308	313	2	1	1 004	2 072	4 769	9 589	243	326	473	664	-17	-32	-59	-73 -93	7,29
252	308	313	2	1	1 385	2 860	6 622	13 265	511	664	913	1 208	-12	-22	-41	-66	8,30
252	308	313	2	1	1 569	3 296	7 721	15 556	596	780	1 076	1 426	-12	-22	-41	-66	7,29
254	346	353	2,5	1	1 699	3 337	7 134	14 212	244	324	455	636	-33	-56	-95	-147	19,3
254	346	353	2,5	1	1 584	7 755	20 305	31 460	653	1 141	1 631	1 934	-33 -11	-38	-73 -74	-147 -99	17,3
272	348	353	2,3	1	1 187	2 376	5 327	10 728	215	285	409	575	-24	-43	-74	-121	14,3
272	348	353	2	1	1 901	3 888	8 783	17 498	531	688	937	1 237	-17	-30	-77 -54	-121	14,3
278	382	391	3	1,5	3 144	6 469	12 677	25 109	640	832	1 073	1 409	-17	-30	-54	-00	28,7
278	382	391	3	1,5	1 834	9 135		38 387	693	1 217	1 765	2 089					28,7
			4										_			_	
282	458	470	4	2	2 688	13 626	35 981	56 494	739	1 305	1 870	2 228	_	_	_	_	65,3

Tabelle A

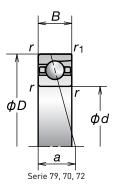
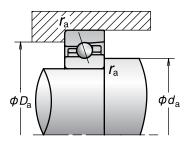
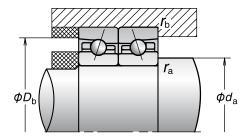

lanet				
	EL	L	М	Н
15°	6,5	6,0	5,0	4,5
25°		2	,0	
30°		1.	.4	

Tabelle ${f B}$

	DBD	DBE
Vorspannungsfaktor	1,36	2
Axiale Steifigkeit	1,48	2
Radiale Steifigkeit	1,54	2

- Abmessungen der Zwischenringe und Position der Schmierdüse------ S. 239 • Empfohlene Fettmengen ······ S. 259


Bohrungsdurchmesser 280-420 mm



Lagerbe- zeichnung		Hau		nessunger m)	1		ahlen N)	Zulässige Axiallast (¹)	Druck- winkel	Faktor	Last- angriffs- punkt	Grenzdrehzahlen (²) (min ⁻¹)		
zeiciiliulig	d	D	В	r (min.)	r ₁ (min.)	C _r (dynamisch)	C _{or} (statisch)	(kN)	(Grad)	f _o	(mm) a	Fett	Öl	
7956C	280	380	46	2,1	1,1	272	410	390	15	16,7	67,2	3 200	5 000	
7956A5	280	380	46	2,1	1,1	256	390	286	25	_	99,9	2 800	4 300	
7056A	280	420	65	4	1,5	345	530	325	30	_	133,5	1 900	2 600	
7960C	300	420	56	3	1,1	345	550	530	15	16,4	76,2	3 000	4 600	
7960A5	300	420	56	3	1,1	325	520	395	25	_	111,9	2 500	3 900	
7960A	300	420	56	3	1,1	315	500	300	30	_	131,9	1 900	2 500	
7060C	300	460	74	4	1,5	425	660	415	15	15,9	87,9	2 800	4 400	
7060A	300	460	74	4	1,5	385	605	365	30	_	146,7	1 800	2 400	
7964C	320	440	56	3	1,5	350	575	350	15	16,6	78,9	2 800	4 400	
7964A5	320	440	56	3	1,5	330	545	405	25	_	116,6	2 400	3 700	
7964A	320	440	56	3	1,5	315	525	310	30	_	137,7	1 800	2 400	
7064A	320	480	74	4	1,5	465	795	500	30	_	152,5	1 700	2 300	
7264A	320	580	92	5	2	665	1 120	655	30	_	175,9	1 500	2 000	
7968C	340	460	56	3	1,1	365	625	375	15	16,7	81,6	2 700	4 200	
7968A5	340	460	56	3	1,1	340	590	435	25	_	121,3	2 300	3 500	
7968A	340	460	56	3	1,1	330	565	335	30	_	143,5	1 700	2 300	
7068A	340	520	82	5	2	520	905	560	30	_	165,1	1 600	2 100	
7268A	340	620	92	6	3	675	1 260	780	30	_	184,6	1 400	1 900	
7972A5	360	480	56	3	1,1	345	615	450	25	_	125,9	2 200	3 400	
7072A5	360	540	82	5	2	555	995	750	25	_	145,9	2 000	3 200	
7072A	360	540	82	5	2	530	960	575	30	_	170,9	1 500	2 000	
7976A	380	520	65	4	1,5	390	725	430	30	_	157,9	1 500	2 000	
7980A	400	540	65	4	1,5	395	750	445	30	_	168,2	1 400	2 000	
7080A	400	600	90	5	2	555	1 010	612	30	_	189,3	1 300	1 800	
7984C	420	560	65	4	1,5	450	890	525	15	16,9	98,1	2 200	3 400	
7984A	420	560	65	4	1,5	410	805	475	30	_	174,0	1 400	1 900	
7084A	420	620	90	5	2	610	1 190	725	30	_	195,1	1 300	1 800	

⁽¹) Angaben zur zulässigen Axiallast siehe Seite 201.

 $^(^2)$ Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218.

	Anschlußmaße (mm)					Vorspannung (Anordnung DB und DF) (N)				Axiale Steifigkeit (Anordnung DB und DF) (N/µm)				Gemessene Axialluft (µm)			
d _a (min.)	D _a (max.)	D _b (max.)	r _a (max.)	r _b (max.)	EL	L	М	Н	EL	L	М	Н	EL	L	М	Н	(ca.)
292	368	373	2	1	1 334	2 668	5 977	12 032	241	321	459	645	_	_	_	_	15,0
292	368	373	2	1	2 147	4 379	9 870	18 954	589	766	1 046	1 372	_	_	_	_	15,0
298	402	411	3	1,5	1 834	9 136	19 408	38 390	693	1 217	1 603	2 089	_	_	_		31,2
314	406	413	2,5	1	1 931	3 880	7 832	15 388	278	371	507	703	_	_	_	_	24,4
314	406	413	2,5	1	2 821	5 674	12 747	25 563	669	859	1 164	1 538	_	_	_	_	24,4
314	406	413	2,5	1	1 670	8 238	16 993	35 209	721	1 262	1 646	2 178	_	_	_	_	24,4
318	442	451	3	1,5	2 320	4 610	9 591	19 107	262	348	482	673	_	_	_	_	44,9
318	442	451	3	1,5	2 039	10 839	21 816	44 468	685	1 231	1 593	2 096	_	_	_	_	44,9
334	426	431	2,5	1,5	1 863	3 839	8 134	16 349	280	377	527	739	_	_	_	_	25,7
334	426	431	2,5	1,5	3 281	6 117	12 940	24 591	717	899	1 194	1 543	_	_	_	_	25,9
334	426	431	2,5	1,5	1 735	8 555	17 647	36 566	749	1 310	1 709	2 262	_	_	_	_	25,9
338	462	471	3	1,5	2 832	14 291	37 339	57 347	856	1 511	2 157	2 547	_	_	_	_	47,2
342	558	570	4	2	3 839	20 397	53 741	83 944	893	1 604	2 298	2 733	_	_	_	_	110
354	446	453	2,5	1	2 002	4 123	8 736	17 561	301	405	566	793	_	_	_	_	27,2
354	446	453	2,5	1	3 147	5 631	13 580	26 414	739	912	1 271	1 657	_	_	_	_	27,2
354	446	453	2,5	1	1 863	9 190	18 955	39 276	804	1 407	1 836	2 429	_	_	_	_	27,2
362	498	510	4	2	3 163	16 035	42 344	66 484	869	1 536	2 201	2 622	_	_	_	_	60,5
368	592	606	5	2,5	4 293	22 810	61 387	95 407	998	1 793	2 590	3 075	_	_	_	_	128
374	466	473	2,5	1	3 256	6 797	14 379	27 326	765	999	1 326	1 714	_	_	_	_	27,9
382	518	530	4	2	5 851	11 710	23 743	46 950	851	1 095	1 431	1 878	_	_	_	_	62,4
382	518	530	4	2	3 321	15 254	43 314	68 443	913	1 556	2 288	2 732	_	_	_	_	62,4
398	502	511	3	1,5	2 419	12 046	25 063	50 619	914	1 605	2 101	2 754	_	_	_	_	39,8
418	522	531	3	1,5	2 502	12 461	25 928	52 366	946	1 661	2 174	2 850	_	_	_	_	42,1
422	578	590	4	2	3 649	18 229	36 022	74 336	883	1 553	1 995	2 637				_	85,9
438	542	551	3	1,5	1 102	2 153	12 382	24 643	262	337	707	987	_	_	_	_	44,0
438	542	551	3	1,5	2 669	10 733	27 658	55 859	1 009	1 640	2 319	3 040	_	_	_	_	44,0
442	598	610	4	2	4 003	21 269	42 028	86 731	1 008	1 812	2 328	3 077	_	_	_	_	90,3

Berechnung der radialen Steifigkeit
Axiale Steifigkeit mit Faktoren in Tabelle A
multiplizieren.
Berechnung der Vorspannung und der
axialen Steifigkeit bei Lageranordnungen
Mit Faktoren in Tabelle B multiplizieren.
Zum Berechnen der radialen Steifigkeit
den Wert aus Tabelle A mit den jeweiligen
Faktoren in Tabelle B multiplizieren.

Tabelle ${f A}$

lubct				
	EL	L	М	Н
15°	6,5	6,0	5,0	4,5
25°		2	,0	
30°		1.	.4	

Tabelle ${f B}$

	DBD	DBE
Vorspannungsfaktor	1,36	2
Axiale Steifigkeit	1,48	2
Radiale Steifigkeit	1,54	2

- Dynamisch äquivalente Lagerbelastung......... S. 193 • Statisch äquivalente Lagerbelastung..... S. 200 Abmessungen der Zwischenringe und Position der Schmierdüse······S. 239
- Empfohlene Fettmengen ····· S. 259

2. Zylinderrollenlager

Zylinderrollenlager - einreihig

Standard Serie

Hochgeschwindigkeits-Zylinderrollenlager - einreihig

NSKROBUST Serie

NSKROBUST Serie für geringe Wärmeentwicklung

Zylinderrollenlager - zweireihig

Serie für hohe Steifigkeit

Serie für geringe Wärmeentwicklung

Zylinderrollenlager

Kapitel 4

Zylinderrollenlager112-129

Eigenschaften

Bezeichnungssystem

Lagertabellen

Zylinderrollenlager - einreihig (Standard Serie)

Hochgeschwindigkeits-Zylinderrollenlager - einreihig (NSKROBUST Serie)

Hochgeschwindigkeits-Zylinderrollenlager - einreihig (NSKROBUST geringe Wärmeentwicklung)

Zylinderrollenlager - zweireihig (hohe Steifigkeit)

Zylinderrollenlager - zweireihig (geringe Wärmeentwicklung)

2. Zylinderrollenlager

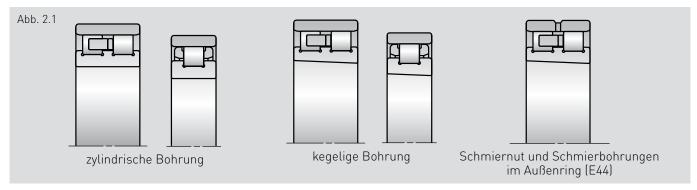
Merkmale

Zylinderrollenlager zeichnen sich durch eine höhere radiale Steifigkeit aus und können höhere radiale Belastungen aufnehmen als Kugellager; dadurch sind sie besonders geeignet für Anwendungen, die eine hohe Steifigkeit erfordern, wie z. B. Drehspindeln, und für den Einsatz als Hinterachslager bei hohen Riemenbelastungen.

Das optimierte Innendesign und die Käfigform der NSK-Zylinderrollenlager sind der Grund für die geringe Wärmeentwicklung und den stabilen Betrieb in Hochgeschwindigkeitsanwendungen.

Wärmeentwicklung und einen stabilen Betrieb in Hochgeschwindigkeitsanwendungen.

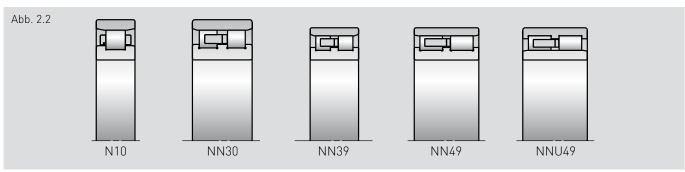
Zweireihige Zylinderrollenlager sind auch in der "E44"-Spezifikation für Ölschmierung mit Schmierbohrungen und Ölnut in der Mitte des äußeren Lagers erhältlich sowie Schmiernut in der Mitte des Außenrings.

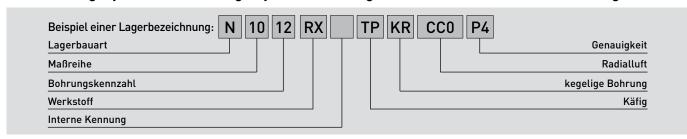

Verschiedene Typen und ihre Eigenschaften

Zylinderrollenlager des Typs NN sind mit Borden am Innenring ausgestattet, Lager des Typs NNU mit Borden am Außenring. Der NN-Typ ist weit verbreitet, da die Einlaufzeit bei Fettschmierung kurz ist und sich bei Ölschmierung kein Öl im Lager ansammelt.

Lagerbauform	Käfig-Kurzzeichen	Beschreibung	Verfügbar für Lagergröße
			NN3005-NN3048 (NN3008-NN3048)
NN	MB	rollengeführter Messingkäfig	NN3920-NN3956 (NN3920-NN3952)
ININ			NN4920-NN4952 (NN4920-NN4952)
	TB	rollengeführter PPS-Käfig	NN3006-NN3032 (NN3008-NN3032)
NNU	МВ	rollengeführter Messingkäfig	NNU4920-NNU4952 (NNU4920-NNU4952)
N	MR	rollengeführter Messingkäfig	N1006-N1044 (N1007-N1044)
NSKROBUST-Serie	TP	außenringgeführter PEEK-Käfig	N1009-N1017

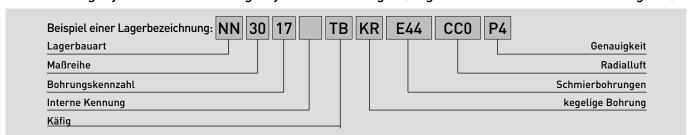
Die Werte in Klammern geben die Wälzlagergrößen an, für die NSKHPS und APTSURF erhältlich sind. Weitere Informationen siehe Seite 27.


Ausführung von Lagerbohrung und Schmierbohrungen


Ein- und zweireihige Lager sind mit zylindrischer oder kegeliger Bohrung verfügbar.

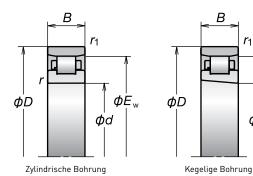
Bei zweireihigen Zylinderrollenalagern ist die Ausführung mit Schmiernut und Schmierbohrungen für Ölschmierung zu bevorzugen.

Lagerbauart und Maßreihe



Bezeichnungssystem für einreihige Zylinderrollenlager (Standardreihe und ROBUST-Lager)

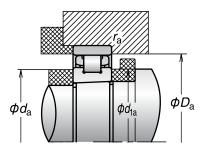
					Seite
N	Lagerbauart	N: einreihiges Zyli	nderrollenlager, Innenring mit zwei E	Borden	48-49, 112
10	Maßreihe	10: ISO-Reihe 10			48-49, 112
12	Bohrungskennzahl	Bohrungsdurchme	esser (in mm) = Bohrungskennzahl x	5	114-117
			ndardwerkstoff für Zylinderrollenlage rreihige Zylinderrollenlager für höchs	er = Ringe und Rollen aus Wälzlagerstahl SUJ ste Drehzahlen (Reihe ROBUST)	<u>}</u>
		Bauform	Wer	kstoff	16-17
RX	Werkstoff	Dauloilli	Ringe	Wälzkörper	26-27
		RS	Wälzlagerstahl (SUJ2)	Wälzlagerstahl (SUJ2)	20 27
		RX	wärmebeständiger Stahl (SHX)	wärmebeständiger Stahl (SHX)	
Z	Interne Kennung	Keine Kennzeichn	ung: Standard Typ Z: Typ mit reduzie	rter Wärmeerzeugung	114-117
TP	Käfig	TP: außenringgefü MR: rollengeführte	hrter PEEK-Käfig er Messingmassivkäfig		21, 26-27
KR	kegelige Bohrung	KR: Kegel 1:12 (oh	ne Kennzeichnung bei zylindrischer I	Bohrung)	228-229
CC0	Radialluft		gerluft bei zylindrischer Bohrung gerluft bei kegeliger Bohrung luft		48-49 114-116
P4	Genauigkeit	P2: ISO-Klasse 2, P P4Y: NSK Standard (B	·	Spezifikation, alle anderen Maße nach P5: ISO-Klasse	5] 224-227


Bezeichnungssystem für zweireihige Zylinderrollenlager (Lagerbauformen mit hoher Steifigkeit)

			Seite
NN	Lagerbauart	NN: zweireihiges Zylinderrollenlager, Innenring mit drei Borden NNU: zweireihiges Zylinderrollenlager, Außenring mit drei Borden	48-49, 112
30	Maßreihe	30: ISO-Reihe 30, 39: ISO-Reihe 39, 49: ISO-Reihe 49	48-49, 112
17	Bohrungskennzahl	Bohrungsdurchmesser (in mm) = Bohrungskennzahl x 5	118-129
Z	Interne Kennung	Keine Kennzeichnung: Standard Typ Z: Typ mit reduzierter Wärmeerzeugung	118-129
ТВ	Käfig	TB: rollengeführter PPS-Käfig MB: rollengeführter Messingmassivkäfig	21, 26-27
KR	kegelige Bohrung	KR: Kegel 1:12 (ohne Kennzeichnung bei zylindrischer Bohrung)	228-229
E44	Schmierbohrungen	E44: Schmiernut und Schmierbohrungen im Außenring (ohne Kennzeichnung bei Ausführung ohne Nachschmierbohrungen)	118-129
CCO	Radialluft	CC1: Standard-Lagerluft bei zylindrischer Bohrung CC0: Standard-Lagerluft bei kegeliger Bohrung CCG: Sonderradialluft	48-49 118-129
P4	Genauigkeit	P2: ISO-Klasse 2, P4: ISO-Klasse 4, P4Y: NSK Standard (Bohrungs- und Außendurchmesser nach NSK Spezifikation, alle anderen Maße nach P5: ISO-Klasse 5)	224-227

Bohrungsdurchmesser 30-70 mm

2. Zylinderrollenlager Einreihige Zylinderrollenlager

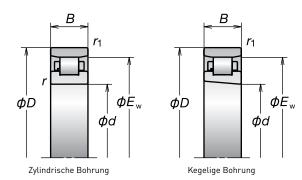

Lager-		Haup	tabme (mm	ssungen i)			ahlen N)	E _w	Gewicht (kg)	Grenzdrehzahlen (³) (min ⁻¹)		
bezeichnung (¹)(²)	d	D	В	r (min.)	r ₁ (min.)	C _r (dynamisch)	C _{or} (statisch)	(Referenz)	(ca.)	Fett	Öl	
* N1006MR1KR	30	55	13	1	0,6	19,7	19,6	48,5	0,135	19 000	31 000	
* N1007MRKR	35	62	14	1	0,6	26,0	23,2	55	0,172	17 000	27 000	
* N1008MRKR	40	68	15	1	0,6	31,5	29,0	61	0,213	15 000	25 000	
* N1009MRKR	45	75	16	1	0,6	37,5	35,5	67,5	0,279	14 000	22 000	
* N1009RSTPKR	45	75	16	1	0,6	26,9	29,4	67,5	0,243	16 000	23 000	
* N1009RXTPKR	45	75	16	1	0,6	26,9	29,4	67,5	0,243	21 000	30 000	
* N1009RSZTPKR	45	75	16	1	0,6	16,0	14,7	67,5	0,224	16 000	23 000	
* N1009RXZTPKR	45	75	16	1	0,6	16,0	14,7	67,5	0,224	21 000	30 000	
* N1010MRKR	50	80	16	1	0,6	37,0	36,0	72,5	0,286	13 000	20 000	
* N1010RSTPKR	50	80	16	1	0,6	28,8	33,0	72,5	0,265	15 000	21 000	
* N1010RXTPKR	50	80	16	1	0,6	28,8	33,0	72,5	0,265	20 000	27 000	
* N1010RSZTPKR	50	80	16	1	0,6	17,1	16,5	72,5	0,244	15 000	21 000	
* N1010RXZTPKR	50	80	16	1	0,6	17,1	16,5	72,5	0,244	20 000	27 000	
* N1011BMR1KR	55	90	18	1,1	1	43,5	44,0	81	0,425	12 000	18 000	
* N1011RSTPKR	55	90	18	1,1	1	35,0	39,5	81	0,383	13 000	19 000	
* N1011RXTPKR	55	90	18	1,1	1	35,0	39,5	81	0,383	18 000	25 000	
* N1011RSZTPKR	55	90	18	1,1	1	20,7	19,7	81	0,355	13 000	19 000	
* N1011RXZTPKR	55	90	18	1,1	1	20,7	19,7	81	0,355	18 000	25 000	
* N1012BMR1KR	60	95	18	1,1	1	46,0	48,5	86,1	0,454	11 000	17 000	
* N1012RSTPKR	60	95	18	1,1	1	37,5	44,0	86,1	0,411	12 000	18 000	
* N1012RXTPKR	60	95	18	1,1	1	37,5	44,0	86,1	0,411	17 000	23 000	
* N1012RSZTPKR	60	95	18	1,1	1	22,2	22,1	86,1	0,380	12 000	18 000	
* N1012RXZTPKR	60	95	18	1,1	1	22,2	22,1	86,1	0,380	17 000	23 000	
* N1013BMR1KR	65	100	18	1,1	1	47,0	51,0	91	0,483	10 000	16 000	
* N1013RSTPKR	65	100	18	1,1	1	39,5	49,0	91	0,440	11 000	17 000	
* N1013RXTPKR	65	100	18	1,1	1	39,5	49,0	91	0,440	16 000	22 000	
* N1013RSZTPKR	65	100	18	1,1	1	23,6	24,5	91	0,406	11 000	17 000	
* N1013RXZTPKR	65	100	18	1,1	1	23,6	24,5	91	0,406	16 000	22 000	
* N1014BMR1KR	70	110	20	1,1	1	57,5	63,0	100	0,668	9 000	15 000	
* N1014RSTPKR	70	110	20	1,1	1	46,5	57,0	100	0,607	10 000	16 000	
* N1014RXTPKR	70	110	20	1,1	1	46,5	57,0	100	0,607	15 000	20 000	
* N1014RSZTPKR	70	110	20	1,1	1	27,8	28,5	100	0,563	10 000	16 000	
* N1014RXZTPKR	70	110	20	1,1	1	27,8	28,5	100	0,563	15 000	20 000	

^[1] Das Nachsetzzeichen "K" oder "KR" steht für Wälzlager mit kegeligen Bohrungen (1 : 12). Bei Typen mit zylindrischer Bohrung das Kennzeichen weglassen.

^[2] GN Hüllkreismessgeräte sind für die mit einem Sternchen (*) gekennzeichneten Wälzlager erhältlich. Weitere Informationen dazu siehe auf Seite 182.

⁽³⁾ Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218.

⁽⁴⁾ Die Lagerluft CC9 findet bei Zylinderrollenlagern mit kegeligen Bohrungen der ISO-Toleranzklassen 5 und 4 Anwendung.

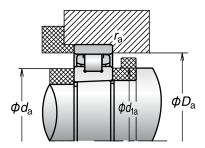


Abmess	Abmessungen von Anschlussmaßen und Kanten (mm)					agerluft bei	ng	Lagerluft bei Wälzlagern mit zylindrischer Bohrung (µm)				
d _a	d _{1a}) _a	r _a		CC9 (4) CC0			C1		C1	
(min.)	(min.)	(max.)	(min.)	(max.)	min.	max.	min.	max.	min.	max.	min.	max.
35	36	51	49	0,5	5	10	8	15	10	25	5	15
40	41	58	56	0,5	5	12	8	15	12	25	5	15
45	46	64	62	0,6	5	12	8	15	12	25	5	15
50	51	71	68	0,6	5	15	10	20	15	30	5	18
50	51	71	68	0,6	5	15	10	20	15	30	5	18
50	51	71	68	0,6	5	15	10	20	15	30	5	18
50	51	71	68	0,6	5	15	10	20	15	30	5	18
50	51	71	68	0,6	5	15	10	20	15	30	5	18
55	56	76	73	0,6	5	15	10	20	15	30	5	18
55	56	76	73	0,6	5	15	10	20	15	30	5	18
55	56	76	73	0,6	5	15	10	20	15	30	5	18
55	56	76	73	0,6	5	15	10	20	15	30	5	18
55	56	76	73	0,6	5	15	10	20	15	30	5	18
61,5	63	85	82	1	5	15	10	20	15	35	5	20
61,5	63	85	82	1	5	15	10	20	15	35	5	20
61,5	63	85	82	1	5	15	10	20	15	35	5	20
61,5	63	85	82	1	5	15	10	20	15	35	5	20
61,5	63	85	82	1	5	15	10	20	15	35	5	20
66,5	68	90	87	1	5	15	10	20	15	35	5	20
66,5	68	90	87	1	5	15	10	20	15	35	5	20
66,5	68	90	87	1	5	15	10	20	15	35	5	20
66,5	68	90	87	1	5	15	10	20	15	35	5	20
66,5	68	90	87	1	5	15	10	20	15	35	5	20
71,5	73	95	92	1	5	15	10	20	15	35	5	20
71,5	73	95	92	1	5	15	10	20	15	35	5	20
71,5	73	95	92	1	5	15	10	20	15	35	5	20
71,5	73	95	92	1	5	15	10	20	15	35	5	20
71,5	73	95	92	1	5	15	10	20	15	35	5	20
 76,5	78	105	101	1	10	20	15	30	20	40	10	25
76,5	78	105	101	1	10	20	15	30	20	40	10	25
76,5	78	105	101	1	10	20	15	30	20	40	10	25
76,5	78	105	101	1	10	20	15	30	20	40	10	25
76,5	78	105	101	1	10	20	15	30	20	40	10	25

Dyn	amisch	i äquiva	lente	Lagerbe	·lastung	····· S. 193
- 0		4 4		1 1		C 000

Bohrungsdurchmesser 75-400 mm

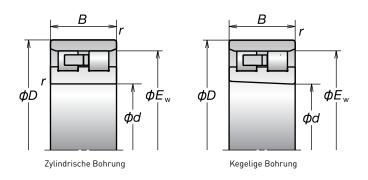
2. Zylinderrollenlager Einreihige Zylinderrollenlager


Lager-		Haup	tabme (mm	ssungen i)			ahlen N)	E _w	Gewicht (kg)	Grenzdrehzahlen (³) (min ⁻¹)		
bezeichnung (¹)(²)	d	D	В	r (min.)	r ₁ (min.)	C _r (dynamisch)	C _{or} (statisch)	(Referenz)	(ca.)	Fett	Öl	
* N1015MRKR	75	115	20	1,1	1	69,0	74,5	105	0,700	8 500	13 700	
* N1015RSTPKR	75	115	20	1,1	1	49,5	63,0	105	0,645	9 900	15 000	
* N1015RXTPKR	75	115	20	1,1	1	49,5	63,0	105	0,645	14 000	19 000	
* N1015RSZTPKR	75	115	20	1,1	1	29,6	31,5	105	0,596	9 900	15 000	
* N1015RXZTPKR	75	115	20	1,1	1	29,6	31,5	105	0,596	14 000	19 000	
* N1016BMR1KR	80	125	22	1,1	1	73,0	82,0	113	0,957	7 900	12 700	
* N1016RSTPKR	80	125	22	1,1	1	61,5	78,5	113	0,872	9 200	14 000	
* N1016RXTPKR	80	125	22	1,1	1	61,5	78,5	113	0,872	13 000	17 000	
* N1016RSZTPKR	80	125	22	1,1	1	36,5	39,5	113	0,805	9 200	14 000	
* N1016RXZTPKR	80	125	22	1,1	1	36,5	39,5	113	0,805	13 000	17 000	
* N1017BMR1KR	85	130	22	1,1	1	75,0	86,0	118	1,067	7 500	10 300	
* N1017RSTPKR	85	130	22	1,1	1	65,0	86,0	118	0,933	8 800	13 000	
* N1017RXTPKR	85	130	22	1,1	1	65,0	86,0	118	0,933	12 000	17 000	
* N1017RSZTPKR	85	130	22	1,1	1	38,5	43,0	118	0,859	8 800	13 000	
N1017RXZTPKR	85	130	22	1,1	1	38,5	43,0	118	0,859	12 000	17 000	
* N1018MRKR	90	140	24	1,5	1,1	101	114	127	1,27	7 000	9 600	
* N1019BMR1KR	95	145	24	1,5	1,1	95,0	114	132	1,37	6 700	9 200	
* N1020MRKR	100	150	24	1,5	1,1	107	126	137	1,46	6 400	8 800	
* N1021BMR1KR	105	160	26	2	1,1	129	155	146	1,79	6 100	8 300	
* N1022BMR1KR	110	170	28	2	1,1	144	173	155	2,22	5 800	7 900	
* N1024MRKR	120	180	28	2	1,1	159	191	165	2,34	5 400	7 300	
* N1026MRKR	130	200	33	2	1,1	198	238	182	3,55	4 900	6 700	
* N1028BMR1KR	140	210	33	2	1,1	189	240	192	3,78	4 600	6 300	
* N1030BMRKR	150	225	35	2,1	1,5	233	294	206	4,56	4 300	5 100	
* N1032BMRKR	160	240	38	2,1	1,5	330	340	219	5,59	4 000	4 800	
N1034MRKR	170	260	42	2,1	2,1	330	415	237	7,85	3 600	4 400	
N1036MRKR	180	280	46	2,1	2,1	405	510	255	9,76	3 400	4 100	
N1038KR	190	290	46	2,1	2,1	415	535	265	10,4	3 200	4 000	
N1040MRKR	200	310	51	2,1	2,1	450	580	281	13,5	3 000	3 700	
N1044MRKR	220	340	56	3	3	575	750	310	17,4	2 500	3 000	
N1048KR	240	360	56	3	3	605	820	330	18,6	2 300	2 800	
N1052KR	260	400	65	4	4	645	1 000	364	27,6	2 100	2 600	
N1060KR	300	460	74	4	4	885	1 400	420	42,2	1 800	2 200	
N1064KR	320	480	74	4	4	905	1 470	440	43,8	1 800	2 100	
N1068KR	340	520	82	5	5	1 080	1 740	475	59,8	1 600	2 000	
N1072KR	360	540	82	5	5	1 110	1 830	495	61,6	1 600	1 900	
N1080KR	400	600	90	5	5	1 360	2 280	550	84,1	1 400	1 700	

^[1] Das Nachsetzzeichen "K" oder "KR" steht für Wälzlager mit kegeligen Bohrungen (1 : 12). Bei Typen mit zylindrischer Bohrung das Kennzeichen weglassen.

^[2] GN Hüllkreismessgeräte sind für die mit einem Sternchen [*] gekennzeichneten Wälzlager erhältlich. Weitere Informationen dazu siehe auf Seite 182.

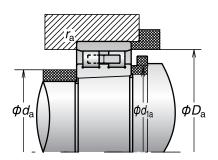
⁽³⁾ Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218.

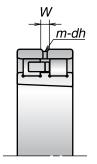

⁽⁴⁾ Die Lagerluft CC9 findet bei Zylinderrollenlagern mit kegeligen Bohrungen der ISO-Toleranzklassen 5 und 4 Anwendung.

Abmess	Abmessungen von Anschlussmaßen und Kanten (mm)					agerluft be	ng	Lagerluft bei Wälzlagern mit zylindrischer Bohrung (µm)				
d _a	d _{1a}) _a	r _a		9 (4)		C0		C1		C1
(min.)	(min.)	(max.)	(min.)	(max.)	min.	max.	min.	max.	min.	max.	min.	max.
81,5	83	110	106	1	10	20	15	30	20	40	10	25
81,5	83	110	106	1	10	20	15	30	20	40	10	25
81,5	83	110	106	1	10	20	15	30	20	40	10	25
81,5	83	110	106	1	10	20	15	30	20	40	10	25
81,5	83	110	106	1	10	20	15	30	20	40	10	25
86,5	88	120	115	1	10	20	15	30	20	40	10	25
86,5	88	120	115	1	10	20	15	30	20	40	10	25
86,5	88	120	115	1	10	20	15	30	20	40	10	25
86,5	88	120	115	1	10	20	15	30	20	40	10	25
86,5	88	120	115	1	10	20	15	30	20	40	10	25
91,5	93	125	120	1	10	25	20	35	25	45	10	30
91,5	93	125	120	1	10	25	20	35	25	45	10	30
91,5	93	125	120	1	10	25	20	35	25	45	10	30
91,5	93	125	120	1	10	25	20	35	25	45	10	30
91,5	93	125	120	1	10	25	20	35	25	45	10	30
98	100	133,5	129	1	10	25	20	35	25	45	10	30
103	105	138,5	134	1	10	25	20	35	25	45	10	30
108	110	143,5	139	1	10	25	20	35	25	45	10	30
114	116	153,5	148	1	10	25	20	35	25	50	10	30
119	121	163,5	157	1	10	25	20	35	25	50	10	30
129	131	173,5	167	1	10	25	20	35	25	50	10	30
139	142	193,5	184	1	15	30	25	40	30	60	10	35
149	152	203,5	194	1	15	30	25	40	30	60	10	35
161	164	217	208	1,5	15	35	30	50	35	65	10	35
171	174	232	221	1,5	15	35	30	50	35	65	10	35
181	185	249	239	2	15	35	30	50	35	75	10	40
191	195	269	258	2	15	35	30	50	35	75	10	40
201	205	279	268	2	20	40	30	50	40	80	15	45
211	215	299	284	2	20	40	30	50	40	80	15	45
233	238	327	313	2,5	20	45	35	60	45	90	15	50
253	258	347	333	2,5	25	50	40	65	50	100	15	50
276	281	384	367	3	25	55	40	70	55	110	20	55
316	322	444	424	3	30	60	45	75	60	120	20	60
336	342	464	444	3	30	65	45	80	65	135	20	65
360	367	500	479	4	30	65	45	80	65	135	20	65
380	387	520	499	4	35	75	50	90	75	150	25	75
420	428	580	554,5	4	35	75	50	90	75	150	25	75
420	420	J00	334,3	4	J	/:5		70	/3	100		/3

Bohrungsdurchmesser 25-65 mm

2. Zylinderrollenlager Zweireihige Zylinderrollenlager

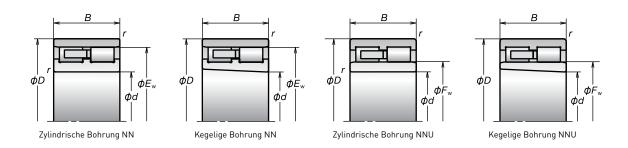

Lager-	ŀ	lauptabm (m	nessunge im)	en		ahlen N)	E _w	Gewicht	Grenzdrehzahlen (³) (min ⁻¹)		
bezeichnung (¹)(²)	d	D	В	r (min.)	C _r (dynamisch)	C _{or} (statisch)	(mm) (Referenz)	(kg) (ca.)	Fett	Öl	
* NN3005MBKR	25	47	16	0,6	25,8	30,0	41,3	0,121	20 900	25 000	
* NN3006MBKR	30	55	19	1	31,0	37,0	48,5	0,186	17 700	21 200	
* NN3006TBKR	30	55	19	1	31,0	37,0	48,5	0,171	20 000	23 600	
* NN3006ZTBKR	30	55	19	1	18,3	18,6	48,5	0,152	21 000	27 900	
* NN3007MBKR	35	62	20	1	39,5	50,0	55	0,297	15 500	18 600	
* NN3007TBKR	35	62	20	1	39,5	50,0	55	0,227	17 600	20 700	
* NN3007ZTBKR	35	62	20	1	23,3	25,0	55	0,198	18 400	24 500	
* NN3008MBKR	40	68	21	1	50,0	55,5	61	0,356	13 900	16 700	
* NN3008TBKR	40	68	21	1	50,0	55,5	61	0,269	15 800	18 600	
* NN3008ZTBKR	40	68	21	1	29,6	27,7	61	0,234	16 600	22 000	
* NN3009MBKR	45	75	23	1	59,5	68,5	67,5	0,471	12 500	15 000	
* NN3009TBKR	45	75	23	1	57,5	65,5	67,5	0,348	14 200	16 700	
* NN3009ZTBKR	45	75	23	1	34,0	32,5	67,5	0,302	14 900	19 800	
* NN3010MBKR	50	80	23	1	61,0	72,5	72,5	0,502	11 600	13 900	
* NN3010TBKR	50	80	23	1	61,0	72,5	72,5	0,378	13 100	15 400	
* NN3010ZTBKR	50	80	23	1	36,5	36,5	72,5	0,328	13 800	18 300	
* NN3011MBKR	55	90	26	1,1	79,5	96,5	81	0,748	10 400	12 500	
* NN3011TBKR	55	90	26	1,1	79,5	96,5	81	0,562	11 800	13 800	
* NN3011ZTBKR	55	90	26	1,1	47,5	48,5	81	0,488	12 400	16 400	
* NN3012MBKR	60	95	26	1,1	84,5	106	86,1	0,804	9 700	11 700	
* NN3012TBKR	60	95	26	1,1	84,5	106	86,1	0,602	11 000	13 000	
* NN3012ZTBKR	60	95	26	1,1	50,0	53,0	86,1	0,522	11 600	15 400	
* NN3013MBKR	65	100	26	1,1	88,5	116	91	0,862	9 100	11 000	
* NN3013TBKR	65	100	26	1,1	88,5	116	91	0,644	10 400	12 200	
* NN3013ZTBKR	65	100	26	1,1	52,5	58,0	91	0,557	10 900	14 500	


^[1] Das Nachsetzzeichen "K" oder "KR" steht für Wälzlager mit kegeligen Bohrungen (1 : 12). Bei Typen mit zylindrischer Bohrung das Kennzeichen weglassen.

^[2] GN Hüllkreismessgeräte sind für die mit einem Sternchen (*) gekennzeichneten Wälzlager erhältlich. Weitere Informationen dazu siehe auf Seite 182.

^[3] Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218.

^[4] Die Lagerluft CC9 findet bei Zylinderrollenlagern mit kegeligen Bohrungen der ISO-Toleranzklassen 5 und 4 Anwendung.

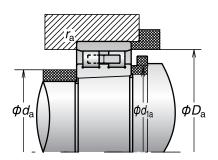

Spezifikation E44

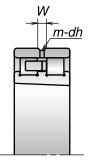
Abmes		on Ansch anten (mr		en und	Lagerlı	ıft bei W	älzlagern (µm		eliger Bo	hrung		Wälzlagern mit Bohrung (µm)		ungen der 9 (mm) Spezi	Schmier- fikation E44
d _a	d _{1a}	D) _a	r _a	CC9	(4)	CC	0	C	C1	C	C1	Bohrungs-	Ölnut- breite	Anzahl
(min.)	(min.)	(max.)	(min.)	(max.)	min.	max.	min.	max.	min.	max.	min.	max.	durchmesser dh	W	Bohrungen m
29	29	43	42	0,6	5	10	8	15	10	25	5	15	2	3,5	4
35	36	50	50	1	5	10	8	15	10	25	5	15	2	3,5	4
35	36	50	50	1	5	10	8	15	10	25	5	15	2	3,5	4
35	36	50	50	1	5	10	8	15	10	25	5	15	2	3,5	4
40	41	57	56	1	5	12	8	15	12	25	5	15	2	3,5	4
40	41	57	56	1	5	12	8	15	12	25	5	15	2	3,5	4
40	41	57	56	1	5	12	8	15	12	25	5	15	2	3,5	4
45	46	63	62	1	5	12	8	15	12	25	5	15	2	3,5	4
45	46	63	62	1	5	12	8	15	12	25	5	15	2	3,5	4
45	46	63	62	1	5	12	8	15	12	25	5	15	2	3,5	4
50	51	70	69	1	5	15	10	20	15	30	5	18	2	3,5	4
50	51	70	69	1	5	15	10	20	15	30	5	18	2	3,5	4
50	51	70	69	1	5	15	10	20	15	30	5	18	2	3,5	4
55	56	75	74	1	5	15	10	20	15	30	5	18	2	3,5	4
55	56	75	74	1	5	15	10	20	15	30	5	18	2	3,5	4
55	56	75	74	1	5	15	10	20	15	30	5	18	2	3,5	4
61,5	62	83,5	83	1	5	15	10	20	15	35	5	20	2	3,5	4
61,5	62	83,5	83	1	5	15	10	20	15	35	5	20	2	3,5	4
61,5	62	83,5	83	1	5	15	10	20	15	35	5	20	2	3,5	4
66,5	67	88,5	88	1	5	15	10	20	15	35	5	20	2	3,5	4
66,5	67	88,5	88	1	5	15	10	20	15	35	5	20	2	3,5	4
66,5	67	88,5	88	1	5	15	10	20	15	35	5	20	2	3,5	4
71,5	72	93,5	93	1	5	15	10	20	15	35	5	20	2	3,5	4
71,5	72	93,5	93	1	5	15	10	20	15	35	5	20	2	3,5	4
71,5	72	93,5	93	1	5	15	10	20	15	35	5	20	2	3,5	4

Tal Weltere Illionnationen.
• Dynamisch äquivalente Lagerbelastung S. 193
• Statisch äquivalente Lagerbelastung S. 200
Abmessungen der Zwischenringe und
Position der Schmierdüse······ S. 239
• Empfohlene Fettmengen ····· S. 259

2. Zylinderrollenlager Zweireihige Zylinderrollenlager

Bohrungsdurchmesser 70-105 mm

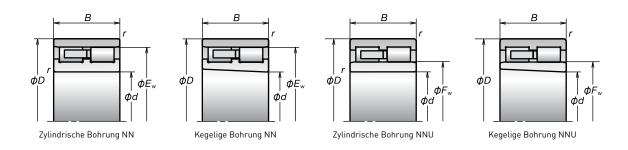

Lager-	ŀ	lauptabm (m	nessunge im)	n		ahlen N)	E _w (F _w bei	Gewicht		hzahlen (³) in ⁻¹)
bezeichnung (¹)(²)	d	D	В	r (min.)	C _r (dynamisch)	C _{or} (statisch)	Typ NNU) (mm) (Referenz)	(kg) (ca.)	Fett	Öl
* NN3014MBKR	70	110	30	1,1	112	148	100	1,23	8 000	10 000
* NN3014TBKR	70	110	30	1,1	112	148	100	0,925	9 500	11 200
* NN3014ZTBKR	70	110	30	1,1	66,5	74,0	100	0,809	9 900	13 200
* NN3015MBKR	75	115	30	1,1	111	149	105	1,28	7 900	9 500
* NN3015TBKR	75	115	30	1,1	111	149	105	0,964	9 000	10 600
* NN3015ZTBKR	75	115	30	1,1	66,0	74,5	105	0,848	9 400	12 500
* NN3016MBKR	80	125	34	1,1	137	186	113	1,77	7 400	8 800
* NN3016TBKR	80	125	34	1,1	137	186	113	1,35	8 300	9 800
* NN3016ZTBKR	80	125	34	1,1	81,5	93,0	113	1,19	8 800	11 700
* NN3017MBKR	85	130	34	1,1	144	201	118	1,87	7 000	8 400
* NN3017TBKR	85	130	34	1,1	144	201	118	1,42	8 000	9 400
* NN3017ZTBKR	85	130	34	1,1	85,5	101	118	1,25	8 400	11 100
* NN3018MBKR	90	140	37	1,5	164	228	127	2,38	6 600	7 900
* NN3018TBKR	90	140	37	1,5	164	228	127	1,82	7 400	8 700
* NN3018ZTBKR	90	140	37	1,5	97,5	114	127	1,61	7 800	10 300
* NN3019MBKR	95	145	37	1,5	173	246	132	2,51	6 300	7 500
* NN3019TBKR	95	145	37	1,5	173	246	132	1,91	7 100	8 400
* NN3019ZTBKR	95	145	37	1,5	103	123	132	1,68	7 500	9 900
NN3920MBKR	100	140	30	1,1	122	182	130	1,32	6 300	7 500
NN4920MBKR	100	140	40	1,1	178	295	130	1,76	6 300	7 500
NNU4920MBKR	100	140	40	1,1	178	295	112	1,75	6 300	7 500
* NN3020MBKR	100	150	37	1,5	180	265	137	2,63	6 000	7 200
* NN3020TBKR	100	150	37	1,5	180	265	137	2,00	6 800	8 000
* NN3020ZTBKR	100	150	37	1,5	107	133	137	1,76	7 200	9 500
NN3921MBKR	105	145	30	1,1	127	194	135	1,50	6 000	7 200
NN4921MBKR	105	145	40	1,1	185	315	135	1,91	6 000	7 200
NNU4921MBKR	105	145	40	1,1	185	315	117	1,83	6 000	7 200
* NN3021MBKR	105	160	41	2	228	320	146	3,40	5 700	6 800
* NN3021TBKR	105	160	41	2	228	320	146	2,52	6 500	7 600
* NN3021ZTBKR	105	160	41	2	135	161	146	2,17	6 800	9 000


⁽¹⁾ Das Nachsetzzeichen "K" oder "KR" steht für Wälzlager mit kegeligen Bohrungen (1 : 12). Bei Typen mit zylindrischer Bohrung das Kennzeichen weglassen.

^[2] GN Hüllkreismessgeräte sind für die mit einem Sternchen (*) gekennzeichneten Wälzlager erhältlich. Weitere Informationen dazu siehe auf Seite 182.

 $[\]left[^{3}\right]$ Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218.

⁽⁴⁾ Die Lagerluft CC9 findet bei Zylinderrollenlagern mit kegeligen Bohrungen der ISO-Toleranzklassen 5 und 4 Anwendung.

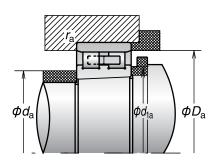


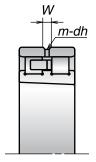
C	:4:1	 n F44

Abmes	ssungen v Ka	on Ansch anten (mi		en und	Lagerlı	ıft bei W	älzlagern (µm	. •	eliger Bo	hrung		Wälzlagern mit Bohrung (µm)		ungen der 9 (mm) Spezi	Schmier- fikation E44
d_{a}	d _{1a}) _a	r _a	CC9	(4)	CC	0	C	C1	C	C1	Bohrungs- durchmesser	Ölnut- breite	Anzahl Bohrungen
(min.)	(min.)	(max.)	(min.)	(max.)	min.	max.	min.	max.	min.	max.	min.	max.	dh	W	m
76,5	77	103,5	102	1	10	20	15	30	20	40	10	25	2	3,5	4
76,5	77	103,5	102	1	10	20	15	30	20	40	10	25	2	3,5	4
76,5	77	103,5	102	1	10	20	15	30	20	40	10	25	2	3,5	4
81,5	82	108,5	107	1	10	20	15	30	20	40	10	25	2	3,5	4
81,5	82	108,5	107	1	10	20	15	30	20	40	10	25	2	3,5	4
81,5	82	108,5	107	1	10	20	15	30	20	40	10	25	2	3,5	4
86,5	87	118,5	115	1	10	20	15	30	20	40	10	25	2,5	5	4
86,5	87	118,5	115	1	10	20	15	30	20	40	10	25	2,5	5	4
86,5	87	118,5	115	1	10	20	15	30	20	40	10	25	2,5	5	4
91,5	92	123,5	120	1	10	25	20	35	25	45	10	30	2,5	5	4
91,5	92	123,5	120	1	10	25	20	35	25	45	10	30	2,5	5	4
91,5	92	123,5	120	1	10	25	20	35	25	45	10	30	2,5	5	4
98	99	132	129	1,5	10	25	20	35	25	45	10	30	2,5	5	4
98	99	132	129	1,5	10	25	20	35	25	45	10	30	2,5	5	4
98	99	132	129	1,5	10	25	20	35	25	45	10	30	2,5	5	4
103	104	137	134	1,5	10	25	20	35	25	45	10	30	2,5	5	4
103	104	137	134	1,5	10	25	20	35	25	45	10	30	2,5	5	4
103	104	137	134	1,5	10	25	20	35	25	45	10	30	2,5	5	4
106,5	108	133,5	132	1	10	25	20	35	25	45	10	30	2	3,5	4
106,5	108	133,5	132	1	10	25	20	35	25	45	10	30	2,5	5	4
106,5	108	133,5	_	1	10	25	20	35	25	45	10	30	2,5	5	4
108	109	142	139	1,5	10	25	20	35	25	45	10	30	2,5	5	4
108	109	142	139	1,5	10	25	20	35	25	45	10	30	2,5	5	4
108	109	142	139	1,5	10	25	20	35	25	45	10	30	2,5	5	4
111,5	113	138,5	137	1	10	25	20	35	25	50	10	30	2	3,5	4
111,5	113	138,5	137	1	10	25	20	35	25	50	10	30	2,5	5	4
111,5	113	138,5	_	1	10	25	20	35	25	50	10	30	2,5	5	4
114	115	151	148	2	10	25	20	35	25	50	10	30	3	6	4
114	115	151	148	2	10	25	20	35	25	50	10	30	3	6	4
114	115	151	148	2	10	25	20	35	25	50	10	30	3	6	4

2. Zylinderrollenlager Zweireihige Zylinderrollenlager

Bohrungsdurchmesser 110-160 mm

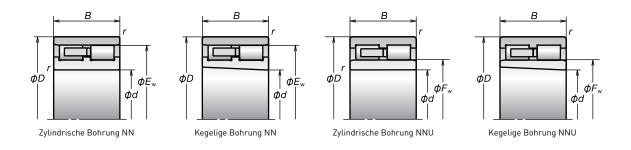

Lager-	ŀ		nessunge im)	n		ahlen N)	E _w (F _w bei	Gewicht		nzahlen (³) n-¹)
bezeichnung (¹)(²)	d	D	В	r (min.)	C _r (dynamisch)	C _{or} (statisch)	Typ NNU) (mm) (Referenz)	(kg) (ca.)	Fett	Öl
NN3922MBKR	110	150	30	1,1	131	207	140	1,44	5 800	7 000
NN4922MBKR	110	150	40	1,1	192	335	140	1,92	5 800	7 000
NNU4922MBKR	110	150	40	1,1	192	335	122	1,90	5 800	7 000
* NN3022MBKR	110	170	45	2	263	375	155	4,35	5 400	6 500
* NN3022TBKR	110	170	45	2	263	375	155	3,21	6 100	7 200
* NN3022ZTBKR	110	170	45	2	156	188	155	2,78	6 400	8 500
NN3924MBKR	120	165	34	1,1	158	251	153,5	2,02	5 300	6 400
NN4924MBKR	120	165	45	1,1	211	360	153,5	2,62	5 300	6 400
NNU4924MBKR	120	165	45	1,1	211	360	133,5	2,59	5 300	6 400
* NN3024MBKR	120	180	46	2	275	405	165	4,72	5 000	6 000
* NN3024TBKR	120	180	46	2	275	405	165	3,50	5 700	6 700
* NN3024ZTBKR	120	180	46	2	164	203	165	3,03	6 000	7 900
NN3926MBKR	130	180	37	1,5	199	325	167	2,64	4 900	5 900
NN4926MBKR	130	180	50	1,5	315	545	168	3,51	4 900	5 900
NNU4926MBKR	130	180	50	1,5	315	545	144	3,48	4 900	5 900
* NN3026MBKR	130	200	52	2	325	475	182	5,53	4 600	5 500
* NN3026TBKR	130	200	52	2	325	475	182	5,10	5 200	6 100
* NN3026ZTBKR	130	200	52	2	195	238	182	4,46	5 500	7 200
NN3928MBKR	140	190	37	1,5	232	375	178	2,79	4 600	5 500
NN4928MBKR	140	190	50	1,5	325	585	178	3,73	4 600	5 500
NNU4928MBKR	140	190	50	1,5	325	585	154	3,70	4 600	5 500
* NN3028MBKR	140	210	53	2	345	515	192	5,95	4 300	5 200
* NN3028TBKR	140	210	53	2	345	515	192	5,51	4 900	5 700
* NN3028ZTBKR	140	210	53	2	204	258	192	4,81	5 200	6 800
NN3930MBKR	150	210	45	2	300	490	195	4,47	4 200	5 000
NN4930MBKR	150	210	60	2	405	715	195	5,79	4 200	5 000
NNU4930MBKR	150	210	60	2	405	715	167	5,85	4 200	5 000
* NN3030MBKR	150	225	56	2,1	385	585	206	7,29	4 000	4 800
* NN3030TBKR	150	225	56	2,1	385	585	206	6,70	4 500	5 300
* NN3030ZTBKR	150	225	56	2,1	229	294	206	5,87	4 800	6 300
NN3932MBKR	160	220	45	2	310	520	205	4,72	4 000	4 800
NN4932MBKR	160	220	60	2	420	760	205	6,19	4 000	4 800
NNU4932MBKR	160	220	60	2	420	760	177	6,18	4 000	4 800
* NN3032MBKR	160	240	60	2,1	430	660	219	8,83	3 800	4 500
* NN3032TBKR	160	240	60	2,1	430	660	219	8,18	4 300	5 000
* NN3032ZTBKR	160	240	60	2,1	255	330	219	7,20	4 500	6 000


⁽¹⁾ Das Nachsetzzeichen "K" oder "KR" steht für Wälzlager mit kegeligen Bohrungen (1 : 12). Bei Typen mit zylindrischer Bohrung das Kennzeichen weglassen.

^[2] GN Hüllkreismessgeräte sind für die mit einem Sternchen [*] gekennzeichneten Wälzlager erhältlich. Weitere Informationen dazu siehe auf Seite 182.

^[3] Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218.

^[4] Die Lagerluft CC9 findet bei Zylinderrollenlagern mit kegeligen Bohrungen der ISO-Toleranzklassen 5 und 4 Anwendung.

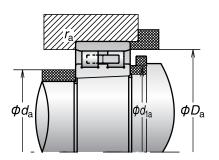


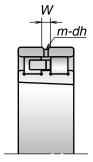
Spezifikation E44

Abmes	ssungen v Ka	on Ansch anten (mr		en und	Lagerl	uft bei W	älzlagern (µn	. •	eliger Bo	hrung		Wälzlagern mit Bohrung (µm)		ungen der : (mm) Spez	Schmier- ifikation E44
$d_{\rm a}$	d _{1a}) _a	r _a	CC9	(4)	CC	0	С	C1	C	C1	Bohrungs-	Ölnut-	Anzahl
(min.)	(min.)	(max.)	(min.)	(max.)	min.	max.	min.	max.	min.	max.	min.	max.	durchmesser dh	breite W	Bohrungen m
116,5	118	143,5	142	1	10	25	20	35	25	50	10	30	2	3,5	4
116,5	118	143,5	142	1	10	25	20	35	25	50	10	30	2,5	5	4
116,5	118	143,5	_	1	10	25	20	35	25	50	10	30	2,5	5	4
119	121	161	157	2	10	25	20	35	25	50	10	30	3	6	4
119	121	161	157	2	10	25	20	35	25	50	10	30	3	6	4
119	121	161	157	2	10	25	20	35	25	50	10	30	3	6	4
126,5	128	158,5	156	1	10	25	20	35	25	50	10	30	2,5	5	4
126,5	128	158,5	156	1	10	25	20	35	25	50	10	30	3	6	4
126,5	128	158,5	_	1	10	25	20	35	25	50	10	30	3	6	4
129	131	171	167	2	10	25	20	35	25	50	10	30	3	6	4
129	131	171	167	2	10	25	20	35	25	50	10	30	3	6	4
129	131	171	167	2	10	25	20	35	25	50	10	30	3	6	4
138	140	172	169	1,5	15	30	25	40	30	60	10	35	2,5	5	4
138	140	172	170	1,5	15	30	25	40	30	60	10	35	3	6	4
138	140	172	_	1,5	15	30	25	40	30	60	10	35	3	6	4
139	141	191	185	2	15	30	25	40	30	60	10	35	4	8	4
139	141	191	185	2	15	30	25	40	30	60	10	35	4	8	4
139	141	191	185	2	15	30	25	40	30	60	10	35	4	8	4
148	150	182	180	1,5	15	30	25	40	30	60	10	35	2,5	5	4
148	150	182	180	1,5	15	30	25	40	30	60	10	35	3	6	4
148	150	182	_	1,5	15	30	25	40	30	60	10	35	3	6	4
149	151	201	195	2	15	30	25	40	30	60	10	35	4	8	4
149	151	201	195	2	15	30	25	40	30	60	10	35	4	8	4
149	151	201	195	2	15	30	25	40	30	60	10	35	4	8	4
159	162	201	197	2	15	35	30	50	35	65	10	35	3	6	4
159	162	201	197	2	15	35	30	50	35	65	10	35	4	8	4
159	162	201	_	2	15	35	30	50	35	65	10	35	4	8	4
161	162	214	209	2	15	35	30	50	35	65	10	35	4	8	4
161	162	214	209	2	15	35	30	50	35	65	10	35	4	8	4
161	162	214	209	2	15	35	30	50	35	65	10	35	4	8	4
169	172	211	207	2	15	35	30	50	35	65	10	35	3	6	4
169	172	211	207	2	15	35	30	50	35	65	10	35	4	8	4
169	172	211	_	2	15	35	30	50	35	65	10	35	4	8	4
171	172	229	222	2	15	35	30	50	35	65	10	35	4	8	4
171	172	229	222	2	15	35	30	50	35	65	10	35	4	8	4
171	172	229	222	2	15	35	30	50	35	65	10	35	4	8	4

2. Zylinderrollenlager Zweireihige Zylinderrollenlager

Bohrungsdurchmesser 170-260 mm

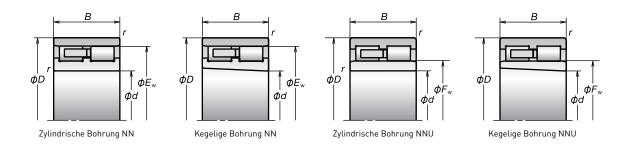



Lager-	H		nessunge im)	n	Tragz (k		E _w (F _w bei	Gewicht		nzahlen (²) n ⁻¹)
bezeichnung (¹)	d	D	В	r (min.)	C _r (dynamisch)	C _{or} (statisch)	Typ NNU) (mm) (Referenz)	(kg) (ca.)	Fett	Öl
NN3934MBKR	170	230	45	2	320	550	215	5,01	3 800	4 500
NN4934MBKR	170	230	60	2	435	805	215	6,42	3 800	4 500
NNU4934MBKR	170	230	60	2	435	805	187	6,50	3 800	4 500
NN3034MBKR	170	260	67	2,1	520	805	236	12,1	3 500	4 200
NN3936MBKR	180	250	52	2	390	655	232	7,20	3 500	4 200
NN4936MBKR	180	250	69	2	550	1 020	232	9,47	3 500	4 200
NNU4936MBKR	180	250	69	2	550	1 020	200	9,55	3 500	4 200
NN3036MBKR	180	280	74	2,1	650	995	255	15,7	3 300	4 000
NN3938MBKR	190	260	52	2	395	680	243,5	7,57	3 400	4 000
NN4938MBKR	190	260	69	2	555	1 060	243,5	9,72	3 400	4 000
NNU4938MBKR	190	260	69	2	555	1 060	211,5	9,91	3 400	4 000
NN3038MBKR	190	290	75	2,1	685	1 080	265	16,7	3 200	3 800
NN3940MBKR	200	280	60	2,1	480	815	259	10,6	3 200	3 800
NN4940MBKR	200	280	80	2,1	655	1 220	259	14,0	3 200	3 800
NNU4940MBKR	200	280	80	2,1	655	1 220	223	14,0	3 200	3 800
NN3040MBKR	200	310	82	2,1	750	1 170	282	21,3	3 000	3 600
NN3944MBKR	220	300	60	2,1	505	895	279	11,5	2 500	3 100
NN4944MBKR	220	300	80	2,1	690	1 330	279	15,1	2 500	3 100
NNU4944MBK	220	300	80	2,1	690	1 330	243	15,2	2 500	3 100
NN3044MBKR	220	340	90	3	940	1 480	310	27,7	2 400	2 900
NN3948MBKR	240	320	60	2,1	525	975	300	12,3	2 400	2 900
NN4948MBKR	240	320	80	2,1	720	1 450	300	17,8	2 400	2 900
NNU4948MBKR	240	320	80	2,1	720	1 450	263	16,2	2 400	2 900
NN3048MBKR	240	360	92	3	980	1 600	330	30,4	2 200	2 700
NN3952MBKR	260	360	75	2,1	775	1 380	335	21,4	2 100	2 600
NN4952MBKR	260	360	100	2,1	1 070	2 100	335	28,4	2 100	2 600
NNU4952MBKR	260	360	100	2,1	1 070	2 100	289	28,3	2 100	2 600
NN3052KR	260	400	104	4	1 030	1 920	364	44,7	2 000	2 500

⁽¹⁾ Das Nachsetzzeichen "K" oder "KR" steht für Wälzlager mit kegeligen Bohrungen (1 : 12). Bei Typen mit zylindrischer Bohrung das Kennzeichen weglassen.

⁽²) Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218.

^[3] Die Lagerluft CC9 findet bei Zylinderrollenlagern mit kegeligen Bohrungen der ISO-Toleranzklassen 5 und 4 Anwendung.

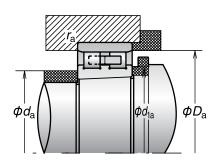


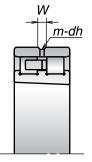
Spezifikation E44

Abmes	ssungen v Ka	on Ansch anten (mi		en und	Lagerlı	uft bei W	älzlagern (µm		eliger Bo	hrung		Wälzlagern mit Bohrung (µm)			en der Schmier- n) Spezifikation E44	
$d_{\rm a}$	d _{1a}) _a	r _a	CC9	(3)	CC	0	С	C1	C	C1	Bohrungs- durchmesser	Ölnut- breite	Anzahl Bohrungen	
(min.)	(min.)	(max.)	(min.)	(max.)	min.	max.	min.	max.	min.	max.	min.	max.	dh	W	m	
179	182	221	217	2	15	35	30	50	35	75	10	40	3	6	4	
179	182	221	217	2	15	35	30	50	35	75	10	40	4	8	4	
179	182	221	_	2	15	35	30	50	35	75	10	40	4	8	4	
181	183	249	239	2	15	35	30	50	35	75	10	40	5	9	4	
189	193	241	234	2	15	35	30	50	35	75	10	40	4	8	4	
189	193	241	234	2	15	35	30	50	35	75	10	40	5	9	4	
189	193	241	_	2	15	35	30	50	35	75	10	40	5	9	4	
191	193	269	258	2	15	35	30	50	35	75	10	40	5	9	4	
199	203	251	246	2	20	40	30	50	40	80	15	45	4	8	4	
199	203	251	246	2	20	40	30	50	40	80	15	45	5	9	4	
199	203	251	_	2	20	40	30	50	40	80	15	45	5	9	4	
201	203	279	268	2	20	40	30	50	40	80	15	45	5	9	4	
211	214	269	261	2	20	40	30	50	40	80	15	45	4	8	4	
211	214	269	261	2	20	40	30	50	40	80	15	45	5	9	4	
211	214	269	_	2	20	40	30	50	40	80	15	45	5	9	4	
211	214	299	285	2	20	40	30	50	40	80	15	45	6	12	4	
231	234	289	281	2	20	45	35	60	45	90	15	50	4	8	4	
231	234	289	281	2	20	45	35	60	45	90	15	50	5	9	4	
231	234	289	_	2	20	45	35	60	45	90	15	50	5	9	4	
233	236	327	313	2,5	20	45	35	60	45	90	15	50	6	12	4	
251	254	309	302	2	25	50	40	65	50	100	15	50	4	8	4	
251	254	309	302	2	25	50	40	65	50	100	15	50	5	9	4	
251	254	309	_	2	25	50	40	65	50	100	15	50	5	9	4	
253	256	347	334	2,5	25	50	40	65	50	100	15	50	6	12	4	
271	275	349	338	2	25	55	40	70	55	110	20	55	5	9	4	
271	275	349	338	2	25	55	40	70	55	110	20	55	6	12	4	
271	275	349	_	2	25	55	40	70	55	110	20	55	6	12	4	
276	278	384	368	3	25	55	40	70	55	110	20	55	6	12	4	

2. Zylinderrollenlager Zweireihige Zylinderrollenlager

Bohrungsdurchmesser 280-420 mm

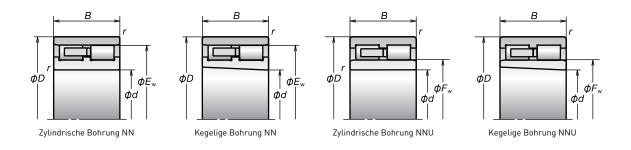



Lager-	H		nessunge im)	n		ahlen N)	E _w (F _w bei	Gewicht	Grenzdreł (mi	
bezeichnung (¹)	d	D	В	r (min.)	C _r (dynamisch)	C _{or} (statisch)	Typ NNU) (mm) (Referenz)	(kg) (ca.)	Fett	Öl
NN3956MBKR	280	380	75	2,1	695	1 460	355	22,8	2 000	2 500
NN4956KR	280	380	100	2,1	960	2 230	355	30,1	2 000	2 500
NNU4956KR	280	380	100	2,1	960	2 230	309	33,1	2 000	2 500
NN3056KR	280	420	106	4	1 080	2 080	384	47,7	1 900	2 300
NN3960KR	300	420	90	3	855	1 800	388	36,2	1 800	2 300
NN4960KR	300	420	118	3	1 230	2 870	388	47,6	1 800	2 300
NNU4960KR	300	420	118	3	1 230	2 870	336	47,6	1 800	2 300
NN3060KR	300	460	118	4	1 290	2 460	418	66,5	1 800	2 100
NN3964KR	320	440	90	3	880	1 910	408	38,2	1 800	2 100
NN4964KR	320	440	118	3	1 260	3 050	408	50,3	1 800	2 100
NNU4964KR	320	440	118	3	1 260	3 050	356	50,3	1 800	2 100
NN3064KR	320	480	121	4	1 350	2 670	438	71,8	1 700	2 000
NN4968KR	340	460	118	3	1 350	3 400	428	52,6	1 700	2 000
NNU4968KR	340	460	118	3	1 350	3 400	376	52,9	1 700	2 000
NN3068KR	340	520	133	5	1 670	3 300	473	95,6	1 600	1 900
NN3972KR	360	480	90	3	930	2 130	448	42,1	1 600	1 900
NN4972KR	360	480	118	3	1 390	3 550	448	55,1	1 600	1 900
NNU4972KR	360	480	118	3	1 390	3 550	396	55,2	1 600	1 900
NN3072KR	360	540	134	5	1 700	3 450	493	99,7	1 500	1 800
NN3976KR	380	520	106	4	1 250	2 730	484	63,5	1 500	1 800
NN4976KR	380	520	140	4	1 880	4 600	485	81,3	1 500	1 800
NNU4976KR	380	520	140	4	1 880	4 600	421	88,8	1 500	1 800
NN3076KR	380	560	135	5	1 770	3 700	513	113	1 400	1 700
NN4980KR	400	540	140	4	1 940	4 900	505	84,1	1 400	1 700
NNU4980KR	400	540	140	4	1 940	4 900	441	85,1	1 400	1 700
NN3080KR	400	600	148	5	2 090	4 300	548	138	1 300	1 600
NN4984K	420	560	140	4	2 000	5 150	525	87,9	1 200	1 500
NNU4984K	420	560	140	4	2 000	5 150	461	88,4	1 200	1 500
NN3084K	420	620	150	5	2 130	4 450	568	145	1 100	1 400

^[1] Das Nachsetzzeichen "K" oder "KR" steht für Wälzlager mit kegeligen Bohrungen (1 : 12). Bei Typen mit zylindrischer Bohrung das Kennzeichen weglassen.

⁽²) Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218.

^[3] Die Lagerluft CC9 findet bei Zylinderrollenlagern mit kegeligen Bohrungen der ISO-Toleranzklassen 5 und 4 Anwendung.

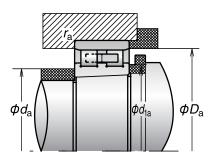


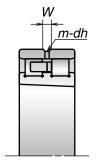
Spezifikation E44

Abmes	ssungen v Ka	on Ansch anten (mr		en und	Lagerlu	ft bei W	älzlagern (µm		eliger Bo	hrung		Wälzlagern mit Bohrung (µm)		ungen der 9 (mm) Spezi	Schmier- fikation E44
d _a	d _{1a}) _a	r _a	CC9	(³)	CC)	C	C1	C	C1	Bohrungs- durchmesser	Ölnut- breite	Anzahl Bohrungen
(min.)	(min.)	(max.)	(min.)	(max.)	min.	max.	min.	max.	min.	max.	min.	max.	dh	W	m
291	295	369	358	2	25	55	40	70	55	110	20	55	5	9	4
291	295	369	358	2	25	55	40	70	55	110	20	55	6	12	4
291	295	369	_	2	25	55	40	70	55	110	20	55	6	12	4
296	298	404	388	3	25	55	40	70	55	110	20	55	6	12	4
313	318	407	391	2,5	30	60	45	75	60	120	20	60	6	12	4
313	318	407	391	2,5	30	60	45	75	60	120	20	60	6	12	4
313	318	407	_	2,5	30	60	45	75	60	120	20	60	6	12	4
316	319	444	422	3	30	60	45	75	60	120	20	60	6	12	4
333	338	427	411	2,5	30	65	45	80	65	135	20	65	6	12	4
333	338	427	411	2,5	30	65	45	80	65	135	20	65	6	12	4
333	338	427	_	2,5	30	65	45	80	65	135	20	65	6	12	4
336	340	464	442	3	30	65	45	80	65	135	20	65	8	15	4
353	363	447	431	2,5	30	65	45	80	65	135	20	65	6	12	4
353	363	447	_	2,5	30	65	45	80	65	135	20	65	6	12	4
360	365	500	477	4	30	65	45	80	65	135	20	65	8	15	4
373	381	467	451	2,5	35	75	50	90	75	150	25	75	6	12	4
373	383	467	451	2,5	35	75	50	90	75	150	25	75	6	12	4
373	383	467	_	2,5	35	75	50	90	75	150	25	75	6	12	4
380	385	520	497	4	35	75	50	90	75	150	25	75	8	15	4
396	405	504	487	3	35	75	50	90	75	150	25	75	6	12	4
396	408	504	488	3	35	75	50	90	75	150	25	75	8	15	4
396	408	504	_	3	35	75	50	90	75	150	25	75	8	15	4
400	411	540	518	4	35	75	50	90	75	150	25	75	8	15	4
416	428	524	508	3	35	75	50	90	75	150	25	75	8	15	4
416	428	524	_	3	35	75	50	90	75	150	25	75	8	15	4
420	432	580	553	4	35	75	50	90	75	150	25	75	8	15	4
436	448	544	528	3	40	85	60	105	85	170	25	85	8	15	4
436	448	544	_	3	40	85	60	105	85	170	25	85	8	15	4
440	453	600	573	4	40	85	60	105	85	170	25	85	8	15	4

2. Zylinderrollenlager Zweireihige Zylinderrollenlager

Bohrungsdurchmesser 440-800 mm




Lager-	H	Hauptabm (m	nessunge m)	n	Tragz (k	ahlen N)	E _w (F _w bei	Gewicht	Grenzdreh (mi	
bezeichnung (¹)	d	D	В	r (min.)	C _r (dynamisch)	C _{or} (statisch)	Typ NNU) (mm) (Referenz)	(kg) (ca.)	Fett	Öl
NN4988K	440	600	160	4	2 370	6 000	559	123	1 100	1 400
NNU4988K	440	600	160	4	2 370	6 000	487	123	1 100	1 400
NN3088K	440	650	157	6	2 360	4 900	596	166	1 100	1 300
NN3992K	460	620	118	4	1 610	3 700	578	94,5	1 100	1 300
NN4992K	460	620	160	4	2 400	6 200	579	127	1 100	1 300
NNU4992K	460	620	160	4	2 400	6 200	507	128	1 100	1 300
NN3092K	460	680	163	6	2 550	5 350	623	189	1 000	1 300
NN4996K	480	650	170	5	2 690	7 000	607	151	1 000	1 300
NNU4996K	480	650	170	5	2 690	7 000	531	150	1 000	1 300
NN3096K	480	700	165	6	2 600	5 550	643	211	1 000	1 200
NN49/500K	500	670	170	5	2 720	7 200	627	155	1 000	1 200
NNU49/500K	500	670	170	5	2 720	7 200	551	157	1 000	1 200
NN30/500K	500	720	167	6	2 580	5 600	663	205	900	1 200
NN39/530K	530	710	136	5	2 040	4 900	663	139	900	1 200
NN49/530K	530	710	180	5	3 050	8 150	664	185	900	1 200
NNU49/530K	530	710	180	5	3 050	8 150	584	186	900	1 200
NN30/530K	530	780	185	6	3 200	6 900	715	280	900	1 100
NN49/560K	560	750	190	5	3 250	8 700	701	218	900	1 100
NNU49/560K	560	750	190	5	3 250	8 700	617	230	900	1 100
NN49/600K	600	800	200	5	3 850	10 500	749	273	800	1 000
NNU49/600K	600	800	200	5	3 850	10 500	659	284	800	1 000
NN49/630K	630	850	218	6	4 200	11 400	793	328	800	1 000
NNU49/630K	630	850	218	6	4 200	11 400	697	328	800	1 000
NN49/670K	670	900	230	6	4 150	11 500	838	419	700	900
NNU49/670K	670	900	230	6	4 150	11 500	742	381	700	900
NNU49/710BK	710	950	243	6	4 450	12 600	775	472	700	900
NNU49/750K	750	1 000	250	6	5 500	15 900	826	530	700	800
NNU49/800K	800	1 060	258	6	5 700	16 500	879	573	600	800

⁽¹) Das Nachsetzzeichen "K" oder "KR" steht für Wälzlager mit kegeligen Bohrungen (1 : 12). Bei Typen mit zylindrischer Bohrung das Kennzeichen weglassen.

⁽²) Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218.

^[3] Die Lagerluft CC9 findet bei Zylinderrollenlagern mit kegeligen Bohrungen der ISO-Toleranzklassen 5 und 4 Anwendung.

Spezifikation E44

Abmes	ssungen v Ka	on Ansch anten (mr		len und	Lagerlı	ıft bei W	älzlagern (µm	•	eliger Bo	hrung	Lagerluft bei Wälzlagern mit zylindrischer Bohrung (µm)		Abmessungen der Schmier- bohrungen (mm) Spezifikation E44		
d _a	d _{1a}	С) _a	r _a	CC9	(3)	СС	0	C	C1	C	C1	Bohrungs-	Ölnut-	Anzahl
(min.)	(min.)	(max.)	(min.)	(max.)	min.	max.	min.	max.	min.	max.	min.	max.	durchmesser dh	breite W	Bohrungen m
456	469	584	562	3	40	85	60	105	85	170	25	85	8	15	4
456	469	584	_	3	40	85	60	105	85	170	25	85	8	15	4
466	479	624	601	5	40	85	60	105	85	170	25	85	8	15	4
476	486	604	581	3	45	95	70	120	95	190	25	95	6	12	4
476	489	604	582	3	45	95	70	120	95	190	25	95	8	15	4
476	489	604	_	3	45	95	70	120	95	190	25	95	8	15	4
486	500	654	628	5	45	95	70	120	95	190	25	95	10	18	4
500	514	630	610	4	45	95	70	120	95	190	25	95	10	18	4
500	514	630	_	4	45	95	70	120	95	190	25	95	10	18	4
506	520	674	648	5	45	95	70	120	95	190	25	95	10	18	4
520	534	650	630	4	45	95	70	120	95	190	25	95	10	18	4
520	534	650	_	4	45	95	70	120	95	190	25	95	10	18	4
526	540	694	668	5	45	95	70	120	95	190	25	95	10	18	4
550	561	690	668	4	50	105	80	135	105	210	30	105	8	15	4
550	565	690	667	4	50	105	80	135	105	210	30	105	10	18	4
550	565	690	_	4	50	105	80	135	105	210	30	105	10	18	4
556	571	754	720	5	50	105	80	135	105	210	30	105	10	18	4
580	596	730	704	4	50	105	80	135	105	210	30	105	10	18	4
580	596	730	_	4	50	105	80	135	105	210	30	105	10	18	4
620	637	780	752	4	55	115	85	145	115	230	30	115	10	18	4
620	637	780	_	4	55	115	85	145	115	230	30	115	10	18	4
656	674	824	796	5	55	115	85	145	115	230	30	115	12	20	4
656	674	824	_	5	55	115	85	145	115	230	30	115	12	20	4
696	715	874	841	5	60	130	90	160	130	260	30	130	12	20	4
696	715	874	_	5	60	130	90	160	130	260	30	130	12	20	4
736	756	924	_	5	60	130	90	160	130	260	30	130	12	20	4
776	797	974	_	5	70	150	110	190	145	290	35	145	12	20	4
826	848	1 034	_	5	70	150	110	190	145	290	35	145	12	20	4

3. Axial-Schrägkugellager

Hochgeschwindigkeits-Axial-Schrägkugellager

NSKROBUST-Serie

Axial-Schrägkugellager

NSKTAC-F-Serie

Beidseitig wirkende Axial-Schrägkugellager

NSKTAC-D-Serie

Axial-Schrägkugellager

Kapitel 4

Eigenschaften

Bezeichnungssystem

Lagertabellen

Hochgeschwindigkeits-Axial-Schrägkugellager

(NSKROBUST-Serie)

Serie BAR10

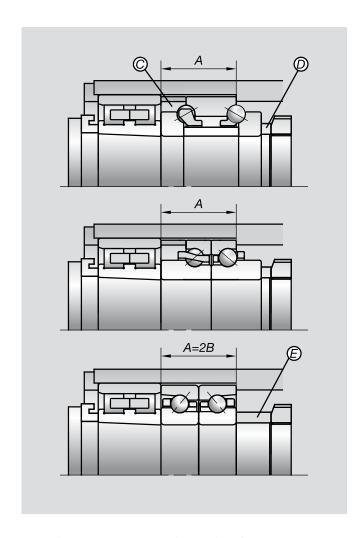
Serie BTR10

Axial-Schrägkugellager

(NSKTAC-F-Serie)

Serie TAC29F

Serie TAC20F


Beidseitig wirkende Axial-Schrägkugellager

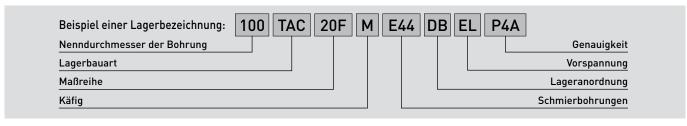
(NSKTAC-D-Serie)

Serie TAC29D

Serie TAC20D

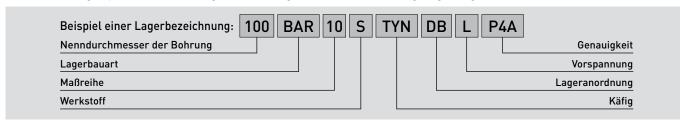
3. Axial-Schrägkugellager

Eigenschaften

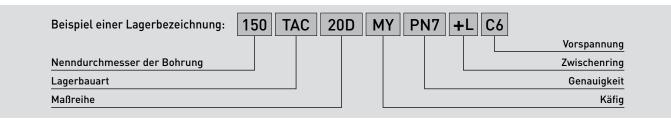

Hauptspindeln von Werkzeugmaschinen werden auch mit zweireihigen Zylinderrollenlagern in Verbindung mit Axial-Schrägkugellagern ausgerüstet. Diese Kugellager müssen neben einer großen Steifigkeit auch mit hohen Drehzahlen laufen können. Für solche Anwendungen hat NSK Lager in drei Bauformen ausgeführt. Da die bisher gebräuchlichen TAC-Lager mit 60° Druckwinkel bezüglich ihrer Drehzahleignung deutlich hinter den Zylinderrollenlagern gleicher Bohrungsgröße zurückbleiben, bevorzugt NSK die neuen Hochgeschwindigkeits-Axial-Schrägkugellager der ROBUST Serie.

Sie haben spezielle Außendurchmessertoleranzen (Klasse P4A und Klasse P2A), damit auch im Betrieb ein Lossitz des Lagers im Gehäuse gewährleistet ist, um radiale Belastungen des Lagers zu vermeiden. Hochgeschwindigkeits-Axial-Schrägkugellager der Serie ROBUST bewahren auch bei hohen Drehzahlen ihre hohe Steifigkeit. Kugeldurchmesser und Anzahl der Kugeln entsprechen den TAC-Lagern. Die Axial-Schrägkugellager mit einem Druckwinkel von 40° (Serie BTR) oder 30° (Serie BAR) zeichnen sich durch hohe Leistungsfähigkeit und minimale Eigenerwärmung bei hohen Drehzahlen aus.

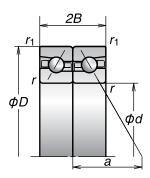
Austauschbarkeit


Die neuen BAR- bzw. BTR-Lager können problemlos anstelle der bisherigen TAC20X-Lager eingesetzt werden. Es müssen keinerlei Veränderungen oder Umbauten an Welle oder Gehäuse durchgeführt werden. Beide Lagerbauformen sind von der Breite entsprechend so ausgelegt, dass nur ein neuer (breiterer) Zwischenring (E) an die Stelle des alten (D) tritt und der Zwischenring (C) weg fällt.

Bezeichnungssystem für Axial-Schrägkugellager (NSKTAC-F-Serie)


			Seite
100	Nenndurchmesser der Bohrung	Bohrungsdurchmesser (mm) (50–130 mm)	140-141
TAC	Lagerbauart	TAC: Axial-Schrägkugellager	28
20F	Maßreihe	20F: für Kombination mit Serie NN30 29F: für Kombination mit Serie NN39 und NN49	140-141
M	Käfig	M: Messingkäfig	_
E44	Schmierbohrungen	Kein Kennzeichen: keine Schmierbohrungen E44: Schmiernut und Schmierbohrungen an Außenring	140-141
DB	Lageranordnung	DB: O-Anordnung	202-207
EL	Vorspannung	L: leichte Vorspannung (Standard bei dieser Serie) EL: extraleichte Vorspannung	212
P4A	Vorspannung	P4A: Die Toleranzen der Außendurchmesser sind NSK spezifisch, alle anderen entsprechen ISO-Klasse 4. P5A: Die Toleranzen der Außendurchmesser sind NSK spezifisch, alle anderen entsprechen ISO-Klasse 5.	230

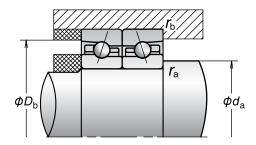
Bezeichnungssystem für Hochgeschwindigkeits-Axial-Schrägkugellager (NSKROBUST-Serie)


					Seite
100	Nenndurchmesser	Bohrungsdurch	messer (mm)		134-139
BAR	Lagerbauart	BAR: Druckwink BTR: Druckwink			28, 46-47
10	Maßreihe	10: ISO-Reihe 1	0 (Bohrung, Außendurchm	esser, aber NSK-spezifische Breite)	134-139
S	Material	Bauform S E H	Ringe Wälzlagerstahl (SUJ2) Wälzlagerstahl (SUJ2) Wälzlagerstahl (SUJ2)	Werkstoff Wälzkörper Wälzlagerstahl (SUJ2) Wälzkörper erhöhte Lebensdauer (ultra long life) (EQTF) Keramik (Si₃N₄)	16-19, 28
TYN	Käfig	bis Bohrungsdu	nrter Polyamidkäfig, Drehza rchmesser max. 160 mm d nnung bei Messingkäfigen)	ahlgrenze n x dm = 1,2 mio (Fett), 1,4 mio (Oil), arüber Messingkäfig	20
DB	Anordnung	DB: 0-Anordnu	ng		202-207
L	Vorspannung	EL: extraleichte	Vorspannung, L: leichte V	orspannung, CP: Sondervorspannung, CA: Sonderlagerluft	134-139, 212
P4A	Genauigkeit		e 2, aber spezielle Toleran e 4; aber spezielle Toleran		230

Bezeichnungssystem für zweiseitig wirkende Axial-Schrägkugellager (NSKTAC-D-Serie)

150	Nenndurchmesser	Bohrungsdurchmesser (mm) (140-320mm)	Seite 142-143
150	Neimuurciimessei	Doni ungsuurchinesser (inin) (140-5201111)	142-143
TAC	Lagerbauart	Axial-Schrägkugellager: Druckwinkel 60°	28
20D	Abmessungen	20X, 20D: für Kombination mit Serie NN30 29D: für Kombination mit Serie NN39 und NN49	142-143
MY	Käfig	MY: Messingkäfig	_
PN7	Genauigkeit	PN7: NSK Standard	230
+L	Zwischenring	Innerer Zwischenring	-
C6	Vorspannung	C6: Standardvorspannung bei Fettschmierung C7: Standardvorspannung bei Ölschmierung	142-143

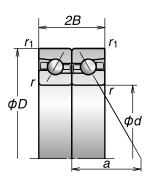
3. Axial-Schrägkugellager Bohrungsdurchmesser 50–85 mm Hochgeschwindigkeits-Axial-Schrägkugellager (NSKROBUST-Serie)



Lager- bezeichnung		Haup	tabmes (mm)	sungen				Zulässige Axiallast (²)		Last- angriffs- punkt	Gewicht (kg/Reihe) (Referenz)		hzahlen (³) in-1)
bezeiciilidiig	d	D	2B	r (min.)	r ₁ (min.)	C_a (dynamisch)	C_{oa} (statisch)	(kN)	(Grad)	(mm) a	(IXEIEIEIIZ)	Fett	Öl
50BAR10E	50	80	28,5	1	0,6	14,7	27,7	18,4	30	25,6	0,272	12 400	15 700
50BAR10H	50	80	28,5	1	0,6	(14,7)	(27,7)	12,6	30	25,6	0,257	13 100	16 200
50BTR10E	50	80	28,5	1	0,6	17,4	31,5	19,3	40	34,1	0,272	10 800	14 000
50BTR10H	50	80	28,5	1	0,6	(17,4)	(31,5)	15,5	40	34,1	0,257	11 600	14 700
55BAR10E	55	90	33	1,1	0,6	18,2	35,0	23,4	30	28,9	0,390	11 100	14 100
55BAR10H	55	90	33	1,1	0,6	(18,2)	(35,0)	16,0	30	28,9	0,369	11 800	14 500
55BTR10E	55	90	33	1,1	0,6	21,6	40,0	23,6	40	38,3	0,390	9 700	12 600
55BTR10H	55	90	33	1,1	0,6	(21,6)	(40,0)	19,7	40	38,3	0,369	10 400	13 200
60BAR10E	60	95	33	1,1	0,6	18,9	38,0	25,5	30	30,4	0,420	10 400	13 200
60BAR10H	60	95	33	1,1	0,6	(18,9)	(38,0)	17,5	30	30,4	0,397	11 000	13 600
60BTR10E	60	95	33	1,1	0,6	22,4	43,5	25,8	40	40,4	0,420	9 100	11 800
60BTR10H	60	95	33	1,1	0,6	(22,4)	(43,5)	21,5	40	40,4	0,397	9 700	12 300
65BAR10E	65	100	33	1,1	0,6	19,5	41,5	27,7	30	31,8	0,450	9 700	12 400
65BAR10H	65	100	33	1,1	0,6	(19,5)	(41,5)	19,0	30	31,8	0,425	10 400	12 800
65BTR10E	65	100	33	1,1	0,6	23,1	47,0	27,3	40	42,5	0,450	8 500	11 100
65BTR10H	65	100	33	1,1	0,6	(23,1)	(47,0)	23,3	40	42,5	0,425	9 100	11 600
70BAR10E	70	110	36	1,1	0,6	26,9	55,0	37,5	30	34,7	0,601	8 900	11 400
70BAR10H	70	110	36	1,1	0,6	(26,9)	(55,0)	25,5	30	34,7	0,561	9 500	11 700
70BTR10E	70	110	36	1,1	0,6	32,0	63,0	35,0	40	46,3	0,601	7 800	10 200
70BTR10H	70	110	36	1,1	0,6	(32,0)	(63,0)	31,5	40	46,3	0,561	8 400	10 600
75BAR10E	75	115	36	1,1	0,6	27,3	57,5	39,0	30	36,1	0,634	8 500	10 800
75BAR10H	75	115	36	1,1	0,6	(27,3)	(57,5)	26,7	30	36,1	0,592	9 000	11 100
75BTR10E	75	115	36	1,1	0,6	32,5	65,5	36,5	40	48,4	0,634	7 400	9 600
75BTR10H	75	115	36	1,1	0,6	(32,5)	(65,5)	33,0	40	48,4	0,592	7 900	10 000
80BAR10E	80	125	40,5	1,1	0,6	32,0	68,5	46,5	30	39,4	0,830	7 900	10 000
80BAR10H	80	125	40,5	1,1	0,6	(32,0)	(68,5)	32,0	30	39,4	0,776	8 300	10 300
80BTR10E	80	125	40,5	1,1	0,6	38,0	78,0	43,0	40	52,7	0,830	6 900	8 900
80BTR10H	80	125	40,5	1,1	0,6	(38,0)	(78,0)	39,0	40	52,7	0,776	7 400	9 300
85BAR10E	85	130	40,5	1,1	0,6	32,5	71,5	48,5	30	41,1	0,983	7 500	9 500
85BAR10H	85	130	40,5	1,1	0,6	(32,5)	(71,5)	33,0	30	41,1	0,926	8 000	9 800
85BTR10E	85	130	40,5	1,1	0,6	38,5	81,5	43,5	40	55,2	0,983	6 600	8 500
85BTR10H	85	130	40,5	1,1	0,6	(38,5)	(81,5)	41,0	40	55,2	0,926	7 000	8 900

^[1] Die Tragzahlen in Klammern sind Referenzwerte, gerechnet mit Stahlkugeln, für Wälzlager mit Keramikkugeln.

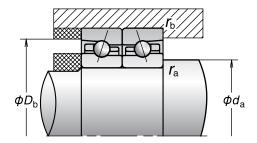
 $[\]left[^{2}\right]$ Angaben zur zulässigen Axiallast siehe Seite 201.


^[3] Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218. Die auf dieser Seite aufgeführten Grenzdrehzahlen basieren auf einer DB-Anordnung mit extraleichter Vorspannung (EL). Bei leichter Vorspannung (L) beträgt die Drehzahlgrenze 85 % des in der Tabelle angegebenen Wertes.

Abmessu		hlussmaßen u im)	nd Kanten	(Anordnung	annung J DB und DF) N)	(Anordnung	teifigkeit DB und DF) µm)	Gemessene Axialluft (µm)		
d _a (min.)	D _b (max.)	r _a (max.)	r₅ (max.)	EL	L	EL	L	EL	L	
56	75	1	0,6	221	464	169	220	-5	-10	
56	75	1	0,6	246	531	196	257	-5	-10	
56	75	1	0,6	335	761	292	387	-5	-10	
56	75	1	0,6	379	879	341	455	-5	-10	
62	85	1	0,6	229	606	177	250	-5	-12	
62	85	1	0,6	256	696	206	293	-5	-12	
62	85	1	0,6	349	800	307	409	-5	-10	
62	85	1	0,6	396	924	359	480	-5	-10	
67	90	1	0,6	241	646	190	270	-5	-12	
67	90	1	0,6	270	743	221	316	-5	-12	
67	90	1	0,6	371	855	331	441	-5	-10	
67	90	1	0,6	421	990	387	518	-5	-10	
72	95	1	0,6	253	687	203	289	-5	-12	
72	95	1	0,6	284	791	236	339	-5	-12	
72	95	1	0,6	392	912	354	473	-5	-10	
72	95	1	0,6	446	1 056	414	556	-5	-10	
77	105	1	0,6	252	908	202	317	-5	-15	
77	105	1	0,6	282	1 051	235	373	-5	-15	
77	105	1	0,6	390	1 556	352	566	-5	-15	
77	105	1	0,6	444	1 815	412	668	-5	-15	
82	110	1	0,6	258	939	209	329	-5	-15	
82	110	1	0,6	290	1 088	243	387	-5	-15	
82	110	1	0,6	402	1 612	365	588	-5	-15	
82	110	1	0,6	458	1 881	427	694	-5	-15	
87	120	1	0,6	346	1 095	237	356	-5	-15	
87	120	1	0,6	382	1 256	275	417	-5	-15	
87	120	1	0,6	507	1 819	406	630	-5	-15	
87	120	1	0,6	569	2 107	473	741	-5	-15	
92	125	1	0,6	354	1 129	245	369	-5	-15	
92	125	1	0,6	391	1 295	284	432	-5	-15	
92	125	1	0,6	520	1 879	420	653	-5	-15	
92	125	1	0,6	584	2 177	489	768	-5	-15	

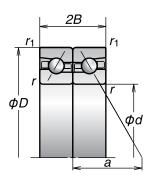
Dynamisch äquivalente	LagerbelastungS. 193
-----------------------	----------------------

3. Axial-Schrägkugellager Bohrungsdurchmesser 90-140 mm Hochgeschwindigkeits-Axial-Schrägkugellager (NSKROBUST-Serie)



Lager- bezeichnung		Haup	otabmes (mm)	sungen		Tragza (k	hlen (¹) N)	Zulässige Axiallast (²)	Druck- winkel	Last- angriffs- punkt	Gewicht (kg/Reihe) (Referenz)	Grenzdrel (mi	nzahlen (³) n ⁻¹)
bezeieiiiuiig	d	D	2B	r (min.)	r ₁ (min.)	\mathbf{C}_{a} (dynamisch)	C_{oa} (statisch)	(kN)	(Grad)	(mm) a	(itererenz)	Fett	Öl
90BAR10E	90	140	45	1,5	1	42,5	92,5	62,5	30	44,4	1,21	7 000	8 900
90BAR10H	90	140	45	1,5	1	(42,5)	(92,5)	43,0	30	44,4	1,12	7 400	9 200
90BTR10E	90	140	45	1,5	1	50,0	105	58,0	40	59,5	1,21	6 100	8 000
90BTR10H	90	140	45	1,5	1	(50,0)	(105)	52,5	40	59,5	1,12	6 600	8 300
95BAR10E	95	145	45	1,5	1	43,0	96,5	65,0	30	45,5	1,25	6 700	8 500
95BAR10H	95	145	45	1,5	1	(43,0)	(96,5)	44,5	30	45,5	1,16	7 100	8 800
95BTR10E	95	145	45	1,5	1	51,0	110	61,0	40	61,0	1,25	5 900	7 600
95BTR10H	95	145	45	1,5	1	(51,0)	(110)	55,0	40	61,0	1,16	6 300	8 000
100BAR10E	100	150	45	1,5	1	43,5	100	68,0	30	47,3	1,31	6 400	8 200
100BAR10H	100	150	45	1,5	1	(43,5)	(100)	46,5	30	47,3	1,22	6 800	8 400
100BTR10E	100	150	45	1,5	1	51,5	114	73,0	40	63,7	1,31	5 600	7 300
100BTR10H	100	150	45	1,5	1	(51,5)	(114)	57,0	40	63,7	1,22	6 000	7 600
105BAR10E	105	160	49,5	2	1	49,5	115	78,0	30	50,6	1,74	6 100	7 700
105BAR10H	105	160	49,5	2	1	(49,5)	(115)	53,5	30	50,6	1,62	6 500	8 000
105BTR10E	105	160	49,5	2	1	58,5	131	74,5	40	68,0	1,74	5 300	6 900
105BTR10H	105	160	49,5	2	1	(58,5)	(131)	65,5	40	68,0	1,62	5 700	7 200
110BAR10E	110	170	54	2	1	55,5	131	89,0	30	53,9	1,97	5 800	7 300
110BAR10H	110	170	54	2	1	(55,5)	(131)	60,5	30	53,9	1,83	6 100	7 500
110BTR10E	110	170	54	2	1	66,0	148	82,5	40	72,2	1,97	5 000	6 500
110BTR10H	110	170	54	2	1	(66,0)	(148)	74,5	40	72,2	1,83	5 400	6 800
120BAR10E	120	180	54	2	1	57,0	141	96,0	30	56,8	2,29	5 400	6 800
120BAR10H	120	180	54	2	1	(57,0)	(141)	65,5	30	56,8	2,14	5 700	7 000
120BTR10E	120	180	54	2	1	68,0	160	88,5	40	76,4	2,29	4 700	6 100
120BTR10H	120	180	54	2	1	(68,0)	(160)	80,5	40	76,4	2,14	5 000	6 400
130BAR10E	130	200	63	2	1	72,5	172	117	30	63,3	3,20	4 900	6 200
130BAR10H	130	200	63	2	1	(72,5)	(172)	79,5	30	63,3	2,98	5 200	6 400
130BTR10E	130	200	63	2	1	86,0	195	106	40	85,0	3,20	4 300	5 600
130BTR10H	130	200	63	2	1	(86,0)	(195)	98,0	40	85,0	2,98	4 600	5 800
140BAR10E	140	210	63	2	1	78,5	200	135	30	66,2	3,56	4 600	5 900
140BAR10H	140	210	63	2	1	(78,5)	(200)	92,5	30	66,2	3,30	4 900	6 000
140BTR10E	140	210	63	2	1	93,0	227	84,0	40	89,2	3,56	4 000	5 200
140BTR10H	140	210	63	2	1	(93,0)	(227)	100	40	89,2	3,30	4 300	5 500

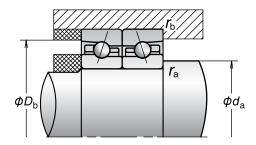
^[1] Die Tragzahlen in Klammern sind Referenzwerte, gerechnet mit Stahlkugeln, für Wälzlager mit Keramikkugeln.


 $[\]left[^{2}\right]$ Angaben zur zulässigen Axiallast siehe Seite 201.

^[3] Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218. Die auf dieser Seite aufgeführten Grenzdrehzahlen basieren auf einer DB-Anordnung mit extraleichter Vorspannung (EL). Bei leichter Vorspannung (L) beträgt die Drehzahlgrenze 85 % des in der Tabelle angegebenen Wertes.

Abmessu		chlussmaßen u nm)	nd Kanten	(Anordnun	annung g DB und DF) N)	(Anordnung	iteifigkeit g DB und DF) /µm)	Gemessene Axialluft (µm)		
d _a (min.)	D _b (max.)	r _a (max.)	r _b (max.)	EL	L	EL	L	EL	L	
99	134	1,5	0,8	360	1 662	252	431	-5	-20	
99	134	1,5	0,8	398	1 922	292	506	-5	-20	
99	134	1,5	0,8	532	2 834	433	768	-5	-20	
99	134	1,5	0,8	598	3 303	504	906	-5	-20	
104	139	1,5	0,8	368	1 717	260	447	-5	-20	
104	139	1,5	0,8	408	1 986	301	525	-5	-20	
104	139	1,5	0,8	546	2 931	448	797	-5	-20	
104	139	1,5	0,8	614	3 417	521	940	-5	-20	
109	144	1,5	0,8	376	1 770	268	462	-5	-20	
109	144	1,5	0,8	417	2 049	311	543	-5	-20	
109	144	1,5	0,8	559	3 029	462	825	-5	-20	
109	144	1,5	0,8	630	3 531	539	973	-5	-20	
115	154	2	1	384	1 820	276	476	-5	-20	
115	154	2	1	426	2 107	320	560	-5	-20	
115	154	2	1	573	3 121	477	852	-5	-20	
115	154	2	1	645	3 640	556	1 005	-5	-20	
120	164	2	1	391	1 868	284	489	-5	-20	
120	164	2	1	434	2 164	329	576	-5	-20	
120	164	2	1	586	3 210	490	877	-5	-20	
120	164	2	1	661	3 746	572	1 035	-5	-20	
130	174	2	1	408	1 982	301	523	-5	-20	
130	174	2	1	454	2 298	350	615	-5	-20	
130	174	2	1	615	3 417	522	938	-5	-20	
130	174	2	1	694	3 989	609	1 107	-5	-20	
140	194	2	1	394	2 532	286	547	-5	-25	
140	194	2	1	437	2 945	332	644	-5	-25	
140	194	2	1	591	4 411	496	985	-5	-25	
140	194	2	1	667	5 163	578	1 163	-5	-25	
150	204	2	1	580	3 154	359	649	-5	-25	
150	204	2	1	634	3 642	414	762	-5	-25	
150	204	2	1	823	5 365	610	1 157	-5	-25	
150	204	2	1	916	6 248	708	1 364	-5	-25	

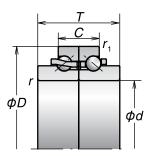
3. Axial-Schrägkugellager Bohrungsdurchmesser 150-380 mm Hochgeschwindigkeits-Axial-Schrägkugellager (NSKROBUST-Serie)



Lager- bezeichnung		Haup	tabmes (mm)	sungen		Tragzahlen (¹) (kN)		Zulässige Axiallast (²)		Last- angriffs- punkt	Gewicht (kg/Reihe) (Referenz)		hzahlen (³) in-¹)
bezeiciniung	d	D	2B	r (min.)	r ₁ (min.)	\mathbf{C}_{a} (dynamisch)	C _{oa} (statisch)	(kN)	(Grad)	(mm) a	(itererenz)	Fett	Öl
150BAR10S	150	225	67,5	2,1	1,1	92,5	234	160	30	71,0	4,35	4 000	5 100
150BAR10H	150	225	67,5	2,1	1,1	(92,5)	(234)	109	30	71,0	4,03	4 600	5 600
150BTR10S	150	225	67,5	2,1	1,1	110	267	104	40	95,5	4,35	3 500	4 600
150BTR10H	150	225	67,5	2,1	1,1	(110)	(267)	123	40	95,5	4,03	4 000	5 100
160BAR10S	160	240	72	2,1	1,1	100	257	175	30	75,7	5,33	3 800	4 800
160BAR10H	160	240	72	2,1	1,1	(100)	(257)	120	30	75,7	4,95	4 300	5 300
160BTR10S	160	240	72	2,1	1,1	119	293	184	40	101,9	5,33	3 300	4 300
160BTR10H	160	240	72	2,1	1,1	(119)	(293)	147	40	101,9	4,95	3 800	4 800
170BAR10S	170	260	81	2,1	1,1	117	305	207	30	82,3	7,95	3 500	4 500
170BTR10S	170	260	81	2,1	1,1	139	345	204	40	110,5	7,95	3 100	4 000
180BAR10S	180	280	90	2,1	1,1	151	385	262	30	88,8	10,2	3 300	4 200
180BTR10S	180	280	90	2,1	1,1	179	440	271	40	118,9	10,2	2 900	3 700
190BAR10S	190	290	90	2,1	1,1	150	385	263	30	91,8	11,0	3 200	4 000
190BTR10S	190	290	90	2,1	1,1	177	440	255	40	123,2	11,0	2 800	3 600
200BAR10S	200	310	99	2,1	1,1	169	444	300	30	98,3	14,2	3 000	3 800
200BTR10S	200	310	99	2,1	1,1	201	505	292	40	131,7	14,2	2 600	3 400
220BAR10S	220	340	108	3	1,1	189	505	340	30	107,8	18,5	2 400	3 100
220BTR10S	220	340	108	3	1,1	224	575	305	40	144,5	18,5	2 000	2 700
240BAR10S	240	360	108	3	1,1	195	545	370	30	113,5	19,9	2 200	2 900
240BTR10S	240	360	108	3	1,1	231	620	362	40	152,9	19,9	1 900	2 500
260BAR10S	260	400	123	4	1,5	253	765	520	30	125,9	29,0	2 000	2 600
260BTR10S	260	400	123	4	1,5	300	870	463	40	169,2	29,0	1 700	2 300
300BAR10S	300	460	142,5	4	1,5	310	1 020	696	30	145,3	44,9	1 800	2 300
300BTR10S	300	460	142,5	4	1,5	370	1 160	675	40	195,1	44,9	1 500	2 000
360BAR10S	360	540	159	5	2	360	1 320	815	30	169,7	67,6	1 500	1 900
360BTR10S	360	540	159	5	2	425	1 500	870	40	228,5	67,6	1 300	1 700
380BAR10S	380	560	159	5	2	370	1 410	965	30	175,4	69,8	1 400	1 900
380BTR10S	380	560	159	5	2	440	1 600	930	40	236,9	69,8	1 200	1 600

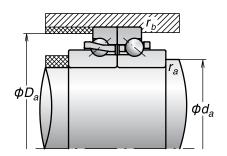
^[1] Die Tragzahlen in Klammern sind Referenzwerte, gerechnet mit Stahlkugeln, für Wälzlager mit Keramikkugeln.

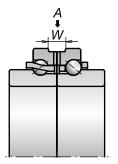
 $[\]left[^{2}\right]$ Angaben zur zulässigen Axiallast siehe Seite 201.

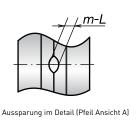

^[3] Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218. Die auf dieser Seite aufgeführten Grenzdrehzahlen basieren auf einer DB-Anordnung mit extraleichter Vorspannung (EL). Bei leichter Vorspannung (L) beträgt die Drehzahlgrenze 85 % des in der Tabelle angegebenen Wertes.

Abmessu		hlussmaßen ui im)	nd Kanten	(Anordnung	annung j DB und DF) N)	(Anordnung	teifigkeit DB und DF) µm)	Gemessene Axialluft (µm)		
d _a (min.)	D _b (max.)	r _a (max.)	r _b (max.)	EL	L	EL	L	EL	L	
162	218	2	1	584	3 694	364	691	-5	-28	
162	218	2	1	639	4 278	419	813	-5	-28	
162	218	2	1	831	5 435	618	1 172	-5	-25	
162	218	2	1	925	6 330	717	1 382	-5	-25	
172	233	2	1	591	4 121	370	728	-5	-30	
172	233	2	1	647	4 780	427	857	-5	-30	
172	233	2	1	843	5 545	630	1 198	-5	-25	
172	233	2	1	939	6 458	732	1 412	-5	-25	
182	253	2	1	604	4 258	383	754	-5	-30	
182	253	2	1	865	7 366	653	1 355	-5	-30	
192	273	2	1	606	5 259	385	814	-5	-35	
192	273	2	1	869	9 183	658	1 467	-5	-35	
202	283	2	1	606	5 259	385	814	-5	-35	
202	283	2	1	869	9 184	658	1 467	-5	-35	
212	303	2	1	617	6 055	396	873	-5	-38	
212	303	2	1	888	10 629	678	1 577	-5	-38	
234	333	2,5	1	626	7 839	406	973	-5	-45	
234	333	2,5	1	905	8 208	695	1 468	-5	-31	
254	353	2,5	1	651	9 162	431	1 077	-5	-48	
254	353	2,5	1	947	12 542	740	1 781	-5	-40	
278	391	3	1,5	1 076	2 325	540	702	_	_	
278	391	3	1,5	2 012	10 091	1 008	1 742	-	-	
318	451	3	1,5	2 505	5 838	756	1 011	_	_	
318	451	3	1,5	4 678	10 874	1 408	1 876	-	-	
382	530	4	2	2 801	6 524	845	1 129	_	_	
382	530	4	2	5 231	12 157	1 575	2 096	_	_	
402	550	4	2	2 982	6 945	899	1 201	_	_	
402	550	4	2	5 569	12 942	1 676	2 231			

Bohrungsdurchmesser 50-130 mm

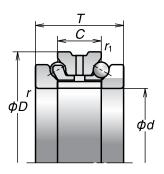

3. Axial-Schrägkugellager (NSKTAC-F-Serie)




Lager-		На		messun nm)	gen		Tragz (k		Zulässige Axiallast (¹)	Druck- winkel	Gewicht (kg/Reihe)		nzahlen (²) n ⁻¹)
bezeichnung	d	D	Т	С	r (min.)	r ₁ (min.)	\mathbf{C}_{a} (dynamisch)	C_{oa} (statisch)	(kN)	(Grad)	(Referenz)	Fett	Öl
50TAC20F	50	80	38	19	1	0,6	25,3	64,0	10,5	50	0,285	6 900	7 700
55TAC20F	55	90	44	22	1,1	0,6	31,5	81,0	13,3	50	0,442	6 200	6 900
60TAC20F	60	95	44	22	1,1	0,6	32,5	88,5	14,4	50	0,474	5 800	6 500
65TAC20F	65	100	44	22	1,1	0,6	33,5	96,0	15,5	50	0,506	5 500	6 100
70TAC20F	70	110	48	24	1,1	0,6	46,0	127	20,2	50	0,678	5 000	5 600
75TAC20F	75	115	48	24	1,1	0,6	46,5	132	21,0	50	0,717	4 700	5 300
80TAC20F	80	125	54	27	1,1	0,6	54,5	157	25,1	50	1,01	4 400	4 900
85TAC20F	85	130	54	27	1,1	0,6	55,5	164	26,0	50	1,04	4 200	4 700
90TAC20F	90	140	60	30	1,5	1	73,0	213	34,5	50	1,39	3 900	4 300
95TAC20F	95	145	60	30	1,5	1	74,0	222	36,0	50	1,45	3 800	4 200
100TAC29F	100	140	48	24	1,1	0,6	51,5	171	26,8	50	0,917	3 800	4 200
100TAC20F	100	150	60	30	1,5	1	75,0	231	37,0	50	1,47	3 600	4 000
105TAC20F	105	160	66	33	2	1	85,0	265	42,5	50	1,96	3 400	3 800
110TAC29F	110	150	48	24	1,1	0,6	53,0	187	29,2	50	0,996	3 500	3 800
110TAC20F	110	170	72	36	2	1	96,0	300	46,0	50	2,45	3 200	3 600
120TAC29F	120	165	54	27	2	1	62,0	223	35,0	50	1,39	3 200	3 500
120TAC20F	120	180	72	36	2	1	98,5	325	49,0	50	2,63	3 000	3 300
130TAC29F	130	180	60	30	1,5	1	74,5	276	43,5	50	1,89	2 900	3 200
130TAC20F	130	200	84	42	2	1	125	395	61,5	50	3,96	2 700	3 000

⁽¹) Angaben zur zulässigen Axiallast siehe Seite 201.

⁽²⁾ Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218. Die auf dieser Seite aufgeführten Grenzdrehzahlen basieren auf einer DB-Anordnung mit extraleichter Vorspannung (EL). Bei leichter Vorspannung (L) beträgt die Drehzahlgrenze 85 % des in der Tabelle angegebenen Wertes.

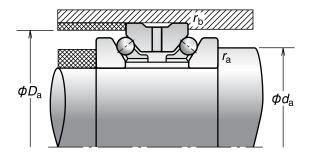


Spezifikation E44

Abmessun	gen von Ansc (m		und Kanten	Vorspannung (N)			teifigkeit µm)	Abmessungen der Schmierbohrungen (mm) Spezifikation E44			
d _a	D _a	r _a (max.)	r _b (max.)	EL	L	EL	L	Ölnutbreite W	Breite Aussparung L	Anzahl Bohrungen m	
62	75	1	0,6	549	2 335	530	876	8	3	4	
69	84	1	0,6	580	2 485	565	934	8	3	4	
74	89	1	0,6	619	2 677	609	1 010	8	3	4	
79	94	1	0,6	658	2 868	652	1 086	8	3	4	
87	104	1	0,6	648	2 814	641	1 062	10	4	4	
92	109	1	0,6	670	2 920	665	1 104	10	4	4	
99	117	1	0,6	806	3 236	733	1 181	12	5	4	
104	122	1	0,6	829	3 348	758	1 225	12	5	4	
110	131	1,5	1	847	3 428	778	1 254	12	5	4	
115	136	1,5	1	872	3 548	805	1 301	12	5	4	
117	134	1	0,6	931	3 839	871	1 418	10	4	4	
120	141	1,5	1	897	3 667	833	1 348	12	5	4	
127	150	2	1	925	3 802	864	1 400	12	6	4	
127	144	1	0,6	996	4 157	944	1 543	10	4	4	
134	158	2	1	952	3 933	894	1 451	14	6	4	
139	157	2	1	1 036	4 351	989	1 619	10	5	4	
144	168	2	1	1 005	4 189	954	1 551	14	6	4	
150	170	1,5	1	1 102	4 666	1 062	1 741	10	5	4	
160	187	2	1	956	3 946	898	1 453	14	6	4	

- Dynamisch äquivalente Lagerbelastung······S. 191
- Statisch äquivalente Lagerbelastung ······S. 198 Empfohlene Fettmengen ·····S. 257

3. Axial-Schrägkugellager Bohrungsdurchmesser 140-320 mm Zweiseitig wirkende Axial-Schrägkugellager (NSKTAC-D-Serie)



Lager-	Hauptabmessungen (mm)						Tragzahlen (kN)		Zulässige Axiallast (²)	Druck- winkel	Gewicht (kg/Reihe)	Grenzdrehzahlen (³) (min-1)	
bezeichnung	d	D (1)	Т	С	r (min.)	r ₁ (min.)	C _a (dynamisch)	C _{oa} (statisch)	(kN)	(Grad)	(Referenz)	Fett	Öl
140TAC20X+L	140	210	84	42	2	1	145	525	325	60	8,67	2 600	2 900
150TAC29D+L	150	210	72	36	2	1	116	465	290	60	6,18	2 500	2 800
150TAC20X+L	150	225	90	45	2,1	1,1	171	620	382	60	10,6	2 400	2 700
160TAC29D+L	160	220	72	36	2	1	118	490	307	60	6,45	2 400	2 700
160TAC20X+L	160	240	96	48	2,1	1,1	185	685	424	60	12,9	2 300	2 500
170TAC29D+L	170	230	72	36	2	1	120	520	324	60	7,35	2 300	2 500
170TAC20X+L	170	260	108	54	2,1	1,1	217	810	497	60	17,6	2 100	2 400
180TAC29D+L	180	250	84	42	2	1	158	655	405	60	9,99	2 100	2 400
180TAC20X+L	180	280	120	60	2,1	1,1	280	1 020	634	60	23,1	2 000	2 200
190TAC29D+L	190	260	84	42	2	1	161	695	428	60	11,0	2 000	2 300
190TAC20D+L	190	290	120	60	2,1	1,1	285	1 060	659	60	24,4	1 900	2 100
200TAC29D+L	200	280	96	48	2,1	1,1	204	855	531	60	15,7	1 900	2 100
200TAC20D+L	200	310	132	66	2,1	1,1	315	1 180	736	60	29,6	1 800	2 000
220TAC29D+L	220	300	96	48	2,1	1,1	210	930	577	60	17,0	1 800	2 000
220TAC20D+L	220	340	144	72	2,1	1,1	360	1 390	856	60	39,1	1 600	1 800
240TAC29D+L	240	320	96	48	2,1	1,1	213	980	608	60	17,0	1 700	1 800
240TAC20D+L	240	360	144	72	3	1,1	360	1 450	893	60	42,2	1 500	1 700
260TAC29D+L	260	360	120	60	2,1	1,1	315	1 390	858	60	30,3	1 500	1 700
260TAC20D+L	260	400	164	82	4	1,5	440	1 890	1 170	60	64,5	1 400	1 600
280TAC29D+L	280	380	120	60	2,1	1,1	320	1 470	909	60	31,3	1 400	1 600
300TAC29D+L	300	420	144	72	3	1,1	395	1 810	1 120	60	50,4	1 200	1 400
320TAC29D+L	320	440	144	72	3	1,1	405	1 920	1 180	60	53,2	1 100	1 300

⁽¹) Die Toleranz für den Außendurchmesser ist f6.

[[]²] Angaben zur zulässigen Axiallast siehe Seite 201.

^[3] Angaben zur Anwendung von Grenzdrehzahlen siehe Seite 218. Die auf dieser Seite aufgeführten Grenzdrehzahlen basieren auf einer extraleichten Vorspannung (C6). Bei leichter Vorspannung (C7) beträgt die Drehzahlgrenze 85 % des in der Tabelle angegebenen Wertes.

Abmessu	ingen von Ansc (m	hlussmaßen u ım)	nd Kanten		Vorspannung (N)		Axiale Steifigkeit (N/µm)			
d _a	D _a	r _a (max.)	r _♭ (max.)	C6	C7	C8	C6	C7	C8	
167	198	2	1	925	3 675	9 343	1 194	1 898	2 603	
172	200	2	1	196	4 116	7 085	775	2 152	2 587	
178	213	2	1	934	4 725	9 467	1 210	2 086	2 639	
182	210	2	1	196	4 309	7 432	803	2 263	2 722	
191	228	2	1	1 277	4 837	11 088	1 368	2 140	2 833	
192	219	2	1	196	4 502	7 780	830	2 374	2 857	
206	245	2	1	2 078	6 745	13 736	1 650	2 451	3 119	
207	238	2	1	1 063	4 409	9 795	1 439	2 319	3 038	
220	264	2	1	2 982	6 811	15 473	1 876	2 476	3 268	
217	247	2	1	1 102	4 617	10 284	1 508	2 439	3 198	
230	274	2	1	3 074	7 039	18 620	1 941	2 565	3 564	
230	267	2	1	1 098	4 597	11 866	1 502	2 427	3 344	
245	291	2	1	3 083	7 714	18 677	1 947	2 650	3 575	
250	287	2	1	1 160	4 933	12 790	1 613	2 621	3 616	
272	320	2	1	3 247	4 331	19 791	2 063	2 273	3 794	
270	307	2	1	1 202	5 156	13 405	1 688	2 750	3 798	
290	341	2,5	1	3 345	9 161	20 465	2 133	2 993	3 927	
300	344	2	1	1 193	8 859	13 254	1 671	3 274	3 750	
316	375	3	1,5	4 232	8 420	22 437	2 461	3 101	4 315	
320	364	2	1	1 239	9 313	13 947	1 754	3 451	3 954	
348	399	2,5	1	1 717	9 403	16 124	1 970	3 485	4 179	
368	419	2,5	1	1 789	9 885	20 384	2 071	3 673	46 89	

•	Dynamisch äquivalente Lagerbelastung	91
•	Statisch äquivalente LagerbelastungS. 1	98

• Empfohlene Fettmengen ·····S. 257

4. Lager für Kugelgewindetriebe

Für Anwendungen mit hoher Steifigkeit

NSKTAC-C-Serie

Für Anwendungen mit hoher Last

NSKTAC-03-Serie

Zweireihige Wälzlager

BSBD-Serie

Lagereinheiten

Lagereinheiten für Kugelgewindetriebe

Stützlager für Kugelgewindetriebe

Kapitel 4

NSKHPS-Axial-Schrägkugellager für

Kugelgewindetriebe 146-155

Eigenschaften

Bezeichnungssystem

Lagertabellen

Für Anwendungen mit hoher Steifigkeit

NSKTAC-C-Serie

Für Anwendungen mit hoher Last

NSKTAC-03-Serie

Zweireihige Wälzlager

BSBD-Serie

Eigenschaften

Bezeichnungssystem

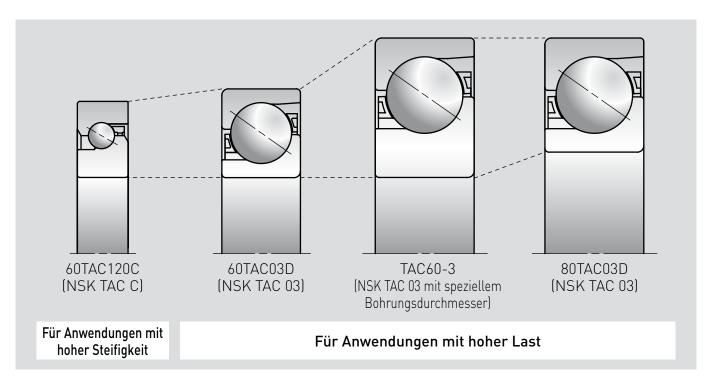
Tabellen mit Stützlagereinheiten

4. Stützlager für Kugelgewindetriebe

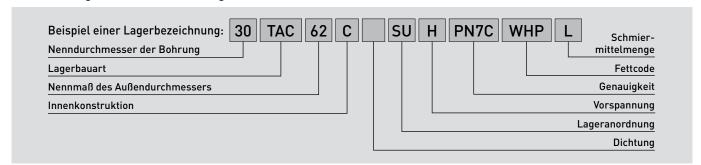
NSKHPS-Axial-Schrägkugellager für Kugelgewindetriebe

Eigenschaften

NSKHPS: Die Zuverlässigkeit wurde dadurch verbessert, dass der Fokus auf die Werkstoffreinheit gelegt wurde. Letztere hat den größten Einfluss auf die Lagerlebensdauer. NSK hat zu diesem Zweck selbst entwickelte Technologien zum Bewerten von Werkstoffen eingesetzt. Die dynamische Tragzahl wurde im Vergleich zu herkömmlichen Wälzlagern um 5 % verbessert. Die NSKTAC-C-Serie zeichnet sich durch eine hohe axiale Steifigkeit aus und eignet sich für lineare Verfahrsysteme in Werkzeugmaschinen. Die NSKTAC-03-Serie eignet sich mit ihrer hohen axialen Tragfähigkeit gut zum Lagern großer Kugelgewindetriebe in Anwendungen mit hoher Last, beispielsweise in elektrischen Spritzgussmaschinen. Mit diesen Serien können Anwender ein wesentlich niedrigeres Drehmoment und eine höhere Genauigkeit erzielen als mit Rollenlagern.

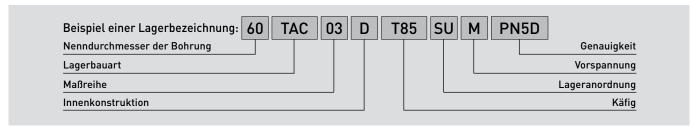

NSKTAC-C-Axial-Schrägkugellager für Kugelgewindetriebe in Anwendungen mit hoher Steifigkeit Eine höhere Anzahl an Kugeln und ein Druckwinkel von 60° sorgen für eine hohe axiale Steifigkeit, sodass sich diese Wälzlager ideal für lineare Verfahrsysteme in Werkzeugmaschinen eignen.

Bei den DDG-Dichtungen, die in den abgedichteten Wälzlagern dieser Serie eingesetzt werden, handelt es sich um leicht schleifende Dichtungen mit Auslegung auf hohe Drehzahlen. Die starke Dichtwirkung wird durch ein Labyrinth zwischen der Dichtlippe und der Dichtungsnut im Innenring erzielt. Dadurch ist sichergestellt, dass keine Fremdkörper in das Wälzlager gelangen können und dass kein Schmierfett austreten kann. Das trägt wiederum dazu bei, dass die Umgebung sauber bleibt. Einige Wälzlager dieser Serie sind auch als nicht schleifende abgedichtete Wälzlager erhältlich. Sie bieten ein noch niedrigeres Drehmoment und eine noch geringere Wärmeentwicklung.


Für eine einfachere Handhabung und höhere Effizienz sind die Wälzlager der NSKTAC-C-Serie mit einer werkseitigen Grundbefüllung mit WPH-Fett erhältlich. Dieses Fett ist beständig gegenüber hohen Temperaturen und neigt weniger dazu, sich stärker zu verflüssigen oder auszutreten.

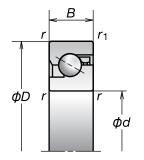
NSKTAC-03-Axial-Schrägkugellager für Kugelgewindetriebe in Anwendungen mit hoher Last

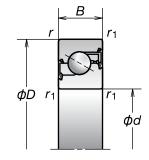
Dank der optimierten Lagergeometrie konnte eine höhere axiale Grenzlast erzielt werden. Die Anzahl der Reihen kann verringert werden, um Geräte mit kleineren Abmessungen konstruieren zu können. Wir bieten auch Wälzlager mit speziellen Bohrungsdurchmessern an. Dadurch lassen sich Wälzlager mit einer höheren Tragzahl einsetzen, ohne dass der Wellendurchmesser angepasst werden muss. Auf diese Weise lassen sich kompaktere Spindelenden realisieren. Angaben zur Anwendbarkeit dieser Serie außerhalb von Spritzgussmaschinen und Werkzeugmaschinen erhalten Sie bei NSK.



Bezeichnungssystem für NSKHPS Axial-Schrägkugellager für Kugelgewindetriebe (für Anwendungen mit hoher Steifigkeit)

			Seite
30	Nenndurchmesser der Bohrung	Bohrungsdurchmesser (mm)	148-149
TAC	Lagerbauart	Axial-Schrägkugellager	30, 146
62	Nennmaß des Außendurchmessers	Außendurchmesser (mm)	148-149
С	Innenkonstruktion	Druckwinkel 60°	-
	Dichtung	Kein Kennzeichen: offene Ausführung DDG: schleifende Gummidichtung V1V: nicht schleifende Gummidichtung	146
SU	Lageranordnung	SU: universelle Anordnung (einreihig)	202-207
Н	Vorspannung	H: hohe Vorspannung (Standard bei HPS-Serie)	148-149
PN7C	Genauigkeit	PN7C: NES-Klasse 7C (Axialschlag wie bei P2)	231


Bezeichnungssystem für NSKHPS Axial-Schrägkugellager für Kugelgewindetriebe (für Anwendungen mit hoher Last)



60	Nenndurchmesser der Bohrung	Bohrungsdurchmesser (mm)	150-151
TAC	Lagerbauart	Axial-Schrägkugellager	32, 146
03	Maßreihe	02: Serie 02	146
D	Innenkonstruktion	Druckwinkel 55°	-
T85	Käfig	T85: Polyamidkäfig M: Messingkäfig	-
SU	Lageranordnung	SU: universelle Anordnung (einreihig)	202-207
М	Vorspannung	M: mittlere Vorspannung	150-151
PN5D	Genauigkeit	PN5D: Standardgenauigkeit (entspricht ISO-Klasse 5)	231

NSKHPS findet bei TAC160-3 und 180TAC03D keine Anwendung.

4. Stützlager für Kugelgewindetriebe Bohrungsdurchmesser 15-60 mm für hohe Steifigkeit

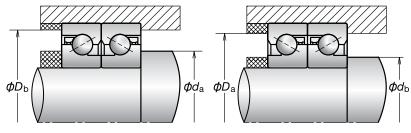
Offene Ausführung

Abgedichtete Ausführung DDG

(Offene Ausführung)

Lager-		Haupta	abmes: (mm)	sungen				von Ansc Kanten (r		Empfohlene	Druck-		nzahlen (²) n ⁻¹)	Gewicht
bezeichnung	d	D	В	r (min.)	r ₁ (min.)	D _b (max.)	d _a (min.)	D _a (max.)	d _b (min.)	Fettmengen (cm³)	winkel (Grad)	Fett	Öl	(kg) (ca.)
15TAC47C	15	47	15	1	0,6	42	19,5	41	19,5	2,2	60	6 900	9 200	0,146
17TAC47C	17	47	15	1	0,6	42	23	41	23	2,2	60	6 900	9 200	0,140
20TAC47C	20	47	15	1	0,6	42	25	41	25	2,2	60	6 900	9 200	0,135
25TAC62C	25	62	15	1	0,6	57	31	56	31	3,0	60	5 200	6 900	0,252
30TAC62C	30	62	15	1	0,6	57	36	56	36	3,2	60	4 900	6 400	0,224
30TAC72C	30	72	19	1	0,6	67	36	66	36	3,8	60	4 100	5 800	0,427
35TAC72C	35	72	15	1	0,6	67	42	66	42	3,8	60	4 100	5 800	0,310
40TAC72C	40	72	15	1	0,6	67	47	66	47	3,9	60	4 100	5 500	0,275
40TAC90C	40	90	20	1	0,6	85	48	84	48	8,8	60	3 500	4 600	0,674
45TAC75C	45	75	15	1	0,6	68	54	67	54	4,2	60	3 700	4 900	0,270
45TAC100C	45	100	20	1	0,6	93	55	92	55	9,7	60	3 000	4 100	0,842
50TAC100C	50	100	20	1	0,6	92	60	91	60	10,2	60	3 000	3 900	0,778
55TAC100C	55	100	20	1	0,6	92	63	91	63	10,2	60	3 000	3 900	0,714
55TAC120C	55	120	20	1	0,6	112	63	111	63	12	60	2 500	3 500	1,23
60TAC120C	60	120	20	1	0,6	112	70	111	70	12	60	2 500	3 500	1,16

(Abgedichtete Ausführung)


Lager-		Haupt	abmes: (mm)	sungen	maßen und Kanten (mm)						Grenzdrehzahlen (²) (min ⁻¹)	Gewicht (kg)
bezeichnung (¹)	d	D	В	r (min.)	r ₁ (min.)	D _b (max.)	d _a (min.)	D _a (max.)	d₅ (min.)	winkel (Grad)	Fett	(ca.)
* 15TAC47CDDG	15	47	15	1	0,6	42	19,5	41	19,5	60	6 900	0,146
* 17TAC47CDDG	17	47	15	1	0,6	42	22	41	22	60	6 900	0,140
* 20TAC47CDDG	20	47	15	1	0,6	42	25	41	25	60	6 900	0,135
* 25TAC62CDDG	25	62	15	1	0,6	57	30	56	30	60	5 200	0,252
30TAC62CDDG	30	62	15	1	0,6	57	36	56	36	60	4 900	0,224
35TAC72CDDG	35	72	15	1	0,6	67	41	66	41	60	4 100	0,310
40TAC72CDDG	40	72	15	1	0,6	67	46	66	46	60	4 100	0,275
40TAC90CDDG	40	90	20	1	0,6	85	47	84	47	60	3 500	0,674
45TAC100CDDG	45	100	20	1	0,6	93	54	92	54	60	3 000	0,842
50TAC100CDDG	50	100	20	1	0,6	92	59	91	59	60	3 000	0,778
55TAC100CDDG	55	100	20	1	0,6	92	63	91	63	60	3 000	0,714

^[1] Wälzlager, die auch als abgedichtete Wälzlager mit nicht schleifender Dichtung erhältlich sind, sind mit einem Sternchen [*] gekennzeichnet.

^[2] Die Grenzdrehzahlen basieren auf einer hohen Vorspannung (H). Die angegebenen Werte gelten für alle Lageranordnungen.
[3] Zum Berechnen der zulässigen Axiallast, in Anwendungen mit widriger Krafteinleitung, die axiale Grenzlast mit 0,7 multiplizieren.

⁽⁴⁾ Die Werte für die Anlaufmomente in der Tabelle gelten für fettgeschmierte Wälzlager. Angaben zu Drehmomenten schleifender Dichtungen sind nicht enthalten. Bei Verwendung des Hydrauliköls aus der Anwendung mit 1,4 multiplizieren.

^[5] Bei den Abmessungen von Gegenlagern und Rundungen handelt es sich um Empfehlungen für den Einsatz in Standardanwendungen in Werkzeugmaschinen. Für Angaben zu Anwendungen mit schwerer Last wenden Sie sich bitte an NSK.

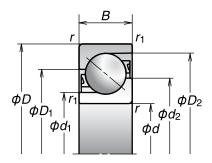

Berechnung von Vorspannung, axialer Steifigkeit und Anlaufmoment für Lageranordnungen Mit entsprechendem Faktor aus Tabelle B multiplizieren.

Tabelle		DFD	DFF	DFT
В		ØØØ	ØØØØ	ØØØØ
		DBD	DBB	DBT
)		ØØØ	ØØØØ	ØØØØ
	Vorspannungsfaktor	1,36	2,0	1,57
	Axiale Steifigkeit	1,49	2,0	1,89
	Anlaufmoment	1,35	2,0	1,55

Vorspannung (Anordnung DB und DF) (N)	Axiale Steifigkeit (Anordnung DB und DF) (N/µm)	Anlaufmoment (Anordnung DB und DF) (4) (N·m) (Referenz)		e Tragzahl Ca ausgesetzten		Statische axiale Grenzlast nach Anzahl der Fa ausgesetzten Reihen (³)				
Н	н	н	1 Reihe (kN)	2 Reihen (kN)	3 Reihen (kN)	1 Reihe (kN)	2 Reihen (kN)	3 Reihen (kN)		
1 450	630	0,09	23,0	37,5	49,5	26,6	53,0	79,5		
1 450	630	0,09	23,0	37,5	49,5	26,6	53,0	79,5		
1 450	630	0,09	23,0	37,5	49,5	26,6	53,0	79,5		
2 280	850	0,15	29,9	48,5	64,5	40,5	81,5	122		
2 400	890	0,16	30,5	50,0	66,0	43,0	86,0	129		
2 750	1 030	0,18	32,5	53,0	70,5	50,0	100	150		
2 750	1 030	0,18	32,5	53,0	70,5	50,0	100	150		
2 860	1 080	0,19	33,5	54,0	72,0	52,0	104	157		
3 450	1 150	0,29	62,0	101	134	89,5	179	269		
3 100	1 170	0,20	34,5	56,0	74,5	57,0	114	170		
4 440	1 340	0,40	64,5	105	140	99,0	198	298		
4 650	1 410	0,42	66,0	107	142	104	208	310		
4 650	1 410	0,42	66,0	107	142	104	208	310		
5 450	1 660	0,49	70,5	115	153	123	246	370		
5 450	1 660	0,49	70,5	115	153	123	246	370		

Vorspannung (Anordnung DB und DF) (N)	Axiale Steifigkeit (Anordnung DB und DF) (N/µm)	Anlaufmoment (Anordnung DB und DF) (4) (N·m) (Referenz)	•	Tragzahl Ca ausgesetzten			iale Grenzlast usgesetzten R	
Н	н	н	1 Reihe (kN)	2 Reihen (kN)	3 Reihen (kN)	1 Reihe (kN)	2 Reihen (kN)	3 Reihen (kN)
1 450	630	0,09	23,0	37,5	49,5	26,6	53,0	79,5
1 450	630	0,09	23,0	37,5	49,5	26,6	53,0	79,5
1 450	630	0,09	23,0	37,5	49,5	26,6	53,0	79,5
2 280	850	0,15	29,9	48,5	64,5	40,5	81,5	122
2 400	890	0,16	30,5	50,0	66,0	43,0	86,0	129
2 750	1 030	0,18	32,5	53,0	70,5	50,0	100	150
2 860	1 080	0,19	33,5	54,0	72,0	52,0	104	157
3 450	1 150	0,29	62,0	101	134	89,5	179	269
4 440	1 340	0,40	64,5	105	140	99,0	198	298
4 650	1 410	0,42	66,0	107	142	104	208	310
4 650	1 410	0,42	66,0	107	142	104	208	310

4. Stützlager für Kugelgewindetriebe Bohrungsdurchmesser 15–180 mm für Anwendungen mit hoher Last

Lager-		Haupta	abmes (mm)	sungen			-	smaße m)		Empfohlene Fettmengen	Druck- winkel	Grenzdreh (mi		Gewicht (kg)
bezeichnung (¹)	d	D	В	r (min.)	r ₁ (min.)	d ₁	d ₂	D ₁	D ₂	(cm³/ Reihe)	(Grad)	Fett	Öl	(ca.)
15TAC02D	15	35	11	0,6	0,3	19,1	24,5	26	31,9	1	55	12 000	14 800	0,047
20TAC03D	20	52	15	1,1	0,6	27,2	35,3	37,5	46,1	2,7	55	8 300	10 300	0,155
25TAC02D	25	52	15	1	0,6	30,8	38,1	39,6	47,3	3	55	7 700	9 700	0,137
TAC35-3	35	90	23	1,5	1	50,4	64,2	67,1	81,7	14	55	4 600	5 700	0,712
40TAC03D	40	90	23	1,5	1	50,4	64,2	67,1	81,7	14	55	4 600	5 700	0,659
TAC40-3	40	110	27	2	1	62	79,1	82,4	100,6	25	55	3 700	4 700	1,28
45TAC03D	45	100	25	1,5	1	56,5	71,7	74,7	90,8	18	55	4 100	5 200	0,877
TAC45-3	45	110	27	2	1	62	79,1	82,4	100,6	25	55	3 700	4 700	1,21
50TAC03D	50	110	27	2	1	62	79,1	82,4	100,6	25	55	3 700	4 700	1,14
TAC50-3	50	130	31	2,1	1,1	73,9	93,8	98	119	40	55	3 100	3 900	2,00
55TAC03D	55	120	29	2	1	68	86,4	90,2	109,7	32	55	3 400	4 300	1,44
60TAC03D	60	130	31	2,1	1,1	73,9	93,8	98	119	40	55	3 100	3 900	1,80
TAC60-3	60	170	39	2,1	1,1	98,5	123,6	128,7	157,5	85	55	2 400	3 000	4,47
70TAC03D	70	150	35	2,1	1,1	86,3	108,6	113,4	137,8	59	55	2 700	3 400	2,67
75TAC03D	75	160	37	2,1	1,1	92,4	116,2	121	146,2	67	55	2 500	3 200	3,20
80TAC03D	80	170	39	2,1	1,1	98,5	123,6	128,7	157,5	85	55	2 400	3 000	3,80
TAC80-3	80	215	47	3	1,1	124	154,9	160,4	194,5	156	55	1 900	2 400	8,66
100TAC03D	100	215	47	3	1,1	124	154,9	160,4	194,5	156	55	1 900	2 400	7,54
TAC100-3	100	260	55	3	1,1	150,5	186,9	193,4	231,7	254	55	1 500	2 000	14,8
120TAC03D	120	260	55	3	1,1	150,5	186,9	193,4	231,7	254	55	1 500	2 000	13,3
* TAC120-3M	120	300	62	4	1,5	174,3	215,3	224,1	268,3	336	55	1 300	1 700	24,4
* 140TAC03DM	140	300	62	4	1,5	174,3	215,3	224,1	268,3	336	55	1 300	1 700	22,4
* TAC140-3M	140	340	68	4	1,5	201,2	246,2	254,3	301,6	442	55	1 200	1 500	34,1
* 160TAC03DM	160	340	68	4	1,5	201,2	246,2	254,3	301,6	442	55	1 200	1 500	31,6
* TAC160-3M	160	380	75	4	1,5	225,1	275,6	284,9	338,8	624	55	1 000	1 400	47,0
* 180TAC03DM	180	380	75	4	1,5	225,1	275,6	284,9	338,8	624	55	1 000	1 400	43,8

⁽¹⁾ Wälzlager, die auch mit Gewindebohrungen für Befestigungsbolzen erhältlich sind, sind mit einem Sternchen (*) gekennzeichnet.

⁽²) Die Grenzdrehzahlen basieren auf der Standardvorspannung des jeweiligen Wälzlagers. Die angegebenen Werte gelten für alle Lageranordnungen.

^[3] Die Werte für die Vorspannung von Wälzlagern mit einem Bohrungsdurchmesser von 100 mm oder mehr sowie von TAC80-3 basieren auf einer EL-Vorspannung.

⁽⁴⁾ Die Werte für Anlaufmomente in der Tabelle gelten für Fettschmierung.

⁽⁵⁾ Zum Berechnen der zulässigen Axiallast, in Anwendungen mit widriger Krafteinleitung, die axiale Grenzlast mit 0,7 multiplizieren.

Berechnung von Vorspannung, axialer Steifigkeit und Anlaufmoment für Lageranordnungen Mit entsprechendem Faktor aus Tabelle B multiplizieren.

Tabelle **B**

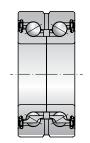
е	Anzahl der belasteten Reihen	2 Re	ihen		3 Reihen		4 Re	eihen	5 Reihen
		DFD ØØ	DFF QQØØ	DFT QØØØ	DFFD	DFFF QQQØØØ	DFTD QØØØØ	DFFT QQØØØØ	DFTT NØØØØØ
		DBD DBB		DBT ØØØQ	DBBD ØØØØQ	DBBB ØØØØQQ	DBTD ØØØØQ	DBBT ØØØØØQ	DBTT ØØØØØØ
	Vorspannungsfaktor			1,57	2,42	3,0	1,72	2,72	1,83
	Axiale Steifigkeit	1,49 2,0		1,89 2,51		3,0	2,24	2,97	2,57
	Anlaufmoment	1,35	2,0	1,55	2,41	3,0	1,68	2,71	1,73

Vorspannung (3)	Axiale Steifigkeit (³)	Anlaufmoment (4)	•		-	a nach Ai en Reihen		Statisch			t nach An: Reihen (⁵)	zahl der
(Anordnung DB und DF) (N)	(Anordnung DB und DF) (N/µm)	(Anordnung DB und DF) (N·m)	1 Reihe (kN)	2 Reihen (kN)	3 Reihen (kN)	4 Reihen (kN)	5 Reihen (kN)	1 Reihe (kN)	2 Reihen (kN)	3 Reihen (kN)	4 Reihen (kN)	5 Reihen (kN)
400	290	0,017	21,0	34,0	45,0	55,5	64,5	18,6	37,5	56,0	74,5	93,0
830	430	0,026	42,5	69,5	92,0	113	132	38,5	77,0	116	154	193
690	430	0,036	37,0	60,0	79,5	97,5	114	36,0	72,5	109	145	181
2 500	780	0,26	113	184	244	299	350	118	235	355	470	590
2 500	780	0,26	113	184	244	299	350	118	235	355	470	590
3 900	970	0,50	166	270	360	440	515	181	360	540	720	905
2 800	830	0,31	133	216	287	350	410	142	283	425	565	710
3 900	970	0,50	166	270	360	440	515	181	360	540	720	905
3 900	970	0,50	166	270	360	440	515	181	360	540	720	905
5 200	1 120	0,78	218	355	470	575	670	242	485	725	965	1 210
4 280	1 060	0,68	190	310	410	500	585	210	420	630	840	1 050
5 200	1 120	0,78	218	355	470	575	670	242	485	725	965	1 210
8 050	1 400	1,5	305	495	660	805	940	390	775	1 170	1 550	1 940
6 400	1 250	1,1	262	425	565	690	810	305	615	920	1 230	1 530
7 230	1 330	1,3	283	460	610	750	875	345	690	1 040	1 380	1 730
8 050	1 400	1,5	305	495	660	805	940	390	775	1 170	1 550	1 940
1 240	880	0,15	420	685	910	1 110	1 300	510	1 020	1 530	2 040	2 550
1 240	880	0,15	420	685	910	1 110	1 300	510	1 020	1 530	2 040	2 550
1 620	1 050	0,21	520	850	1 130	1 380	1 610	680	1 360	2 040	2 720	3 400
1 620	1 050	0,21	520	850	1 130	1 380	1 610	680	1 360	2 040	2 720	3 400
1 710	1 130	0,24	640	1 040	1 380	1 680	1 970	794	1 590	2 380	3 200	3 950
1 710	1 130	0,24	640	1 040	1 380	1 680	1 970	794	1 590	2 380	3 200	3 950
1 850	1 240	0,27	725	1 180	1 570	1 920	2 240	1 040	2 080	3 100	4 150	5 200
1 850	1 240	0,27	725	1 180	1 570	1 920	2 240	1 040	2 080	3 100	4 150	5 200
1 940	1 310	0,30	815	1 330	1 760	2 150	2 520	1 360	2 720	4 100	5 450	6 800
1 940	1 310	0,30	815	1 330	1 760	2 150	2 520	1 360	2 720	4 100	5 450	6 800

4. Stützlager für Kugelgewindetriebe

NSKHPS-BSBD-Serie

Moderne Werkzeugmaschinen erfordern Kugelgewindetriebe, mit deren Hilfe sich ein Werkstück oder eine Maschinenkomponente schnell und effizient positionieren lässt. Die BSN- und BSF-Wälzlager sind Stützlager, die speziell auf diese anspruchsvollen Anforderungen ausgelegt sind.

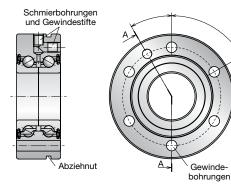


Eigenschaften

Bei den Wälzlagern dieser Serie handelt es sich um zweireihige Axial-Schrägkugellager mit einem Druckwinkel von 60° und einem Außenring bei geteiltem Innenring. Die Spezifikationen sind die gleichen wie bei den NSKTAC-Wälzlagern; beide Serien sind im Hinblick auf das Lagern von Kugelgewindetrieben in Werkzeugmaschinen optimiert. Sämtliche Wälzlager der BSBD-Serie sind mit einer schleifenden Gummidichtung ausgestattet und werden werkseitig mit einer Grundbefüllung mit Hochleistungsfett versehen.

■ BSN-Typ

Bei den Stützlagern für Kugelgewindetriebe der BSN-Serie handelt es sich um zweireihige Axial-Schrägkugellager in einer O-Anordnung mit einem Außenring und geteiltem Innenring. Die Wälzlager werden werkseitig mit einer Grundbefüllung mit Hochleistungs-fett versehen. Über Schmierbohrungen ist bei Bedarf eine Nachschmie-

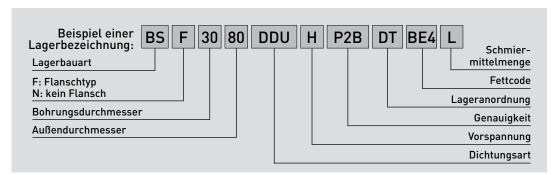


rung während des Betriebs möglich. Die schleifende Dichtung zeichnet sich durch minimale Reibung und einen minimalen Temperaturanstieg bei gleichzeitig hervorragender Dichtleistung aus.

■ BSF-Typ

Die Wälzlager der BSF-Serie entsprechen den Wälzlagern der BSN-Serie, verfügen jedoch zusätzlich über Gewindebohrungen im Außenring für einfache direkte Montage. Bei Bedarf ermöglichen zwei Schmierbohrungen – eine in der Außenfläche und eine in der Stirnfläche des Außenrings – eine Nachschmierung während des Betriebs. Während der Nichtnutzung werden diese Bohrungen mit Gewindestiften verschlossen. Mithilfe einer Abziehnut in der Außenfläche des Außenrings lässt sich das Wälzlager leichter ausbauen.

Hinweis: Im Lieferumfang der Wälzlager der BSF-Serie sind Dichtung und Gewindestifte enthalten. Es sind keine Befestigungsbolzen enthalten.


BSN-Typ: Einzelprodukt

Lager-		Haupt	abm (m	iessung m)	en	Abmessunger gern und Rur	n von Gegenla- ndungen (mm)	Druck- winkel	Tragz (k	ahlen N)	Statische axiale	Vor-	Axiale Steifigkeit	Gewicht	Grenzdrehzahlen (min ⁻¹)	Anlauf- moment (2)	Empfohlene Spannkraft
bezeichnung	d	D	В	r (min.)	r ₁ (min.)	d _a (min.)	D_b (max.)	(Grad)	C _a (dynamisch)	C _{oa} (statisch)	Grenzlast (1) (kN)	spannung (N)	(N/µm)	(kg)	Fett	(N·m)	(N)
BSN1242	12	42	25	0,6	0,3	15	33	60	18,5	24,0	17,6	720	375	0,20	8 000	0,038	4 030
BSN1545	15	45	25	0,6	0,3	19	35	60	19,4	26,9	19,4	675	400	0,22	7 100	0,034	4 050
BSN1747	17	47	25	0,6	0,6	21	37	60	20,3	29,7	21,2	880	450	0,23	6 700	0,05	4 400
BSN2052	20	52	28	0,6	0,6	24	43	60	26,4	41,0	29,3	1 885	650	0,31	5 800	0,13	7 600
BSN2557	25	57	28	0,6	0,6	29	48	60	28,3	48,0	34,0	2 245	750	0,36	5 100	0,16	8 100
BSN3062	30	62	28	0,6	0,6	34	53	60	30,0	55,5	38,5	2 625	850	0,40	4 500	0,19	8 600
BSN3072	30	72	38	0,6	0,6	35	64	60	60,5	94,0	66,5	4 855	950	0,74	3 900	0,59	11 100
BSN3572	35	72	34	0,6	0,6	40	62	60	42,0	77,5	52,0	2 630	900	0,66	3 800	0,21	13 500
BSN4075	40	75	34	0,6	0,6	46	67	60	44,5	88,0	58,5	3 065	1 000	0,65	3 500	0,24	14 100
BSN4090	40	90	46	0,6	0,6	46	80	60	78,5	135	91,0	7 220	1 200	1,38	3 100	1,02	18 700
BSN5090	50	90	34	0,6	0,6	56	82	60	48,0	110	71,5	4 020	1 250	0,93	2 800	0,33	15 400
BSN50110	50	110	54	0,6	0,6	57	98	60	116	219	149	7 435	1 400	2,46	2 500	1,06	19 100
BSN60110	60	110	45	0.6	0.6	68	100	60	86.5	187	126	4 780	1 300	1.82	2 400	0.50	20 900

^[1] Die zulässige Axiallast entspricht dem 0,7-fachen der axialen Grenzlast. Zum Berechnen der zulässigen Axiallast die axiale Grenzlast mit 0,7 multiplizieren. Die Werte beziehen sich ausschließlich auf den Grenzwert für die Belastung des Wälzlagers ohne Berücksichtigung der Befestigungsbolzen.

^[2] Die Werte geben das Anlaufmoment vorgespannter Wälzlager exklusive des Dichtungsdrehmoments an.
Die Innenringe lassen sich einfach trennen. Bitte den Innenring fixieren, um Wälzlager beim Einbau und Ausbau aufzuschieben bzw. abzuziehen.

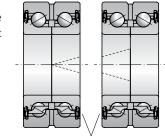
NSKHPS-BSBD-Serie

Hinweis: P2B ist eine für die BSBD-Serie spezifizierte Genauigkeitsklasse, die

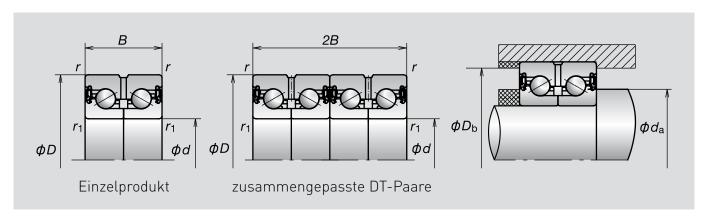
Folgendes angibt:

Laufgenauigkeit: ISO-Klasse 2

Sonstiges: NSK spezifisch


Dichtung

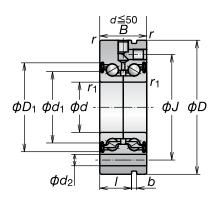
Schleifende Gummidichtung auf beiden Seiten.
Die Dreifachlippenstruktur sorgt für eine sehr gute
Fettabdichtung und eine hohe Abdichtung gegen
Staubeintritt.

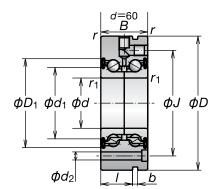

Zusammengepasste DT-Paare

BSBD-Wälzlager sind als zusammengepasste DT-Paare erhältlich für Anwendungen mit hohen externen Lasten und

für Anwendungen, bei denen eine hohe Steifigkeit und eine lange Lebensdauer gefordert sind. Die Passflächen des Wälzlagerpaares werden im Hinblick auf den Versatz kontrolliert, um jeglichen Einfluss auf die Vorspannung jedes einzelnen 2-reihigen Wälzlagers zu verhindern.

Auf Versatz kontrollierte Passflächen


BSN-Typ: zusammengepasste DT-Paare

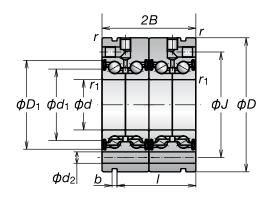

Lager-		Haupt	abme mn)	essunge n)	en		ıssmaße m)	Druck- winkel		ahlen N)	Statische axiale	Axiale Steifigkeit	Gewicht	Grenzdrehzahlen (min-1)	Anlauf- moment (2)	Empfohlene Spannkraft
bezeichnung	d	D	2B	r (min.)	r ₁ (min.)	d _a (min.)	D_b (max.)	(Grad)	\mathbf{C}_{a} (dynamisch)	C_{oa} (statisch)	Grenzlast (1) (kN)	(N/µm)	(kg)	Fett	(N·m)	(N)
BSN1747-DT	17	47	50	0,6	0,6	21	37	60	33,0	59,5	42,5	790	0,46	6 700	0,10	4 400
BSN2052-DT	20	52	56	0,6	0,6	24	43	60	43,0	82,0	58,5	1 180	0,62	5 800	0,26	7 600
BSN2557-DT	25	57	56	0,6	0,6	29	48	60	46,0	96,0	68,0	1 370	0,71	5 100	0,32	8 100
BSN3062-DT	30	62	56	0,6	0,6	34	53	60	49,0	111	77,0	1 580	0,80	4 500	0,37	8 600
BSN3072-DT	30	72	76	0,6	0,6	35	64	60	98,0	188	133	1 800	1,47	3 900	1,17	11 100
BSN3572-DT	35	72	68	0,6	0,6	40	62	60	68,0	155	104	1 630	1,32	3 800	0,41	13 500
BSN4075-DT	40	75	68	0,6	0,6	46	67	60	72,0	176	117	1 850	1,30	3 500	0,49	14 100
BSN4090-DT	40	90	92	0,6	0,6	46	80	60	128	269	182	2 300	2,76	3 100	2,03	18 700
BSN5090-DT	50	90	68	0,6	0,6	56	82	60	78,0	220	143	2 330	1,86	2 800	0,66	15 400
BSN50110-DT	50	110	108	0,6	0,6	57	98	60	188	440	299	2 690	4,92	2 500	2,11	19 100

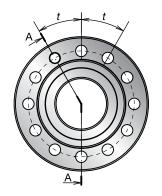
⁽¹) Die zulässige Axiallast entspricht dem 0,7-fachen der axialen Grenzlast. Zum Berechnen der zulässigen Axiallast die axiale Grenzlast mit 0,7 multiplizieren. Die Werte beziehen sich ausschließlich auf den Grenzwert für die Belastung des Wälzlagers ohne Berücksichtigung der Befestigungsbolzen.

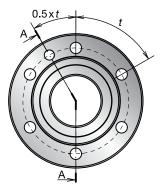
^[2] Die Werte geben das Anlaufmoment vorgespannter Wälzlager exklusive des Dichtungsdrehmoments an.
Die Innenringe lassen sich einfach trennen. Bitte den Innenring fixieren, um Wälzlager beim Einbau und Ausbau aufzuschieben bzw. abzuziehen.

4. Stützlager für Kugelgewindetriebe NSKHPS-BSBD-Serie

BSF-Typ: Einzelprodukt


Lager-		Haup	tabmess (mm)	ungen		9	ahlen N)	Statische axiale	Axiale Steifigkeit	Gewicht	Grenzdrehzahlen (min ⁻¹)
bezeichnung	d	D	В	r (min.)	r ₁ (min.)	C _a (dynamisch)	C₀a (statisch)	Grenzlast (1) (kN)	(N/µm)	(kg)	Fett
BSF1255	12	55	25	0,6	0,3	18,5	24,0	17,6	375	0,37	8 000
BSF1560	15	60	25	0,6	0,3	19,4	26,9	19,4	400	0,44	7 100
BSF1762	17	62	25	0,6	0,6	20,3	29,7	21,2	450	0,46	6 700
BSF2068	20	68	28	0,6	0,6	26,4	41,0	29,3	650	0,61	5 800
BSF2575	25	75	28	0,6	0,6	28,3	48,0	34,0	750	0,73	5 100
BSF3080	30	80	28	0,6	0,6	30,0	55,5	38,5	850	0,79	4 500
BSF30100	30	100	38	0,6	0,6	60,5	94,0	66,5	950	1,71	3 900
BSF3590	35	90	34	0,6	0,6	42,0	77,5	52,0	900	1,20	3 800
BSF40100	40	100	34	0,6	0,6	44,5	88,0	58,5	1 000	1,49	3 500
BSF40115	40	115	46	0,6	0,6	78,5	135	91,0	1 200	2,56	3 100
BSF50115	50	115	34	0,6	0,6	48,0	110	71,5	1 250	1,89	2 800
BSF50140	50	140	54	0,6	0,6	116	219	149	1 400	4,46	2 500
BSF60145	60	145	45	0,6	0,6	86,5	187	126	1 300	4,06	2 400


BSF-Typ: zusammengepasste DT-Paare


Lager-		Haup	tabmessi (mm)	ungen		Tragz (k	ahlen N)	Statische axiale	Axiale	Gewicht	Grenzdrehzahlen (min ⁻¹)	
bezeichnung	d	D	2B	r (min.)	r ₁ (min.)	C _a (dynamisch)	C₀a (statisch)	Grenzlast (1) (kN)	(N/µm)	(kg)	Fett	
BSF1762-DT	17	62	50	0,6	0,6	33,0	59,5 42,5 7	790	0,890	6 700		
BSF2068-DT	20	68	56	0,6	0,6	43,0	82,0	58,5	1 180	1,17	5 800	
BSF2575-DT	25	75	56	0,6	0,6	46,0	96,0	68,0	1 370	1,46	5 100	
BSF3080-DT	30	80	56	0,6	0,6	49,0	111	77,0	1 580	1,58	4 500	
BSF30100-DT	30	100	76	0,6	0,6	98,0	188	133	1 800	3,41	3 900	
BSF3590-DT	35	90	68	0,6	0,6	68,0	155	104	1 630	2,30	3 800	
BSF40100-DT	40	100	68	0,6	0,6	72,0	176	117	1 850	2,88	3 500	
BSF40115-DT	40	115	92	0,6	0,6	128	269	182	2 300	5,12	3 100	
BSF50115-DT	50	115	68	0,6	0,6	78,0	220	143	2 330	3,78	2 800	
BSF50140-DT	50	140	108	0,6	0,6	188	440	299	2 690	8,92	2 500	

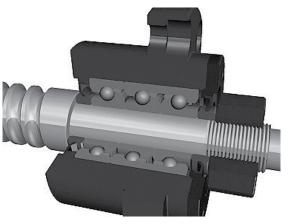
⁽¹) Die zulässige Axiallast entspricht dem 0,7-fachen der axialen Grenzlast in Anwendungen mit widriger Krafteinleitung. Zum Berechnen der zulässigen Axiallast die axiale Grenzlast mit 0,7 multiplizieren. Die Werte beziehen sich ausschließlich auf den Grenzwert für die Belastung des Wälzlagers ohne Berücksichtigung der Befestigungsbolzen.

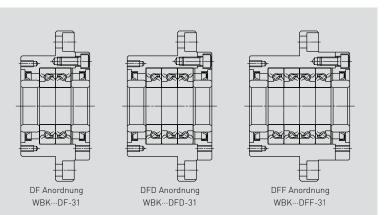
⁽²) Die Werte geben das Anlaufmoment vorgespannter Wälzlager exklusive der Dichtungsreibung an.
Die Innenringe lassen sich einfach trennen. Bitte den Innenring fixieren, um Wälzlager beim Einbau und Ausbau aufzuschieben bzw. abzuziehen.

		ļ	Abmessu (mm)	•			T	Befestigu	ngsbolzen	Vorspannung	Anlauf- moment (²)	Empfohlene Spannkraft
d ₁	D ₁	J	d ₂	ι	b	t	Тур	Ø Bolzen	Anzahl Bolzen	(N)	(N·m)	(N)
23,7	32,7	42	6,8	17	3	3 x 120°	II	M6	3	720	0,038	4 030
26,7	35,7	46	6,8	17	3	3 x 120°	II	M6	3	675	0,034	4 050
28,1	37,7	48	6,8	17	3	3 x 120°	II	M6	3	890	0,05	4 400
32,6	43	53	6,8	19	3	4 x 90°	II	M6	4	1 885	0,13	7 600
37,6	48	58	6,8	19	3	4 x 90°	II	M6	4	2 245	0,16	8 100
42,6	53	63	6,8	19	3	6 x 60°	II	M6	6	2 625	0,19	8 600
49,1	64,4	80	8,8	30	3	8 x 45°	II	M8	8	4 855	0,59	11 100
53,1	62,2	75	8,8	25	3	4 x 90°	II	M8	4	2 630	0,21	13 500
55,1	67,2	80	8,8	25	3	4 x 90°	II	M8	4	3 065	0,24	14 100
63,1	80,1	94	8,8	36	3	12 x 30°	II	M8	12	7 220	1,02	18 700
70,1	82,2	94	8,8	25	3	6 x 60°	II	M8	6	4 020	0,33	15 400
78,1	97,5	113	11	45	3	12 x 30°	II	M10	12	7 435	1,06	19 100
83,1	99,3	120	8,8	35	3	8 x 45°	II	M8	8	4 780	0,50	20 900

		,	Abmessung (mm)	gen			Тур	Befestigu	ngsbolzen	Anlauf- moment (²)	Empfohlene Spannkraft	
d ₁	D ₁	J	d ₂	ι	b	t	тур	Ø Bolzen	Anzahl Bolzen	(N·m)	(N)	
28,1	37,7	48	6,8	42	3	6 x 60°	II	M6	5	0,10	4 400	
32,6	43	53	6,8	47	3	8 x 45°	II	M6	7	0,26	7 600	
37,6	48	58	6,8	47	3	8 x 45°	II	M6	7	0,32	8 100	
42,6	53	63	6,8	47	3	12 x 30°	II	M6	11	0,37	8 600	
49,1	64,4	80	8,8	68	3	8 x 45°	II	M8	8	1,17	11 100	
53,1	62,2	75	8,8	59	3	8 x 45°	II	M8	7	0,41	13 500	
55,1	67,2	80	8,8	59	3	8 x 45°	II	M8	7	0,49	14 100	
63,1	80,1	94	8,8	82	3	12 x 30°	II	M8	12	2,03	18 700	
70,1	82,2	94	8,8	59	3	12 x 30°	II	M8	11	0,66	15 400	
78,1	97,5	113	11	99	3	12 x 30°	II	M10	12	2,11	19 100	

4. Lager für Kugelgewindetriebe

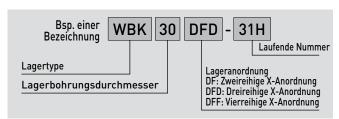

Lagereinheiten für Kugelgewindetriebe

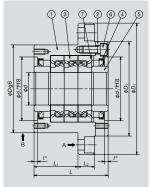


Die Lagereinheiten für hoch belastete Werkzeugmaschinen sind mit hoch genauen und extrem steifen Axialschrägkugellagern für Kugelgewindetriebe (TAC-C-Serie) ausgerüstet. Damit ist eine optimale Funktion als Axiallager für Kugelgewindetriebe gewährleistet. Wie in der Übersicht gezeigt, sind drei verschiedene Lageranordnungen erhältlich:

Vorteile

- Die staubgeschützte Ausführung erleichtert dem Konstrukteur die Gestaltung der Lagerseiten von Kugelgewindetrieben.
- Da die vorgespannten Schrägkugellager bereits in der Einheit montiert sind, entfällt eine Montage von Lagern.

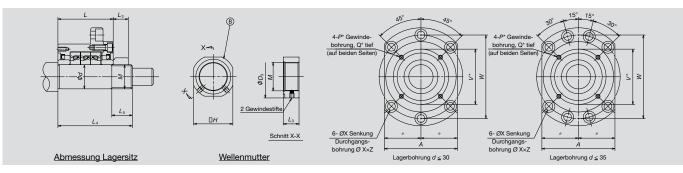

Bezeichnung der Stützlagereinheit	Teile der Stützlagereinheit (mm) (²)																
Stutztagerenment	d	D	D ₁	D ₂	L	L ₁	L ₂	Α	W	Х	Υ	Z	d ₁ *	l*	V*	P*	Q*
WBK17DF-31H	17	70	106	72	60	32	15	80	88	9	14	8,5	45	3	58	M5	10
WBK20DF-31H	20	70	106	72	60	32	15	80	88	9	14	8,5	45	3	58	M5	10
WBK25DF-31H	25	85	130	90	66	33	18	100	110	11	17,5	11	57	4	70	M6	12
WBK25DFD-31H	25	85	130	90	81	48	18	100	110	11	17,5	11	57	4	70	М6	12
WBK30DF-31H	30	85	130	90	66	33	18	100	110	11	17,5	11	57	4	70	М6	12
WBK30DFD-31H	30	85	130	90	81	48	18	100	110	11	17,5	11	57	4	70	М6	12
WBK35DF-31H	35	95	142	102	66	33	18	106	121	11	17,5	11	69	4	80	М6	12
WBK35DFD-31H	35	95	142	102	81	48	18	106	121	11	17,5	11	69	4	80	М6	12
WBK35DFF-31H	35	95	142	102	96	48	18	106	121	11	17,5	11	69	4	80	M6	12
WBK40DF-31H	40	95	142	102	66	33	18	106	121	11	17,5	11	69	4	80	М6	12
WBK40DFD-31H	40	95	142	102	81	48	18	106	121	11	17,5	11	69	4	80	М6	12
WBK40DFF-31H	40	95	142	102	96	48	18	106	121	11	17,5	11	69	4	80	М6	12


⁽¹⁾ Mit * gekennzeichnete Abmessungen: Der Zentrieransatz und die Schraubenteile, die mit einem * gekennzeichnet sind, werden zum Montieren einer Dichtungseinheit für die standardmäßige Hohlwelle eines Kugelgewindetriebs von NSK und zum Anbringen eines Staubschutzes und eines Dämpfers verwendet.

^[2] Da die Wälzlager werkseitig mit einer Grundbefüllung mit Fett versehen werden, kann die Einheit direkt verwendet werden.

⁽³⁾ Zum Berechnen der zulässigen Axiallast die axiale Grenzlast mit 0,7 multiplizieren.

Bezeichnungssystem der Lagereinheiten



Einzelteile einer Lagereinheit

	•	
Teil	Bezeichnung	Anzahl
1	Gehäuse	1
2	Gehäusedeckel	1
3	Axial-Schrägkugellager für Kugelgewindetriebe	1 Satz
4	Staubdichtung	2
(5)	Distanzhülse	2
6	Flanschschraube	6 oder 8
7	Distanzscheibe	1 Satz
8	Wellenmutter	1

- Beachten Sie die Kennzeichnung der Seitenflächen der Lagereinheiten A und B zur korrekten Montage am Maschinenbett.
- Zerlegen Sie die NSK-Lagereinheiten nicht. Die Vorspannung der Lager ist mit höchster Präzision eingestellt und die Einzelteile mit den Nummern ①, ②, ③,
 ④, ⑥ und ⑦ sind als zusammengehörige Einheit verbaut.
- 3. Die Lager der Einheit sind befettet.
- 4. Die Wellenmutter ® ist speziell für die Anwendung konstruiert und gewährleistet eine exakt senkrechte Lage der Welle zur Lagereinheit, trotz der schiefen Steigung des Gewindes. Um ein Lösen der Wellenmutter zu verhindern, sichern Sie diese bitte mit kleinen Schrauben.

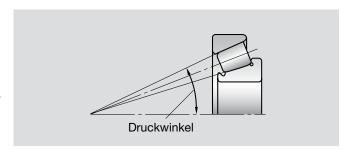
Die Wellenmutter ist auch separat erhältlich. Axialschrägkugellager für Kugelgewindetriebe finden Sie auf Seite 148.

Dynamische Tragzahl	Axiale Grenzlast	enzlast spannung			Illoment						Lagersitz für Einheit [mm] (°)			Gewicht [kg]
Ca [N]	[N]	[N]	[N/µm] (4)	[N·cm] (°)	М	Н	D_3	L ₃	(Ref.)	d	L ₄	L ₅	[min ⁻¹]	
23 000	26 600	1 450	630	14	M17×1,0	32	37	18	4 100	17	81	23	6 900	1,9
23 000	26 600	1 450	630	14	M20×1,0	36	40	18	4 500	20	81	23	6 900	1,9
29 900	40 500	2 280	850	21	M25×1,5	41	45	20	8 500	25	89	26	5 200	3,1
48 500	81 500	3 100	1 250	28	M25×1,5	41	45	20	8 500	25	89	26	5 200	3,4
30 500	43 000	2 400	890	23	M30×1,5	46	50	20	10 100	30	89	26	4 900	3,0
50 000	86 000	3 260	1 310	30	M30×1,5	46	50	20	10 100	30	89	26	4 900	3,3
32 500	50 000	2 750	1 030	27	M35×1,5	50	55	22	13 800	35	92	30	4 100	3,4
53 000	100 000	3 740	1 500	34	M35×1,5	50	55	22	13 800	35	107	30	4 100	4,3
53 000	100 000	5 490	2 060	43	M35×1,5	50	55	22	13 800	35	122	30	4 100	5,0
33 500	52 000	2 860	1 080	28	M40×1,5	55	60	22	15 500	40	92	30	4 100	3,6
54 000	104 000	3 900	1 590	36	M40×1,5	55	60	22	15 500	40	107	30	4 100	4,2
54 000	104 000	5 730	2 150	46	M40×1,5	55	60	22	15 500	40	122	30	4 100	4,7

- [4] Steifigkeit: Die Steifigkeitswerte in der Tabelle sind theoretische Werte, die elastische Verschiebung zwischen Laufbahnen und Kugeln bewerten.
- [5] Anlaufmoment: Die Werte geben das Anlaufmoment vorgespannter Wälzlager exklusive des Dichtungsreibmoments an.
- (4) Toleranz des Wellendurchmessers am Lagersitz; für den Wellendurchmesser am Lagersitz der Stützlagereinheit wird Klasse h5 empfohlen.

5. Kegelrollenlager

Kegelrollenlager



5. Kegelrollenlager

Kegelrollenlager

Konstruktion, Typen und Eigenschaften

Kegelrollenlager sind so konstruiert, dass die Spitzen der Konen, die von den Laufbahnen von Innenring und Außenring gebildet werden, sowie die Spitzen der konischen Rollen alle an einem Punkt der Mittelachse des Wälzlagers zusammentreffen. Wenn eine Radiallast aufgebracht wird, entsteht auch eine resultierende Axialkraft; aus diesem Grund müssen diese Lager zumindest paarweise angeordnet werden.

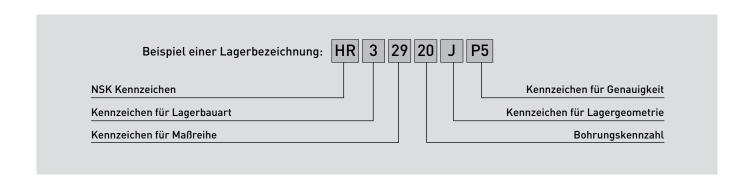
Das Nachsetzzeichen J nach dem Basiskennzeichen einiger auf hohe Tragzahlen ausgelegter Wälzlager (HR-Serie) gibt an, dass der Durchmesser der Laufbahn an der Anlagefläche des Außenrings, die Breite des Außenrings und der Druckwinkel den Spezifikationen nach ISO entsprechen. Somit sind die Innenringbauruppe (Innenring, Rollen, Käfig) und der Außenring eines Wälzlagers mit dem gleichen Basiskennzeichen und dem Nachsetzzeichen J international austauschbar.

Konstruktion und Eigenschaften von Kombinationen aus Kegelrollenlagern

Abbildung	Lageranordnung	Beispiele für Wälzlagernummern	Eigenschaften
	0-Anordnung	HR32920JDB+KLR30	Kombination zweier genormter Kegelrollenlager zu einem Lagersatz. Die Lagerluft wird jeweils mithilfe von Zwischenringen für Innenringe oder Zwischen- ringen für Außenringe eingestellt. Die Innenringe, Außen-ringe und Zwischenringe sind mit Serien- nummern und Kennzeichen zum Zusammenpassen
	X-Anordnung	HR32920JDF+KR	nummern und Kennzeichen zum Zusammenpassen versehen. Komponenten mit gleicher Seriennummer müssen unter Berücksichtigung dieser Kennzeichen für die Zusammenpassung montiert werden.

Angaben zu Abmessungen für die Montage

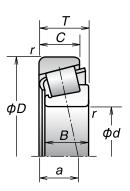
Die für das Montieren von Kegelrollenlagern relevanten Abmessungen sind in den Lagertabellen aufgeführt. Da die Käfige aus den Ringstirnflächen von Kegelrollenlagern hervorstehen, ist beim Konstruieren von Wellen und Gehäusen besonders gewissenhaft vorzugehen.

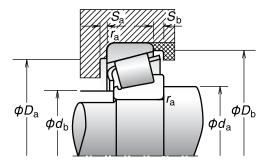

Für den Fall einer Beaufschlagung mit hohen Axiallasten müssen die Abmessungen und die Festigkeit von Wellenschultern darauf ausgelegt sein, den Bord des Innenrings zu stützen.

Zulässiger Fluchtungsfehler

Der Winkel für den zulässigen Fluchtungsfehler von Kegelrollenlagern beträgt ca. 0,0009 rad (3´).

Grenzdrehzahlen


Die in den Lagertabellen aufgeführten Grenzdrehzahlen sollten je nach Belastungsbedingungen angepasst werden. Nähere Angaben erhalten Sie bei NSK.


HR	NSK Kennzeichen	HR: Auslegung auf hohe Tragzahlen
3	Lagerbauart	3: Kegelrollenlager
29	Maßreihe	20: Serie 20 29: Serie 29
20	Bohrungs- kennzahl	Lagerbohrung = Bohrungskennzahl × 5 (mm)
_		
J	Innen- konstruktion	X: Wälzlager-Hauptabmessungen entsprechen ISO-Spezifikationen (Maßreihe 20)J: Der Durchmesser der Laufbahn an der Anlagefläche des Außenrings, die Außenringbreite und der Druckwinkel entsprechen den ISO-Spezifikationen.
P5	Genauigkeit	P5: ISO-Klasse 5, P4: ISO-Klasse 4

Bohrungsdurchmesser 100-360 mm

5. Kegelrollenlager Einreihige Kegelrollenlager

Lager-			Hauj	otabmes (mm)	sungen			Tragz (kl		Stützweite (mm)	Gewicht		ehzahlen in ⁻¹)
bezeichnung	d	D	Т	В	С		Außenring nin.)	\mathbf{C}_{r} (dynamisch)	C _{0r} (statisch)	a	(ca.)	Fett	Öl
HR32020XJ	100	150	32	32	24	2	1,5	176	294	32,5	1,95	2 200	3 000
HR32920J	100	140	25	25	20	1,5	1,5	117	205	24,2	1,18	2 200	3 200
HR32021XJ	105	160	35	35	26	2,5	2	204	340	34,3	2,48	2 000	2 800
HR32921J	105	145	25	25	20	1,5	1,5	119	212	25,3	1,23	2 200	3 000
HR32022XJ	110	170	38	38	29	2,5	2	236	390	35,9	3,09	2 000	2 600
HR32922J	110	150	25	25	20	1,5	1,5	123	224	26,5	1,29	2 200	2 800
HR32024XJ	120	180	38	38	29	2,5	2	242	405	39,7	3,27	1 800	2 400
HR32924J	120	165	29	29	23	1,5	1,5	161	291	29,2	1,8	1 900	2 600
HR32026XJ	130	200	45	45	34	2,5	2	320	535	43,9	5,06	1 600	2 200
HR32028XJ	140	210	45	45	34	2,5	2	325	555	46,6	5,32	1 600	2 200
HR32928J	140	190	32	32	25	2	1,5	206	390	33,6	2,64	1 700	2 200
HR32030XJ	150	225	48	48	36	3	2,5	375	650	49,8	6,6	1 400	2 000
HR32032XJ	160	240	51	51	38	3	2,5	425	750	53,0	7,93	1 300	1 800
HR32932J	160	220	38	38	30	2,5	2	296	570	38,7	4,32	1 400	1 900
HR32034XJ	170	260	57	57	43	3	2,5	505	890	56,6	10,6	1 200	1 700
HR32934J	170	230	38	38	30	2,5	2	294	560	41,7	4,44	1 400	1 800
HR32036XJ	180	280	64	64	48	3	2,5	640	1 130	60,4	14,3	1 200	1 600
HR32936J	180	250	45	45	34	2,5	2	350	685	53,9	6,56	1 300	1 700
HR32038XJ	190	290	64	64	48	3	2,5	650	1 170	63,4	14,9	1 100	1 500
HR32938J	190	260	45	45	34	2,5	2	365	715	55,3	6,83	1 200	1 600
HR32040XJ	200	310	70	70	53	3	2,5	760	1 370	67,4	18,9	1 000	1 400
HR32940J	200	280	51	51	39	3	2,5	480	935	54,2	9,65	1 100	1 500
HR32044XJ	220	340	76	76	57	4	3	885	1 610	73,6	24,4	950	1 300
HR32944J	220	300	51	51	39	3	2,5	490	990	59,2	10,3	1 000	1 400
HR32048XJ	240	360	76	76	57	4	3	920	1 730	79,1	26,2	850	1 200
HR32948J	240	320	51	51	39	3	2,5	500	1 040	65,1	11,1	950	1 300
HR32052XJ	260	400	87	87	65	5	4	1 160	2 160	86,3	38,5	800	1 100
HR32952J	260	360	63,5	63,5	48	3	2,5	730	1 450	69,8	18,6	850	1 100
HR32056XJ	280	420	87	87	65	5	4	1 180	2 240	91,6	40,6	710	1 000
HR32956J	280	380	63,5	63,5	48	3	2,5	765	1 580	75,3	20	800	1 100
HR32060XJ	300	460	100	100	74	5	4	1 440	2 700	98,4	56,6	670	900
HR32960J	300	420	76	76	57	4	3	1 010	2 100	79,9	31,4	710	950
HR32064XJ	320	480	100	100	74	5	4	1 510	2 910	104,5	60	630	850
HR32972J	360	480	76	76	57	4	3	1 080	2 340	96,8	36,1	560	800

Dynamisch äquivalente Lagerbelastung $P = XF_r + YF_a$

F _a /F	_r ≦ e	Fa/Fr	-> e
X	Υ	X	Y
1	0	0,4	Y,

Statisch äquivalente Lagerbelastung $P_0 = 0.5 F_r + Y_0 F_a$ Wenn $F_r > 0.5 F_r + Y_0 F_a$, P 0 = F r verwenden Die Werte für e, Y_1 und Y_0 sind der nachstehenden Tabelle zu entnehmen.

Konstante	Axiallas	tfaktoren	Abmessungen von Anschlussmaßen und Kanten (mm)								
е			d _a	d _b) _a	D _b	S _a (min.)	S _b		Außenring
0,46	1,3	Y ₀	(min.) 112	(max.) 109	(max.) 141	(min.) 136	(min.)	6	(min.) 8	r _a (max.)	r _a (max.) 1,5
0,43	1,8	1,0	111	107	132	132	134	5	5	1,5	1,5
0,44	1,4	0,74	120	115	150	144	154	6	9	2	2
0,44	1,8	0,74	116	114	137	137	140	5	5	1,5	1,5
0,43	1,4		125	121	160	153	163	7	9	2	2
0,43	1,7	0,77	123	119	142	142	145	5	5	1,5	1,5
0,36	1,7	0,73	135	131	170	162	173	7	9	2	2
0,46		0,72	131	129			160				
	1,7				156 190	155 179		8	11	1,5	1,5
0,43	1,4	0,76	145	144			192				2
0,46	1,3	0,72	155	152	200	189	202	8	11	2	2
0,36	1,7	0,92	152	150	180	178	184	6	7	2	1,5
0,46	1,3	0,72	168	164	213	202	216	8	12	2,5	2
0,46	1,3	0,72	178	175	228	216	231	8	13	2,5	2
0,35	1,7	0,95	175	173	208	206	212	7	8	2	2
0,44	1,4	0,74	188	187	248	232	249	10	14	2,5	2
0,38	1,6	0,86	185	180	218	215	222	7	8	2	2
0,42	1,4	0,78	198	199	268	248	267	10	16	2,5	2
0,48	1,3	0,69	195	192	240	227	241	8	11	2	2
0,44	1,4	0,75	208	209	278	258	279	10	16	2,5	2
0,48	1,3	0,69	205	201	250	237	251	8	11	2	2
0,43	1,4	0,77	218	221	298	277	297	11	17	2,5	2
0,39	1,5	0,84	218	216	268	258	271	9	12	2,5	2
0,43	1,4	0,77	241	244	326	303	326	12	19	3	2,5
0,43	1,4	0,78	238	235	288	278	293	9	12	2,5	2
0,46	1,3	0,72	261	262	346	321	346	12	19	3	2,5
0,46	1,3	0,72	258	255	308	297	314	9	12	2,5	2
0,43	1,4	0,76	287	287	382	357	383	14	22	4	3
0,41	1,5	0,81	278	278	348	333	347	11	15,5	2,5	2
0,46	1,3	0,72	307	305	402	374	402	14	22	4	3
0,43	1,4	0,76	298	297	368	352	368	12	15,5	2,5	2
0,43	1,4	0,76	327	330	442	408	439	15	26	4	3
0,39	1,5	0,84	321	324	406	387	405	13	19	3	2,5
0,46	1,3	0,72	347	350	462	430	461	15	26	4	3
0,46	1,3	0,72	381	381	466	445	466	13	19	3	2,5

Einseitig wirkende Axialkugellager

Axial-Zylinderrollenlager

ROBUSTSLIM

Kapitel 4 **Axiallager** Axiallager...... 166-177 Eigenschaften Bezeichnungssystem Lagertabellen Einseitig wirkende Axialkugellager Axial-Zylinderrollenlager ROBUSTSLIM

Axiallager

Bauart und Eigenschaften

Einseitig wirkende Axialkugellager

Axialkugellager nehmen Axiallasten auf, nicht jedoch Radiallasten.

Für einseitig wirkende Axialkugellager werden in der Regel die in Tabelle 6.1 aufgeführten Stahlblechkäfige und Messingkäfige verwendet.

Die in den Lagertabellen angegebenen Tragzahlen basieren auf der in Tabelle 6.1 gezeigten standardmäßigen Käfigbauform.

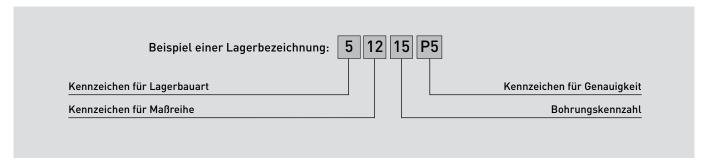
Bei identischen Lagernummern können unterschiedliche Käfigbauformen eine unterschiedliche Anzahl an Kugeln umfassen; in solchen Fällen weicht die Tragzahl von der in den Lagertabellen angegebenen Tragzahl ab.

Tabelle 6.1 Standardkäfige für Axialkugellager

	Flacher Sitz	Stahlblechkäfig	Messingmassivkäfig
	511	51106-51152X	51156X-51180X
Einseitig wirkend	512	51206-51236X	51238X-51280X
Linsellig wil kerid	513	51306-51336X	51338X-51340X
	514	51406-51418X	51420X-51436X

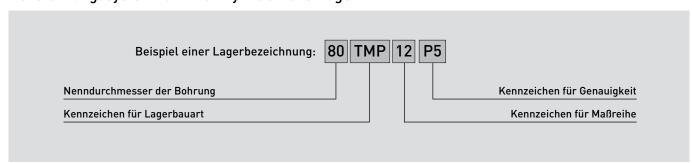
Axial-Zylinderrollenlager

Hierbei handelt es sich um Axiallager mit Zylinderrollen. Sie können nur Axiallasten aufnehmen, sind aber für hohe Lasten geeignet und haben eine hohe Axialsteifigkeit.


Sie sind mit Messingkäfigen ausgestattet.

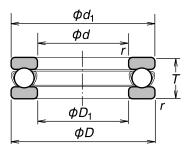
Mindestachsbelastung

Axiallager müssen mit einer gewissen Axiallast beaufschlagt werden, um zu verhindern, dass es zwischen den Wälzkörpern und den Laufbahnen zu einem Rutschen kommt.


Nähere Angaben siehe Seite 217.

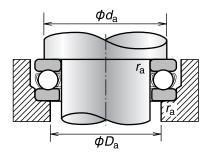
Bezeichnungssystem für einseitig wirkende Axialkugellager

5	Lagerbauart	5: Axialkugellager
12	Maßreihe	11: Serie 11 12: Serie 12 13: Serie 13 14: Serie 14
15	Bohrungskennzahl	Lagerbohrung = Bohrungskennzahl × 5 (mm)
P5	Genauigkeit	P5: ISO-Klasse 5, P4: ISO-Klasse 4


Bezeichnungssystem für Axial-Zylinderrollenlager

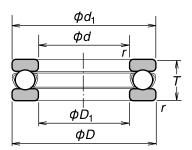
80	Nenndurchmesser der Bohrung	Bohrungsdurchmesser (mm)
TMP	Lagerbauart	TMP: Axial-Zylinderrollenlager
11411		The state of the s
12	Maßreihe	11: Serie 11 12: Serie 12 93: Serie 93
P5	Genauigkeit	P5: Klasse 5, P4: Klasse 4

Bohrungsdurchmesser 30–160 mm


Einseitig wirkende Axialkugellager

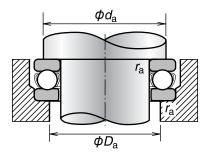
Lager-		Ha		messur m) (²)	ngen			ahlen N)	Gewicht (kg)	Grenzdre (mi	ehzahlen n ⁻¹)	Minimal- lastfaktor (1)		ingen von A und Kanten	
bezeichnung (²)	d	D	Т	d ₁	D ₁	r (min.)	C _a (dynamisch)	C_{oa} (statisch)	(ca.)	Fett	Öl	M (x10⁻⁴)	d _a (min.)	D _a (max.)	r _a (max.)
51106	30	47	11	47	32	0,6	20,6	42	0,064	4 300	6 700	0,009	40	37	0,6
51206	30	52	16	52	32	0,6	29,5	58	0,137	3 400	5 300	0,018	43	39	0,6
51306	30	60	21	60	32	1	43	78,5	0,267	2 800	4 300	0,033	48	42	1
51406	30	70	28	70	32	1	73	126	0,519	2 200	3 400	0,082	54	46	1
51107	35	52	12	52	37	0,6	22,1	49,5	0,081	4 000	6 000	0,013	45	42	0,6
51207	35	62	18	62	37	1	39,5	78	0,210	3 000	4 500	0,033	51	46	1
51307	35	68	24	68	37	1	56	105	0,386	2 400	3 800	0,059	55	48	1
51407	35	80	32	80	37	1,1	87,5	155	0,769	2 000	3 000	0,13	62	53	1
51108	40	60	13	60	42	0,6	27,1	63	0,120	3 600	5 300	0,021	52	48	0,6
51208	40	68	19	68	42	1	47,5	98,5	0,270	2 800	4 300	0,050	57	51	1
51308	40	78	26	78	42	1	70	135	0,536	2 200	3 400	0,098	63	55	1
51209	45	73	20	73	47	1	48	105	0,310	2 600	4 000	0,059	62	56	1
51309	45	85	28	85	47	1	80,5	163	0,672	2 000	3 000	0,14	69	61	1
51110	50	70	14	70	52	0,6	29	75,5	0,153	3 200	4 800	0,030	62	58	0,6
51210	50	78	22	78	52	1	49	111	0,378	2 400	3 600	0,067	67	61	1
51310	50	95	31	95	52	1,1	97,5	202	0,931	1 800	2 800	0,21	77	68	1
51410	50	110	43	110	52	1,5	147	288	1,94	1 400	2 200	0,44	86	74	1,5
51111	55	78	16	78	57	0,6	35	93	0,227	2 800	4 300	0,045	69	64	0,6
51211	55	90	25	90	57	1	70	159	0,599	2 200	3 200	0,13	76	69	1
51311	55	105	35	105	57	1,1	115	244	1,31	1 600	2 400	0,31	85	75	1
51112	60	85	17	85	62	1	41,5	113	0,281	2 600	4 000	0,065	75	70	1
51212	60	95	26	95	62	1	71,5	169	0,673	2 000	3 000	0,15	81	74	1
51312	60	110	35	110	62	1,1	119	263	1,40	1 600	2 400	0,36	90	80	1
51113	65	90	18	90	67	1	42	117	0,324	2 400	3 800	0,073	80	75	1
51213	65	100	27	100	67	1	75,5	189	0,756	1 900	2 800	0,18	86	79	1
51313	65	115	36	115	67	1,1	123	282	1,54	1 500	2 400	0,41	95	85	1
51413	65	140	56	140	68	2	234	495	4,10	1 100	1 700	1,2	110	95	2
51214	70	105	27	105	72	1	74	189	0,793	1 900	2 800	0,19	91	84	1
51314	70	125	40	125	72	1,1	137	315	2,00	1 400	2 000	0,53	103	92	1
51115	75	100	19	100	77	1	43,5	131	0,389	2 200	3 400	0,092	90	85	1
51215	75	110	27	110	77	1	78	209	0,845	1 800	2 800	0,22	96	89	1
51415	75	160	65	160	78	2	254	560	6,15	950	1 400	1,8	125	110	2

⁽¹) Nähere Angaben zu Minimallastfaktoren siehe Seite 217.


⁽²) Das Nachsetzzeichen X hinter einer Lagernummer gibt an, dass der Außendurchmesser d, der Wellenscheibe kleiner ist als der Durchmesser D der Gehäusescheibe.

Lager-		Ha		nessui nm)	ngen			ahlen N)	Gewicht (kg)	Grenzdre (mi	ehzahlen n ⁻¹)	Minimal- lastfaktor (1)		ıngen von A und Kanten	
bezeichnung (²)	d	D	Т	d ₁	D ₁	r (min.)	\mathbf{C}_{a} (dynamisch)	C _{oa} (statisch)	(ca.)	Fett	Öι	M (x10 ⁻⁶)	d _a (min.)	D _a (max.)	r _a (max.)
51116	80	105	19	105	82	1	45	141	0,417	2 200	3 400	0,10	95	90	1
51216	80	115	28	115	82	1	79	218	0,931	1 800	2 600	0,25	101	94	1
51316	80	140	44	140	82	1,5	164	395	2,74	1 300	1 900	0,82	116	104	1,5
51416	80	170	68	170	83	2,1	272	620	7,21	900	1 300	2,3	133	117	2
51117	85	110	19	110	87	1	46,5	150	0,440	2 200	3 200	0,12	100	95	1
51217	85	125	31	125	88	1	96	264	1,22	1 600	2 400	0,36	109	101	1
51118	90	120	22	120	92	1	60	190	0,646	1 900	3 000	0,19	108	102	1
51218	90	135	35	135	93	1,1	114	310	1,69	1 400	2 200	0,51	117	108	1
51318	90	155	50	155	93	1,5	214	525	3,83	1 100	1 700	1,4	129	116	1,5
51120	100	135	25	135	102	1	86	268	0,960	1 700	2 600	0,37	121	114	1
51220	100	150	38	150	103	1,1	135	375	2,25	1 300	2 000	0,75	130	120	1
51320	100	170	55	170	103	1,5	239	595	4,98	1 000	1 500	1,9	142	128	1,5
51420X	100	210	85	205	103	3	370	985	14,8	710	1 100	5,3	165	145	2,5
51122	110	145	25	145	112	1	88	288	1,04	1 700	2 400	0,43	131	124	1
51222	110	160	38	160	113	1,1	136	395	2,42	1 300	1 900	0,85	140	130	1
51322X	110	190	63	187	113	2	282	755	7,19	900	1 300	3,0	158	142	2
51124	120	155	25	155	122	1	90	310	1,12	1 600	2 400	0,49	141	134	1
51224	120	170	39	170	123	1,1	141	430	2,70	1 200	1 800	1,0	150	140	1
51424X	120	250	102	245	123	4	480	1 400	26,2	600	900	11	196	174	3
51126	130	170	30	170	132	1	105	350	1,68	1 400	2 000	0,69	154	146	1
51226X	130	190	45	187	133	1,5	183	550	3,95	1 100	1 600	1,7	166	154	1,5
51326X	130	225	75	220	134	2,1	350	1 030	12,1	750	1 100	5,6	186	169	2
51128X	140	180	31	178	142	1	107	375	1,83	1 300	2 000	0,79	164	156	1
51228X	140	200	46	197	143	1,5	186	575	4,30	1 000	1 500	1,9	176	164	1,5
51328X	140	240	80	235	144	2,1	370	1 130	14,2	670	1 000	6,8	199	181	2
51130X	150	190	31	188	152	1	110	400	1,95	1 300	1 900	0,89	174	166	1
51230X	150	215	50	212	153	1,5	238	735	5,52	950	1 400	2,9	189	176	1,5
51330X	150	250	80	245	154	2,1	380	1 200	15,0	670	1 000	7,7	209	191	2
51430X	150	300	120	295	154	4	620	2 010	43,5	480	710	24	238	212	3
51132X	160	200	31	198	162	1	113	425	2,07	1 200	1 900	1,0	184	176	1
51332X	160	270	87	265	164	3	475	1 570	19,6	600	900	13	225	205	2,5
51432X	160	320	130	315	164	5	650	2 210	52,7	450	670	28	254	226	4

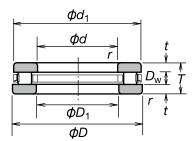
Bohrungsdurchmesser 170-700 mm


Einseitig wirkende Axialkugellager

Lager-		Hai	uptabn (m	nessur nm)	ngen		Tragz (k	ahlen N)	Gewicht (kg)		ehzahlen n ⁻¹)	Minimal- lastfaktor (¹)		ngen von Ai und Kanten	
bezeichnung (²)	d	D	Т	d ₁	D ₁	r (min.)	C _a (dynamisch)	C _{oa} (statisch)	(ca.)	Fett	Öl	M (x10 ⁻⁶)	d _a (min.)	D _a (max.)	r _a (max.)
51134X	170	215	34	213	172	1,1	135	510	2,72	1 100	1 700	1,4	197	188	1
51234X	170	240	55	237	173	1,5	280	915	7,41	850	1 300	4,4	212	198	1,5
51136X	180	225	34	222	183	1,1	136	530	2,79	1 100	1 700	1,6	207	198	1
51236X	180	250	56	247	183	1,5	284	955	7,94	800	1 200	4,8	222	208	1,5
51336X	180	300	95	295	184	3	480	1 680	25,9	560	850	15	251	229	2,5
51138X	190	240	37	237	193	1,1	172	655	3,60	1 000	1 600	2,4	220	210	1
51238X	190	270	62	267	194	2	320	1 110	11,8	750	1 100	6,7	238	222	2
51140X	200	250	37	247	203	1,1	173	675	3,75	1 000	1 500	2,5	230	220	1
51240X	200	280	62	277	204	2	315	1 110	12,3	710	1 100	6,9	248	232	2
51144X	220	270	37	267	223	1,1	179	740	4,09	950	1 500	3,0	250	240	1
51244X	220	300	63	297	224	2	325	1 210	13,6	670	1 000	8,2	268	252	2
51148X	240	300	45	297	243	1,5	229	935	6,55	850	1 200	4,9	276	264	1,5
51248X	240	340	78	335	244	2,1	420	1 650	23,7	560	850	15	299	281	2
51448X	240	440	160	435	245	6	915	3 900	115	320	500	85	359	321	5
51152X	260	320	45	317	263	1,5	233	990	7,01	800	1 200	5,6	296	284	1,5
51252X	260	360	79	355	264	2,1	435	1 800	25,1	560	850	18	319	301	2
51156X	280	350	53	347	283	1,5	315	1 310	12,0	710	1 000	9,6	322	308	1,5
51256X	280	380	80	375	284	2,1	450	1 950	27,1	530	800	21	339	321	2
51160X	300	380	62	376	304	2	360	1 560	17,2	600	900	14	348	332	2
51360	300	480	140	480	305	5	860	3 950	103	340	500	90	407	375	4
51164X	320	400	63	396	324	2	365	1 660	18,6	600	900	16	368	352	2
51264X	320	440	95	435	325	3	585	2 680	45,0	450	670	41	391	369	2,5
51364	320	500	140	500	325	5	880	4 200	109	340	500	101	427	395	4
51168X	340	420	64	416	344	2	375	1 760	19,9	560	850	18	388	372	2
51268X	340	460	96	455	345	3	595	2 800	47,9	430	630	46	411	389	2,5
51172X	360	440	65	436	364	2	385	1 860	21,5	560	800	19	408	392	2
51272X	360	500	110	495	365	4	705	3 500	68,8	380	560	70	442	418	3
51176X	380	460	65	456	384	2	385	1 910	22,4	540	800	21	427	413	2
51276	380	520	112	520	385	4	740	3 800	74,5	370	550	80	464	438	3
51180X	400	480	65	476	404	2	395	2 010	23,5	_	790	23	447	433	2
51280X	400	540	112	535	405	4	730	3 800	76,6	_	540	83	484	458	3

⁽¹) Nähere Angaben zu Minimallastfaktoren siehe Seite 217.

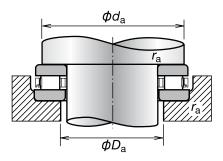
⁽²) Das Nachsetzzeichen X hinter einer Lagernummer gibt an, dass der Außendurchmesser d₁ der Wellenscheibe kleiner ist als der Durchmesser D der Gehäusescheibe.



Lager-	nung (²)							ahlen N)	Gewicht		ehzahlen n ⁻¹)	Minimal- lastfaktor (1)	Abmessungen von Anschluss- maßen und Kanten (mm)		
bezeichnung (²)	d	D	Т	d ₁	D ₁	r (min.)	C _a (dynamisch)	C _{oa} (statisch)	(kg) (ca.)	Fett	Öl	M (x10 ⁻⁶)	d _a (min.)	D _a (max.)	r _a (max.)
51184X	420	500	65	495	424	2	400	2 110	24,4	_	770	25	467	453	2
51284	420	580	130	580	425	5	850	4 650	109	_	470	121	517	485	4
51188X	440	540	80	535	444	2,1	515	2 850	40,5	_	650	45	498	482	2
51288	440	600	130	600	445	5	865	4 850	115	_	460	131	537	505	4
51192X	460	560	80	555	464	2,1	520	2 930	42,0	_	640	48	518	502	2
51292	460	620	130	620	465	5	880	5 050	119	_	460	142	557	525	4
51392	460	710	195	710	465	6	1 200	7 150	291	_	330	292	606	566	5
51196X	480	580	80	575	484	2,1	530	3 100	43,7	_	630	52	538	522	2
51296	480	650	135	650	485	5	890	5 250	137	_	430	155	582	550	4
511/500X	500	600	80	595	504	2,1	560	3 300	45,4	_	620	60	554	546	2
511/530X	530	640	85	635	534	3	640	3 900	56,7	_	570	86	597	575	2,5
512/530	530	710	140	710	535	5	1 010	6 200	165	_	400	224	637	605	4
511/560X	560	670	85	665	564	3	655	4 100	59,6	_	560	95	625	605	2,5
512/560	560	750	150	750	565	5	1 200	7 800	200	_	370	328	672	640	4
511/600X	600	710	85	705	605	3	675	4 400	63,3	_	540	109	665	645	2,5
511/630X	630	750	95	745	634	3	685	4 600	83,0	_	490	120	700	680	2,5
511/670X	670	800	105	795	675	4	760	5 350	104	_	440	160	742	728	3
511/750	750	900	120	900	755	4	910	6 850	156	_	380	262	834	818	3
F980-1	980	1 120	120	1 115	985	5	1 010	8 900	186	_	330	435	1 059	1 041	4
F1250-1	1 250	1 495	150	1 490	1 256	6	1 670	17 200	505	_	240	1 645	1 384	1 362	5
F1400-7	1 400	1 570	100	1 570	1 404	4	1 090	11 800	246	_	300	813	1 494	1 478	3
F1700-2	1 700	1 960	170	1 950	1 710	6	2 210	27 200	783	_	180	4 061	1 838	1 822	5

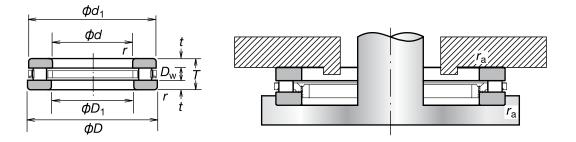
Bohrungsdurchmesser 40-500 mm

6. Axiallager


Axial-Zylinderrollenlager

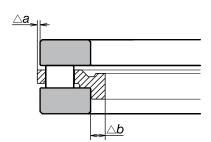
Lager-	Hau	ptabm (m		ngen		Abmess (m				ahlen N)	Gewicht (kg)		ehzahlen n ⁻¹)	Minimal- lastfaktor (1)		ingen von A und Kanten	
bezeichnung (²)	d	D	Т	r (min.)	d ₁	D ₁	$D_{\rm w}$	t	C _a (dynamisch)	C _{oa} (statisch)	(ca.)	Fett	Öl	M (x10 ⁻⁶)	d _a (min.)	D _a (max.)	r _a (max.
40TMP93	40	78	22	1	78	42	8	7	63	194	0,525	1 200	3 600	0,0026	71	48	1
45TMP93	45	85	24	1	85	47	8	8	71	233	0,665	1 100	3 400	0,0038	78	53	1
50TMP93	50	95	27	1,1	93	52	11	8	113	350	0,942	1 000	3 000	0,0086	89	57	1
55TMP93	55	105	30	1,1	105	55,2	11	9,5	134	450	1,28	900	2 600	0,014	98	63	1
60TMP12	60	95	26	1	95	62	10	8	99	325	0,735	1 000	3 000	0,0095	88	67	1
60TMP93	60	110	30	1,1	110	62	11	9,5	139	480	1,36	850	2 600	0,016	103	68	1
65TMP12	65	100	27	1	100	67	12,5	7,25	110	325	0,805	950	2 800	0,0095	93	71	1
65TMP93	65	115	30	1,1	115	65,2	11	9,5	145	515	1,44	850	2 600	0,019	108	73	1
70TMP93	70	125	34	1,1	125	72	14	10	191	635	1,95	750	2 200	0,028	117	78	1
75TMP11	75	100	19	1	100	77	8	5,5	63,5	221	0,41	1 100	3 400	0,0068	96	79	1
75TMP93	75	135	36	1,5	135	77	14	11	209	735	2,42	710	2 200	0,038	125	84	1,5
80TMP12	80	115	28	1	115	82	11	8,5	120	420	1,02	900	2 600	0,016	109	86	1
80TMP93	80	140	36	1,5	138	82	14	11	208	740	2,54	710	2 000	0,038	130	91	1,5
85TMP11	85	110	19	1	110	87	7,5	5,75	75	298	0,46	1 100	3 200	0,012	105	89	1
85TMP12	85	125	31	1	125	88	14	8,5	151	485	1,36	800	2 400	0,021	118	92	1
85TMP93	85	150	39	1,5	148	87	14	12,5	257	995	3,2	630	1 900	0,069	140	95	1,5
90TMP11	90	120	22	1	119	91,5	9	6,5	96	370	0,725	950	3 000	0,019	114	95	1
90TMP93	90	155	39	1,5	155	90,2	16	11,5	250	885	3,3	630	1 900	0,055	144	101	1,5
100TMP93	100	170	42	1,5	170	103	16	13	292	1 110	4,25	560	1 700	0,086	159	110	1,5
110TMP12	110	160	38	1,1	160	113	15	11,5	228	855	2,66	630	1 900	0,066	150	119	1
120TMP12	120	170	39	1,1	170	123	15	12	233	895	2,93	600	1 800	0,072	160	129	1
130TMP12	130	190	45	1,5	187	133	19	13	300	1 090	4,5	530	1 600	0,11	177	142	1,5
130TMP93	130	225	58	2,1	225	133	22	18	585	2 370	10,4	430	1 300	0,39	214	140	2
140TMP93	140	240	60	2,1	240	143	25	17,5	610	2 360	12,2	400	1 200	0,39	226	154	2
150TMP12	150	215	50	2	215	153	19	15,5	375	1 500	6,15	480	1 400	0,20	202	163	2
150TMP93	150	250	60	2,1	250	153	25	17,5	635	2 510	12,8	400	1 200	0,44	236	165	2

⁽¹) Nähere Angaben zu Minimallastfaktoren siehe Seite 217.


⁽²) Das Nachsetzzeichen X hinter einer Lagernummer gibt an, dass der Außendurchmesser d₁ der Wellenscheibe kleiner ist als der Durchmesser D der Gehäusescheibe.

Lager-	Hau	ptabm (m	nessu m)	ngen		Abmes (m	sungen m)			ahlen N)	Gewicht (kg)		ehzahlen n ⁻¹)	Minimal- lastfaktor (1)		ngen von A ınd Kanten	Anschluss- (mm)
bezeichnung (²)	d	D	T	r (min.)	d ₁	D ₁	$D_{\rm w}$	t	C _a (dynamisch)	C_{oa} (statisch)	(ca.)	Fett	Öl	M (x10 ⁻⁶)	d _a (min.)	D _a (max.)	r _a (max.)
160TMP11	160	200	31	1	200	162	11	10	173	815	2,21	630	1 900	0,093	191	168	1
170TMP12	170	240	55	1,5	237	173	22	16,5	485	1 960	8,2	430	1 300	0,35	227	182	1,5
180TMP93	180	300	73	3	300	185	32	20,5	1 000	4 000	22,5	320	950	1,1	284	194	2,5
190TMP12	190	270	62	3	266	195	30	16	705	2 630	11,8	360	1 100	0,62	255	200	2,5
190TMP93	190	320	78	4	320	195	32	23	1 080	4 500	27,6	300	900	1,42	303	205	3
200TMP11	200	250	37	1,1	247	203	17	10	365	1 690	4,1	500	1 500	0,40	242	207	1
200TMP93	200	340	85	4	340	205	32	26,5	1 180	5 150	34,5	280	800	1,9	322	218	3
220TMP11	220	270	37	1,1	267	223	17	10	385	1 860	4,5	480	1 500	0,48	262	227	1
220TMP12	220	300	63	2	297	224	30	16,5	770	3 100	13,5	340	1 000	0,86	287	232	2
240TMP11	240	300	45	1,5	297	243	18	13,5	435	2 160	7,2	400	1 200	0,65	288	251	1,5
240TMP12	240	340	78	2,1	335	244	32	23	965	4 100	23,3	280	850	1,5	322	258	2
240TMP93	240	380	85	4	380	245	32	26,5	1 290	6 100	39,4	260	770	2,6	362	258	3
260TMP11	260	320	45	1,5	317	263	18	13,5	460	2 350	7,75	400	1 200	0,77	308	272	1,5
260TMP12	260	360	79	2,1	355	264	32	23,5	995	4 350	25,2	280	850	1,7	342	276	2
260TMP93	260	420	95	1,1	420	265	38	28,5	1 670	7 700	55,2	230	680	4,2	398	282	1
280TMP11	280	350	53	1,5	347	283	20	16,5	545	2 800	11,6	340	1 000	1,1	335	294	1,5
280TMP12	280	380	80	2,1	375	284	32	24	1 050	4 750	27,2	260	800	2,0	362	296	2
300TMP12	300	420	95	3	415	304	38	28,5	1 390	6 250	42	220	670	3,5	398	322	2,5
320TMP11	320	400	63	2	396	324	25	19	820	4 250	18	300	900	2,5	385	335	2
320TMP12	320	440	95	3	435	325	38	28,5	1 420	6 550	44,5	220	670	3,9	418	340	2,5
340TMP12	340	460	96	3	455	345	38	29	1 450	6 800	47,4	220	650	4,2	438	360	2,5
360TMP12	360	500	110	4	495	365	45	32,5	1 870	8 600	68,1	190	570	6,7	475	383	3
380TMP12	380	520	112	4	515	385	45	33,5	1 920	8 950	82,1	180	550	7,2	495	403	3
400TMP12	400	540	112	4	535	405	45	33,5	1 960	9 350	78,0	_	540	7,9	515	423	3
420TMP11	420	500	65	2	495	424	25	20	940	5 450	24,6	_	770	4,2	485	434	2
500TMP11	500	600	80	2,1	595	505	32	24	1 420	8 300	46,5	_	620	9,6	582	516	2

Bohrungsdurchmesser 560-2 530 mm


Axial-Zylinderrollenlager für vertikale Bearbeitungszentren

Lager- bezeichnung	Ha	Hauptabmessungen (mm) (²)				Abmessungen (mm)				Tragzahlen (kN)		Minimal- lastfaktor (1)	Grenzdrehzahlen (min ⁻¹)	Abmessungen von Anschlussmaßen und Kanten (mm)
bezeieiniung	d	D	Т	r (min.)	d ₁	D ₁	D_w	t	C _a (dynamisch)	C_{oa} (statisch)	(ca.)	(x10 ⁻⁶)	Öl	r _a (max.)
560TMP7001	560	700	95	4	700	560	35	30	1 690	10 200	95,5	14,6	510	3
610TMP7102	610	710	65	4	710	610	25	20	1 080	7 300	46,5	7,5	630	3
860TMP1001	860	1 000	96	4	1 000	860	35	30,5	2 130	15 500	145	34	410	3
1240TMP1301	1 240	1 380	97	4	1 380	1 240	35	31	2 480	21 000	204	62	330	3
1400TMP1501	1 400	1 520	90	3	1 520	1 400	30	30	2 120	19 800	187	55	330	2,5
1690TMP1801	1 690	1 800	105	3	1 800	1 690	35	35	2 990	29 300	239	120	270	2,5
1930TMP2101	1 930	2 100	105	4	2 100	1 930	35	35	2 700	27 500	434	135	240	3
2270TMP2401	2 270	2 400	120	4	2 400	2 270	40	40	4 100	44 000	448	271	200	3
2530TMP2701	2 530	2 750	150	4	2 750	2 530	50	50	5 750	60 500	1 012	512	150	3

⁽¹) Nähere Angaben zu Minimallastfaktoren siehe Seite 217.

[[]²] Da die Käfige aus den Ringstirnflächen von Axial-Zylinderrollenlagern hervorstehen, ist beim Konstruieren von Wellen und Gehäusen besonders gewissenhaft vorzugehen. Nähere Angaben erhalten Sie bei NSK.

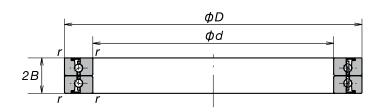
Hochgenauigkeits-Schrägkugellager mit flachem Profil vom Typ ROBUSTSLIM

Eigenschaften

Hierbei handelt es sich um eine Serie von Schrägkugellagern, die speziell für schwenkbare Spindelköpfe in Werkzeugmaschinen entwickelt wurden. Sie eignen sich für den Einsatz in Mehrachsmaschinen für hochgenaue Bearbeitungen. Die ROBUSTSLIM-Serie von Hochgenauigkeits-Schrägkugellagern mit flachem Profil zeichnet sich durch eine hohe Steifigkeit und ein niedriges Drehmoment aus.

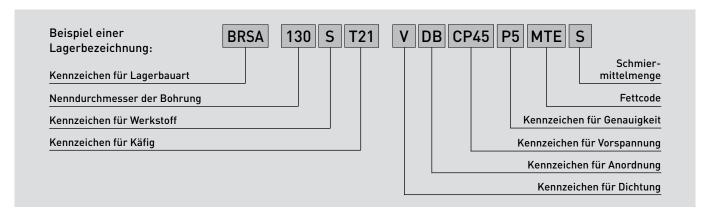
Geringeres Drehmoment als bei Rollenlagern.

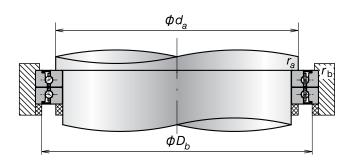
Bei BRSA130 konnte eine NRRO (nicht wiederholbare Rundlaufabweichung) von 0,5 µm und weniger erzielt werden.



Hohe Momentensteifigkeit wie bei Kreuzrollenlagern.

Im Vergleich zu Standardwälzlagern um 35 % oder mehr verringerte Wälzlagerbreite.


Bohrungsdurchmesser 130-400 mm ROBUSTSLIM


Lagerbezeichnung (¹)			nessunger m)	1	Tragz (k	ahlen N)	Zulässige Axiallast	Druckwinkel	Gewicht (kg/Reihe)
Lager bezeichnung ()	d	D	2B	r (min.)	C _a (dynamisch)	C _{oa} (statisch)	(kN)	a (Grad)	(Referenz)
BRSA130ST21VDBCP45	130	165	22	0,6	20,2	91	28,5	35	0,6
BRSA170ST21VDBCP55	170	215	27	0,6	34,5	166	47,5	35	1,2
BRSA220ST21VDBCP62	220	270	31	1	45,5	243	63,5	35	2,0
BRSA340SVDBCP95	340	420	50	1,1	97,5	560	150,9	35	8,2
BRSA400SVDBCP100	400	500	62	1,1	139	830	221,6	35	15,4

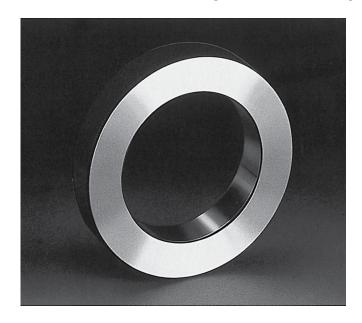
Hinweis: Die in der Tabelle für Vorspannung, Grenzdrehzahlen, axiale Steifigkeit, radiale Steifigkeit und Momentensteifigkeit aufgeführten Werte sind Referenzwerte, die auf der in der Spalte "Lagerbezeichnung" angegebenen Axialluft basieren.

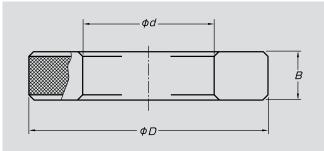
Bezeichnungssystem für Hochgenauigkeits-Schrägkugellager mit flachem Profil vom Typ ROBUSTSLIM

			Seite
BRSA	Lagerbauart	BRSA: Druckwinkel 35°	46-47
130	Nenndurchmesser der Bohrung	Bohrungsmaße (mm): 130, 170, 220, 340, 400	176-177
S	Werkstoff	S: Innen-/Außenring SUJ2 oder SUJ3, Kugeln SUJ2	16-157
T21	Käfig	T21: ringgeführter Kunststoffkäfig Kein Kennzeichen: ringgeführter Messingmassivkäfig	-
V	Dichtung	V: nicht schleifende Gummidichtung auf einer Seite	-
DB	Lageranordnung	DB: 0-Anordnung	202-203
CP45	Vorspannung	CP: Spalt mit spezieller Vorspannung	212
P5	Genauigkeit	P5: Klasse 5	224-227

Abmessungen von Anschlussmaßen und Kanten (mm)				Vorspannung	Grenzdrehzahlen (min ⁻¹)	Axiale Steifigkeit	Radiale Steifigkeit	Momenten- steifigkeit
d _a (min.)	D _b (max.)	r _a (max.)	r _b (max.)	(kN)	Fett	(kN/µm)	(kN/µm)	(kN·m/mrad)
135	160	0,6	0,6	18	260	2,6	1,8	7,9
175	210	0,6	0,6	29	200	3,4	2,4	17,9
226	264	1	1	43	150	4,4	3,1	37,3
347	413	1	1	95	100	6,5	4,7	134
407	493	1	1	111	80	7,2	5,4	210

7. Zubehör





Zubehör

7. Zubehör

Maßringe der Serie GR für die Kalibrierung von Bohrungsmessgeräten

Hochgenauigkeitslager können ihre volle Leistungsfähigkeit in der Werkzeugmaschinenspindel nur erreichen, wenn die erforderlichen Bearbeitungstoleranzen von Welle und Gehäuse eingehalten werden.

Um dies zu erreichen, ist es erforderlich, Abmessungen von Wellendurchmesser und Gehäusebohrung genau zu messen.

NSK Maßringe der Serie GR sind Referenzlehren für Bohrungsdurchmesser mit einer Genauigkeit von 0,001 mm.


Eigenschaften

- Die Ringkonstruktion ermöglicht eine exakte Einstellung des Bohrungsmessgeräts.
- Durch die große Ringstärke entstehen keine Verformungen durch die Messlast.
- Gehärtete Ringe garantieren die Maßhaltigkeit über einen langen Benutzungszeitraum.
- Eine genaue Einstellung des Messgeräts ist möglich, da die Abweichungen vom Nennmaß in Schritten von 1µm in X- und Y-Richtung auf den Ringen vermerkt sind.

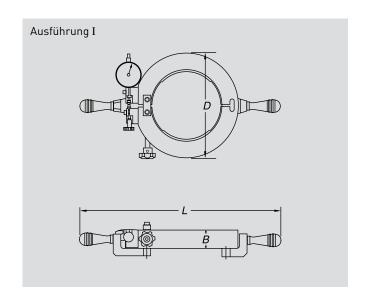
		Für Lager				1	Hauptabmessung (mm)	en	
79 69 NN39 NN49	BNR19 BER19	70 60 N10 NN30	BNR10 BER10	72 62 N2	Bezeichnung des Maßrings	d	D	В	Gewicht (kg) (ca.)
-	-	00	-	-	GR 26	26	75	20	0,6
02	-	01	_	-	GR 28	28	75	20	0,6
03	-	_	-	00	GR 30	30	80	20	0,7
-	-	02	_	01	GR 32	32	80	20	0,7
-	-	03	_	02	GR 35	35	85	20	0,7
04	-	-	-	-	GR 37	37	85	20	0,7
-	-	-	_	03	GR 40	40	90	20	0,8
05	-	04	-	-	GR 42	42	95	20	0,9
06	-	05	-	04	GR 47	47	95	20	0,8
07	-	-	-	05	GR 52	52	100	20	0,9
-	-	06	30	-	GR 55	55	100	20	0,9
08	-	07	35	06	GR 62	62	100	20	0,8
09	-	08	40	-	GR 68	68	110	20	0,9
10	50	-	-	07	GR 72	72	115	20	1,0
-	-	09	45	-	GR 75	75	115	20	0,9
11	55	10	50	08	GR 80	80	120	25	1,2
12	60	-	-	09	GR 85	85	130	25	1,5
13	65	11	55	10	GR 90	90	135	25	1,5
_	-	12	60	-	GR 95	95	140	25	1,6
14	70	13	65	11	GR 100	100	145	25	1,7
15	75	-	-	-	GR 105	105	150	25	1,8
16	80	14	70	12	GR 110	110	160	25	2,1
-	-	15	75	-	GR 115	115	165	25	2,1
17	85	-	-	13	GR 120	120	170	25	2,2
18	90	16	80	14	GR 125	125	175	25	2,3
19	95	17	85	15	GR 130	130	180	25	2,4
20	100	18	90	16	GR 140	140	190	25	2,5
21	105	19	95	-	GR 145	145	200	30	3,5
22	110	20	100	17	GR 150	150	205	30	3,6
-	-	21	105	18	GR 160	160	215	30	3,8
24	120	-	_	_	GR 165	165	220	30	3,9
-	-	22	110	19	GR 170	170	225	30	4,0
26	130	24	120	20	GR 180	180	230	30	3,8
28	140	-	-	21	GR 190	190	240	30	4,0
-	_	26	130	22	GR 200	200	250	30	4,1

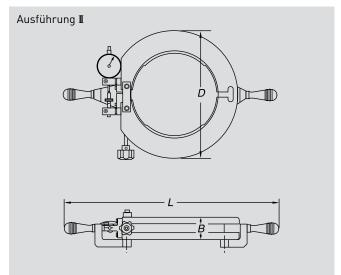
7. Zubehör

Hüllkreismessgeräte der Serie GN30 Mit Hüllkreismessgeräten wird die verbleibende Radialluft in zweireihigen Kegelrollenlagern (NN30XX) vermessen.

Beim Einbau eines zweireihigen Zylinderrollenlagers mit kegeliger Bohrung muss die Kegelsteigung von Welle und Lagerbohrung genau übereinstimmen. Außerdem muss die erforderliche Lagerluft nach der Montage genau eingestellt werden.

Bei zu großer Radialluft des Lagers hat die Hauptspindel Spiel, dies wirkt sich negativ auf ihre Bearbeitungsgenauigkeit aus. Bei zu geringer Lagerluft ist nur ein geringer Anstieg der Steifigkeit zu erwarten. Die Lagertemperatur steigt jedoch stark an, die Ermüdungslebensdauer wird erheblich verkürzt (siehe Seite 217).


Im Werkzeugmaschinenbau werden immer höhere Geschwindigkeiten und größere Genauigkeiten gefordert, daher muss auch die Lagerluft nach dem Einbau genau eingestellt werden. Früher war das Messen der Lagerluft sehr aufwändig.


Mit den Hüllkreismessgeräten der Serie GN lässt sich die Radialluft in zweireihigen Zylinderrollenlagern einfach und genau bestimmen. Die Lagermontage wird dadurch deutlich sicherer und einfacher. Bei der Verwendung von GN-Hüllkreismessgeräten ist gleichzeitig ein Maßring für die Bohrung erforderlich.

Angaben zur Verwendung der Hüllkreismessgeräte GN siehe Seite 252.

Eigenschaften

- Es sind keine komplizierten Berechnungen von Korrekturen anhand der Überdeckung zwischen Gehäuse und Außenring mehr notwendig.
- Messung von Lagerluft oder radialer Vorspannung ist möglich.
- Es sind sehr genaue Messungen möglich, weil alle GN-Hüllkreismessgeräte auf die jeweilige Messlast kalibriert sind.

Für	Bezeichnung des	A		Hauptabmessungen (mm)		Gewicht (kg)
Lager	Hüllkreismessgeräts	Ausführung	D	В	L	(ca.)
NN3007	GN3007	I	102	23	292	1,3
NN3008	GN3008	I	108	23	297	1,4
NN3009	GN3009	I	115	23	305	1,5
NN3010	GN3010	I	120	23	310	1,6
NN3011	GN3011	I	131	26	324	2,1
NN3012	GN3012	I	138	26	329	2,2
NN3013	GN3013	I	145	26	335	2,4
NN3014	GN3014	I	156	30	347	3,0
NN3015	GN3015	I	162	30	353	3,1
NN3016	GN3016	I	175	33	374	4,2
NN3017	GN3017	I	185	33	381	4,3
NN3018	GN3018	I	195	35	393	5,2
NN3019	GN3019	I	204	35	399	5,6
NN3020	GN3020	I	210	35	411	6,1
NN3021	GN3021	I	224	39	419	7,1
NN3022	GN3022	I	233	44	433	8,5
NN3024	GN3024	II	254	44	470	7,5
NN3026	GN3026	II	280	50	492	9,5
NN3028	GN3028	II	289	50	500	9,5
NN3030	GN3030	II	314	54	520	12
NN3032	GN3032	II	329	54	540	13

7. Zubehör

NSK Wälzlager-Anwärmgerät

Ein Wälzlager-Anwärmgerät dient der schnellen und gleichmäßigen Erwärmung eines Wälzlagers zur sauberen Montage auf eine Welle ohne Öl. Ein Wälzlager-Anwärmgerät kann auch zum Erwärmen von anderen ringförmigen Metallteilen, wie zum Beispiel Zahnrädern, verwendet werden.

Eigenschaften

- Schnelle und gleichmäßige Erwärmung
- Kein Öl erforderlich, somit verbleiben keine öligen Rückstände auf den Oberflächen.
- Geeignet zum Aufschrumpfen von Wälzlagern und anderen ringförmigen Metallteilen.

Benutzerfreundliches Bedienfeld

In Verbindung mit einem ultrakompakten hochempfindlichen Temperatursensor zeigt das Anwärmgerät auf einem digitalen Display in Echtzeit unabhängig von der Erwärmungsgeschwindigkeit und dem Messbereich genaue Temperaturdaten an.

Das Anwärmgerät lässt sich durch einen einfachen Tastendruck ein- und ausschalten.

Der Timer kann auf bis zu 100 Minuten eingestellt werden.

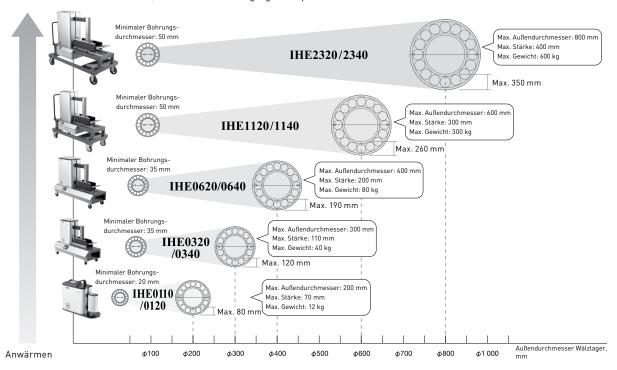
* Externe Eingangs-/Ausgangsklemmen zur Steuerung per Fernzugriff werden standardmäßig mitgeliefert. Somit ist auch eine Automatisierung in der Fertigung möglich.

Hoher Sicherheitsstandard

Das Anwärmgerät stellt sich automatisch aus, wenn Wärme eingebracht wird, ohne dass zuvor der Temperatursensor eingestellt wurde, oder wenn ein Gerätedefekt vorliegt.

Für unterschiedliche Bohrungsdurchmesser geeignet, siehe bitte unten die verschiedenen Größen der "IHE" Modelle.

Der sogenannte I-Typ Kern der IHE-Modelle kann ausgetauscht und so gewählt werden, dass er zur Bohrung eines Wälzlagers passt. Somit kann ein Anwärmgerät für Wälzlager unterschiedlicher Größe genutzt werden.


■ Typ/Leistung

Madell Newson Deissiel	a	b
Modell Nummer Beispiel	Heizleistung	Spannungsklasse
<u>IHE 01 10</u>	01 : 1,0 kW	10 : 100-V-Klasse
a b	03: 3,3 kW	20 : 200-V-Klasse
	06: 6,6 kW	40 : 400-V-Klasse
NSK Wälzlager-Anwärmgerät	11 : 11,8 kW	
mit Frequenzumrichter	23 : 23 kW	

■ Modellauswahl

Diese Übersicht zeigt die geeigneten Wälzlagergrößen für jedes Modell. Bitte wählen Sie das IHE-Modell, das zu Ihren Wälzlagergrößen passt. Automatisches Anwärmen unter optimalen Bedingungen Die elektrischen Eigenschaften variieren je nach verwendetem Wälzlagertyp und verwendetem I-Typ Kern. Das Anwärmgerät erkennt diese Veränderungen automatisch und bringt die Wärme somit immer optimal ein.

Zudem ist die Leistung in 10 %-Schritten zwischen 50 % und 100 % einstellbar. Das Anwärmgerät eignet sich somit ideal für empfindliche Wälzlager, bei denen der Anwärmvorgang schrittweise erfolgen muss.

Hauptspezifikationen

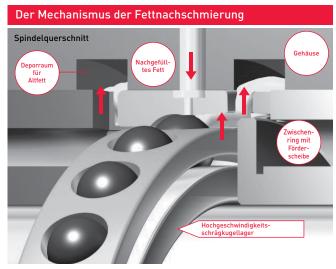
11-1-1	ell			IHE0110	IHE0120	IHE0320	IHE0340	IHE0620	IHE0640	IHE1120	IHE1140	IHE2320	IHE2340		
Heizl	eistur	ng (kW)			1		3,3		6,6		11,8	2:			
<u> </u>		Minimaler E	ohrungsdurchmesser (mm)		0		35		35	ļ	50	5	0		
Geeig Wälzla		Maximaler	Außendurchmesser (mm)	20			00	40	-		00	80			
grö		Maximale	Breite (mm)	7		110		200		30	00	40	0		
9.0		Maximale	s Gewicht (kg)	1	2	40		80		300		60	0		
Lag	er-	Kann abged	chtete Wälzlager anwärmen						Ja						
bau	art	Kann offer	ne Wälzlager anwärmen						Ja						
		Phase		Eir	ie					Drei					
Ener		Spannung	[V]	100-120	200-240	200-240	380-400	200-230	380-440	200-230	380-440	200-220/50 Hz	380-440		
versor	gung			100 120	200 210	200 210	000 100			200 200	000 110	200-230/60 Hz	000 110		
		Frequenz		7.0	/ 0	Εĵ	2,7		50/60	10.0	/ /	27	10 E		
		Eingangss H (mm)	Strom (A)	7,2	4,0	5,3	<u></u> 65	8,1	4,0 45	13,2	6,6 200	1 44	13,5		
Gehä	use-	W (mm)							_						
abmess	ungen				175 295 380 600 85 470 755 975 1 250 1 60										
	-	L (mm)	(1.)		4		43		75 31		250 241		35		
		Gewicht H	auptgehäuse (kg)	Į į	4	4	43		-250 °C		241	3.	33		
		Temperatur-	Bereich												
CL		regelmodus	Temperatursensortyp					Typ-K-Th		ment					
Steu und Re			Genauigkeit						1 °C						
una Ki spezifika		Zeit- steuerungs-	Bereich (Minuten)					0-1	00 min						
Spezinke	Monen	modus	Genauigkeit (Sekunden)						1 s						
		Leistungsei	nstellung (in 10 %-Schritten)					50-	-100 %		,				
		Entmagne	etisierung					300	μT (3G)						
Heizkernsp	ezifikation	Max. Flus							i,5 T						
Betri		Bedienun	<u> </u>	Tasten mit LEDs											
spezifil			eller Betrieb	Ja											
Temperatu	ranzeige		ung Celsius/Fahrenheit		Ja										
		Ort													
				I Innenrau	me· möa	lichst kein	em direkt	en Sonner	licht kein	en korrosi	iven Gaser	oder Staub a	nussetzen		
Betri			emperaturhereich	Innenrau	me; mög	lichst kein	em direkt				iven Gaser	n oder Staub a	aussetzen		
Betri umge		Betriebste	emperaturbereich te im Betrieb	Innenrau	me; mög	lichst kein	em direkt	-10 °C	bis 35 °		iven Gaser	n oder Staub a	aussetzen		
		Betriebste Luftfeuch	te im Betrieb			lichst kein	em direkt	-10 °C			iven Gaser	n oder Staub a	aussetzen		
		Betriebste Luftfeuch N-CI-1815 (L	te im Betrieb Lagerbohrung 20–35 mm)	•	•	lichst kein	em direkt	-10 °C	bis 35 °		iven Gaser	n oder Staub a	aussetzen		
		Betriebste Luftfeuch N-CI-1815 (I N-CI-1825 (I	te im Betrieb .agerbohrung 20–35 mm) .agerbohrung 35–50 mm)	•	•	lichst kein	em direkt	-10 °C	bis 35 °		iven Gaser	n oder Staub a	aussetzen		
		Betriebste Luftfeuch N-CI-1815 (I N-CI-1825 (I N-CI-1835 (I	te im Betrieb .agerbohrung 20–35 mm) .agerbohrung 35–50 mm) .agerbohrung > 50 mm)	•	•			-10 °C	bis 35 °		iven Gaser	n oder Staub a	aussetzen		
		Betriebste Luftfeuch N-CI-1815 (I N-CI-1825 (I N-CI-1835 (I N-CI-2525 (I	te im Betrieb .agerbohrung 20–35 mm) .agerbohrung 35–50 mm) .agerbohrung > 50 mm) .agerbohrung 35–50 mm)	•	•	lichst kein	em direkt	-10 °C	bis 35 °		iven Gaser	n oder Staub a	ussetzen		
		Betriebste Luftfeuch N-CI-1815 [I N-CI-1825 [I N-CI-2525 [I N-CI-2535 [I	te im Betrieb .agerbohrung 20–35 mm) .agerbohrung 35–50 mm) .agerbohrung > 50 mm) .agerbohrung 35–50 mm) .agerbohrung 35–50 mm)	•	•		•	-10 °C	bis 35 °		iven Gaser	n oder Staub a	aussetzen		
	bung	Betriebste Luftfeuch N-CI-1815 (I N-CI-1825 (I N-CI-2525 (I N-CI-2535 (I N-CI-2545 (I	te im Betrieb agerbohrung 20-35 mm) agerbohrung 35-50 mm) agerbohrung > 50 mm) agerbohrung 35-50 mm) agerbohrung 50-70 mm) agerbohrung > 70 mm)	•	•			-10 °C	c bis 35 °l zu 92 %		iven Gaser	n oder Staub a	aussetzen		
	bung	Betriebsté Luftfeuch N-CI-1815 (I N-CI-1825 (I N-CI-1825 (I N-CI-2525 (I N-CI-2535 (I N-CI-2545 (I N-CI-3725 (I	te im Betrieb .agerbohrung 20-35 mm) .agerbohrung 35-50 mm) .agerbohrung > 50 mm) .agerbohrung 35-50 mm) .agerbohrung 50-70 mm) .agerbohrung > 70 mm) .agerbohrung > 70 mm)	•	•		•	-10 °C bis	© bis 35 °0 zu 92 %		iven Gaser	n oder Staub a	aussetzen		
	bung	Betriebsté Luftfeuch N-CI-1815 (I N-CI-1825 (I N-CI-1825 (I N-CI-2525 (I N-CI-2535 (I N-CI-2545 (I N-CI-3725 (I N-CI-3735 (I N-CI-3735 (I	te im Betrieb agerbohrung 20-35 mm) agerbohrung 35-50 mm) agerbohrung 35-50 mm) agerbohrung 35-50 mm) agerbohrung 50-70 mm) agerbohrung > 70 mm) agerbohrung 35-50 mm) agerbohrung 35-50 mm)	•	•		•	-10 °C bis	© bis 35 °0 zu 92 %		iven Gaser	n oder Staub a	aussetzen		
		Betriebste Luftfeuch N-CI-1815 [I N-CI-1825 [I N-CI-2525 [I N-CI-2535 [I N-CI-2545 [I N-CI-3735 [I N-CI-3735 [I N-CI-3755 [I N-CI-3755 [I	te im Betrieb .agerbohrung 20-35 mm) .agerbohrung 35-50 mm) .agerbohrung 35-50 mm) .agerbohrung 35-50 mm] .agerbohrung 50-70 mm] .agerbohrung 570 mm] .agerbohrung 35-50 mm] .agerbohrung 50-80 mm] .agerbohrung 50-80 mm]	•	•		•	-10 °C bis	© bis 35 °0 zu 92 %		iven Gaser	n oder Staub a	aussetzen		
	bung	Betriebste Luftfeuch N-CI-1815 (I N-CI-1825 (I N-CI-1825 (I N-CI-2525 (I N-CI-2525 (I N-CI-2545 (I N-CI-3735 (I N-CI-3755 (I N-CI-3755 (I N-CI-5235 (I	te im Betrieb agerbohrung 20-35 mm) agerbohrung 35-50 mm) agerbohrung 35-50 mm) agerbohrung 35-50 mm) agerbohrung 50-70 mm) agerbohrung 50-70 mm) agerbohrung 35-50 mm) agerbohrung 35-50 mm) agerbohrung 50-80 mm) agerbohrung 50-80 mm) agerbohrung 50-80 mm)	•	•		•	-10 °C bis	© bis 35 °0 zu 92 %		iven Gaser	n oder Staub a	aussetzen		
	bung	Betriebsta Luftfeuch N-CI-1815 (I N-CI-1825 (I N-CI-1825 (I N-CI-2525 (I N-CI-2545 (I N-CI-3725 (I N-CI-3735 (I N-CI-3755 (I N-CI-5235 (I N-CI-5255 (I	te im Betrieb agerbohrung 20-35 mm) agerbohrung 35-50 mm) agerbohrung 35-50 mm) agerbohrung 35-50 mm) agerbohrung 50-70 mm) agerbohrung 50-70 mm) agerbohrung 35-50 mm) agerbohrung 50-80 mm)	•	•		•	-10 °C bis	© bis 35 °0 zu 92 %		•	n oder Staub a	aussetzen		
	bung	Betriebsté Luftfeuch N-CI-1815 (I N-CI-1825 (I N-CI-1825 (I N-CI-2525 (I N-CI-2525 (I N-CI-2545 (I N-CI-3735 (I N-CI-3735 (I N-CI-3755 (I N-CI-5235 (I N-CI-5275 (I N-CI-5270 (I N-CI-5270 (I	te im Betrieb agerbohrung 20-35 mm) agerbohrung 35-50 mm) agerbohrung 35-50 mm) agerbohrung 35-50 mm) agerbohrung 50-70 mm) agerbohrung 50-70 mm) agerbohrung 35-50 mm) agerbohrung 50-80 mm)	•	•		•	-10 °C bis	© bis 35 °0 zu 92 %		even Gaser				
umge	bung	Betriebsta Luftfeuch N-CI-1815 (I N-CI-1825 (I N-CI-1835 (I N-CI-2525 (I N-CI-2535 (I N-CI-3725 (I N-CI-3735 (I N-CI-3735 (I N-CI-5235 (I N-CI-5270 (I N-CI-6735 (I	te im Betrieb agerbohrung 20-35 mm) agerbohrung 35-50 mm) agerbohrung 35-50 mm) agerbohrung 35-50 mm] agerbohrung 50-70 mm] agerbohrung 50-70 mm] agerbohrung 35-50 mm] agerbohrung 50-80 mm] agerbohrung 80-100 mm] agerbohrung 50-80 mm]	•	•		•	-10 °C bis	© bis 35 °0 zu 92 %		•	n oder Staub a	aussetzen		
umge	bung	Betriebsta Luftfeuch N-CI-1815 [I N-CI-1825 [I N-CI-1825 [I N-CI-2525 [I N-CI-2535 [I N-CI-3735 [I N-CI-3735 [I N-CI-3755 [I N-CI-5255 [I N-CI-6755 [I N-CI-6755 [I N-CI-6755 [I]	te im Betrieb .agerbohrung 20-35 mm) .agerbohrung 35-50 mm) .agerbohrung 35-50 mm) .agerbohrung 35-50 mm) .agerbohrung 50-70 mm) .agerbohrung 50-80 mm) .agerbohrung 35-50 mm) .agerbohrung 50-80 mm) .agerbohrung 80-100 mm) .agerbohrung 50-80 mm) .agerbohrung 50-80 mm)	•	•		•	-10 °C bis	© bis 35 °0 zu 92 %		•				
	l-Kerne	Betriebsta Luftfeuch N-CI-1815 [I N-CI-1825 II N-CI-1825 II N-CI-2525 [I N-CI-2535 [I N-CI-2545 [I N-CI-3735 [I N-CI-3755 [I N-CI-3755 [I N-CI-5255 [I N-CI-5255 [I N-CI-5255 [I N-CI-5255 [I N-CI-5255 [I N-CI-6755 [I N-CI-6755 [I N-CI-6755 [I N-CI-6755 [I N-CI-6755 [I N-CI-6785 [I	te im Betrieb agerbohrung 20-35 mm) agerbohrung 35-50 mm) agerbohrung 35-50 mm) agerbohrung 35-50 mm] agerbohrung 50-70 mm] agerbohrung 50-80 mm] agerbohrung 35-50 mm] agerbohrung 50-80 mm] agerbohrung 80-100 mm] agerbohrung 50-80 mm] agerbohrung 50-80 mm] agerbohrung 50-80 mm] agerbohrung 50-80 mm]	•	•	•	•	-10 °C bis	© bis 35 °0 zu 92 %		•				
umge	l-Kerne	Betriebsta Luftfeuch N-CI-1815 [I N-CI-1825 [I N-CI-2525 [I N-CI-2535 [I N-CI-2545 [I N-CI-3735 [I N-CI-3755 [I N-CI-3755 [I N-CI-3755 [I N-CI-5255 [I N-CI-5255 [I N-CI-5255 [I N-CI-5255 [I N-CI-5276 [I N-CI-6755 [I N-CI-6755 [I N-CI-6755 [I N-CI-6785 [I N-CS-252	te im Betrieb agerbohrung 20-35 mm) agerbohrung 35-50 mm) agerbohrung 35-50 mm) agerbohrung 35-50 mm) agerbohrung 50-70 mm) agerbohrung 35-50 mm) agerbohrung 35-50 mm) agerbohrung 35-50 mm) agerbohrung 50-80 mm) agerbohrung 50-80 mm) agerbohrung 50-80 mm) agerbohrung 80-100 mm) agerbohrung 50-80 mm) agerbohrung 80-130 mm) 5 für N-CI-2525	•	•	•	•	-10 °C bis	© bis 35 °0 zu 92 %		•				
umge	l-Kerne	Betriebsta Luftfeuch N-CI-1815 [I N-CI-1825 [I N-CI-2525 [I N-CI-2535 [I N-CI-2545 [I N-CI-3725 [I N-CI-3735 [I N-CI-3755 [I N-CI-3755 [I N-CI-5255 [I N-CI-5255 [I N-CI-5255 [I N-CI-5255 [I N-CI-6755 [I N-CI-6755 [I N-CI-6755 [I N-CI-6785 [I N-CS-252 N-CS-253	te im Betrieb agerbohrung 20-35 mm) agerbohrung 35-50 mm) agerbohrung 35-50 mm) agerbohrung 35-50 mm) agerbohrung 50-70 mm) agerbohrung 50-80 mm) agerbohrung 35-50 mm) agerbohrung 50-80 mm) agerbohrung 50-80 mm) agerbohrung 50-80 mm) agerbohrung 80-100 mm) agerbohrung 50-80 mm) agerbohrung 80-100 mm) agerbohrung 50-80 mm) 5 für N-CI-2525 5 für N-CI-2535	•	•	•	•	-10 °C bis	© bis 35 °c zu 92 %		•				
umge	l-Kerne	Betriebsta Luftfeuch N-CI-1815 [I N-CI-1825 [I N-CI-1825 [I N-CI-2525 [I N-CI-2535 [I N-CI-2545 [I N-CI-3725 [I N-CI-3735 [I N-CI-3755 [I N-CI-3755 [I N-CI-5255 [I N-CI-5255 [I N-CI-6755 [I N-CI-6755 [I N-CI-6785 [I N-CS-252 N-CS-253 N-CS-372	te im Betrieb Lagerbohrung 20-35 mm) Lagerbohrung 35-50 mm) Lagerbohrung 35-50 mm) Lagerbohrung 35-50 mm] Lagerbohrung 50-70 mm] Lagerbohrung 50-70 mm] Lagerbohrung 35-50 mm] Lagerbohrung 50-80 mm] Lagerbohrung 50-80 mm] Lagerbohrung 50-80 mm] Lagerbohrung 80-100 mm] Lagerbohrung 80-100 mm] Lagerbohrung 50-80 mm] Lagerb	•	•	•	•	-10 °C bis	© bis 35 °c zu 92 %		•				
umge	l-Kerne	Betriebsta Luftfeuch N-CI-1815 [I N-CI-1825 [I N-CI-1825 [I N-CI-2525 [I N-CI-2535 [I N-CI-2545 [I N-CI-3735 [I N-CI-3755 [I N-CI-3755 [I N-CI-3755 [I N-CI-5255 [I N-CI-5255 [I N-CI-6755 [I N-CI-6755 [I N-CI-6755 [I N-CS-252 N-CS-253 N-CS-3732 N-CS-3732	te im Betrieb Lagerbohrung 20-35 mm) Lagerbohrung 35-50 mm) Lagerbohrung 35-50 mm) Lagerbohrung 35-50 mm] Lagerbohrung 50-70 mm] Lagerbohrung 50-80 mm] Lagerbohrung 35-50 mm] Lagerbohrung 50-80 mm] Lagerbohrung 80-100 mm] Lagerbohrung 50-80 mm] Lagerbo	•	•	•	•	-10 °C bis	© bis 35 °c zu 92 %	•	•				
umge	l-Kerne	Betriebste Luftfeuch N-CI-1815 [I N-CI-1825 [I N-CI-2525 [I N-CI-2535 [I N-CI-2535 [I N-CI-3735 [I N-CI-3735 [I N-CI-3755 [I N-CI-3755 [I N-CI-5255 [I N-CI-5255 [I N-CI-5255 [I N-CI-6755 [I N-CI-6755 [I N-CI-6755 [I N-CS-252 N-CS-253 N-CS-373 N-CS-523	te im Betrieb Lagerbohrung 20-35 mm) Lagerbohrung 35-50 mm) Lagerbohrung 35-50 mm) Lagerbohrung 35-50 mm) Lagerbohrung 50-70 mm] Lagerbohrung 50-80 mm] Lagerbohrung 35-50 mm] Lagerbohrung 50-80 mm] Lagerboh	•	•	•	•	-10 °C bis	© bis 35 °c zu 92 %		•				
umge	l-Kerne	Betriebste Luftfeuch N-CI-1815 [I N-CI-1825 [I N-CI-1825 [I N-CI-2525 [I N-CI-2525 [I N-CI-2535 [I N-CI-3725 [I N-CI-3735 [I N-CI-3735 [I N-CI-5255 [I N-CI-5255 [I N-CI-6735 [I N-CI-6735 [I N-CI-6735 [I N-CI-6735 [I N-CI-6735 [I N-CS-252 N-CS-253 N-CS-373 N-CS-523 N-CS-525	te im Betrieb Lagerbohrung 20-35 mm) Lagerbohrung 35-50 mm) Lagerbohrung 35-50 mm) Lagerbohrung 35-50 mm) Lagerbohrung 50-70 mm) Lagerbohrung 50-70 mm] Lagerbohrung 35-50 mm] Lagerbohrung 50-80 mm] Lagerboh	•	•	•	•	-10 °C bis	© bis 35 °c zu 92 %	•	•				
umge	bung	Betriebsta Luftfeuch N-CI-1815 [I N-CI-1825 [I N-CI-1825 [I N-CI-2525 [I N-CI-2535 [I N-CI-2545 [I N-CI-3725 [I N-CI-3735 [I N-CI-3735 [I N-CI-5255 [I N-CI-5255 [I N-CI-5255 [I N-CI-6755 [I N-CI-6755 [I N-CI-6785 [I N-CS-252 N-CS-373 N-CS-523 N-CS-525 N-CS-525 N-CS-673	te im Betrieb Lagerbohrung 20-35 mm) Lagerbohrung 35-50 mm) Lagerbohrung 35-50 mm) Lagerbohrung 35-50 mm) Lagerbohrung 35-50 mm) Lagerbohrung 50-70 mm) Lagerbohrung 35-50 mm] Lagerbohrung 50-80 mm] Lagerboh	•	•	•	•	-10 °C bis	© bis 35 °c zu 92 %	•	•	•	•		
Zubehör	Führungen für I-Kerne	Betriebsta Luftfeuch N-CI-1815 [I N-CI-1825 [I N-CI-1825 [I N-CI-2525 [I N-CI-2535 [I N-CI-2545 [I N-CI-3725 [I N-CI-3735 [I N-CI-3735 [I N-CI-5255 [I N-CI-5255 [I N-CI-5255 [I N-CI-6755 [I N-CI-6755 [I N-CI-6785 [I N-CS-252 N-CS-373 N-CS-523 N-CS-525 N-CS-525 N-CS-673	te im Betrieb Lagerbohrung 20-35 mm) Lagerbohrung 35-50 mm) Lagerbohrung 35-50 mm) Lagerbohrung 35-50 mm) Lagerbohrung 50-70 mm) Lagerbohrung 50-70 mm] Lagerbohrung 35-50 mm] Lagerbohrung 50-80 mm] Lagerboh	•	•	•	•	-10 °C bis	© bis 35 °c zu 92 %	•	•				
Zubehör	Führungen für I-Kerne	Betriebsta Luftfeuch N-CI-1815 [I N-CI-1825 [I N-CI-1825 [I N-CI-2525 [I N-CI-2535 [I N-CI-2545 [I N-CI-3725 [I N-CI-3735 [I N-CI-3735 [I N-CI-5255 [I N-CI-5255 [I N-CI-5255 [I N-CI-6755 [I N-CI-6755 [I N-CI-6785 [I N-CS-252 N-CS-373 N-CS-523 N-CS-525 N-CS-525 N-CS-673	te im Betrieb Lagerbohrung 20-35 mm) Lagerbohrung 35-50 mm) Lagerbohrung 35-50 mm) Lagerbohrung 35-50 mm] Lagerbohrung 35-50 mm] Lagerbohrung 50-70 mm] Lagerbohrung 35-50 mm] Lagerbohrung 35-50 mm] Lagerbohrung 50-80 mm] Lagerbohrung 50-80 mm] Lagerbohrung 50-80 mm] Lagerbohrung 80-100 mm] Lagerbohrung 80-100 mm] Lagerbohrung 50-80 mm] Lagerb	•	•	•	•	-10 °C bis	© bis 35 °c zu 92 %	•	•	•	•		
Zubehör	Hebzergus itr I-Kerne Carlon Early Sintrangen für I-Kerne Early Earl	Betriebsta Luftfeuch N-CI-1815 (I N-CI-1815 (I N-CI-1825 (I N-CI-2525 (I N-CI-2525 (I N-CI-2535 (I N-CI-3735 (I N-CI-3735 (I N-CI-3735 (I N-CI-5235 (I N-CI-5270 (I N-CI-6735 (I N-CI-6735 (I N-CI-6735 (I N-CS-252 N-CS-253 N-CS-373 N-CS-373 N-CS-523 N-CS-523 N-CS-673 N-CS-673	te im Betrieb Lagerbohrung 20-35 mm) Lagerbohrung 35-50 mm) Lagerbohrung 35-50 mm) Lagerbohrung 35-50 mm] Lagerbohrung 35-50 mm] Lagerbohrung 50-70 mm] Lagerbohrung 35-50 mm] Lagerbohrung 35-50 mm] Lagerbohrung 50-80 mm] Lagerbohrung 50-80 mm] Lagerbohrung 50-80 mm] Lagerbohrung 80-100 mm] Lagerbohrung 80-100 mm] Lagerbohrung 50-80 mm] Lagerb	•	•	•	•	-10 °C bis	© bis 35 °c zu 92 %	•	•	•	•		
Zubehör	Führungen für I-Kerne	Betriebsta Luftfeuch N-CI-1815 [I N-CI-1825 [I N-CI-1835 [I N-CI-2525 [I N-CI-2535 [I N-CI-2545 [I N-CI-3735 [I N-CI-3735 [I N-CI-3735 [I N-CI-5255 [I N-CI-5270 [I N-CI-6735 [I N-CI-6735 [I N-CI-6735 [I N-CS-252 N-CS-253 N-CS-373 N-CS-523 N-CS-523 N-CS-523 N-CS-523 N-CS-673 N-CS-673 N-CS-675 N-CL-578	te im Betrieb Lagerbohrung 20-35 mm) Lagerbohrung 35-50 mm) Lagerbohrung 35-50 mm) Lagerbohrung 35-50 mm] Lagerbohrung 35-50 mm] Lagerbohrung 50-70 mm] Lagerbohrung 50-80 mm] Lagerbohrung 35-50 mm] Lagerbohrung 50-80 mm] Lagerbohrung 50-80 mm] Lagerbohrung 50-80 mm] Lagerbohrung 80-100 mm] Lagerbohrung 80-100 mm] Lagerbohrung 50-80 mm] Lagerb			•	•	-10 °C bis	© bis 35 °c zu 92 %	•	•	•	•		

7. Zubehör

Fett-Nachschmiersystem FINE-LUB II

Bis vor Kurzem wurden Hochgeschwindigkeitsspindeln per Ölluft- oder Ölnebelschmierung geschmiert. Das derzeitige Bestreben nach umweltfreundlichen Technologien hat ein neues System erforderlich gemacht, das die Belastung durch Geräusch und Ölnebel reduziert und so zu einer sauberen Arbeitsumgebung und zum Energiesparen beiträgt.

Um auf diese Anforderung einzugehen, hat NSK FINE-LUB II entwickelt, das erste Fettnachschmier- und Rückführsystem der Welt für Werkzeugmaschinen - Hochgeschwindigkeitsspindeln.


FINE-LUB II führt den Hochgeschwindigkeitslagern regelmäßig eine geringe Menge Fett zu und ein speziell ausgeführter Zwischenring leitet das verbrauchte Fett in Depoträume des Gehäuses um. Diese Technologie ermöglicht das weltweit erste Fettaustauschschmiersystem

für die Hochgeschwindigkeitsspindeln von Werkzeugmaschinen und verlängert dadurch die Betriebsdauer der Maschinen. Dieses völlig neuartige Produkt revolutioniert das Konzept der Fettschmierung. FINE-LUB II bahnt den Weg zu einer neuen Art der Fettschmierung - schneller, genauer und bequemer.

Merkmale

Längere Fettgebrauchsdauer

Bei einer konstanten Drehzahl mit einem Drehzahlkennwert von n x d $_{\rm m}$ = 1,8 Mio (Werkzeug - BT 40 / HSK 63 bei n = 20.000 min 1) beträgt die Fettgebrauchsdauer nur mehrere hundert Stunden. FINE-LUB II wurde so konzipiert, dass stets die ideale Menge Fett für die jeweilige Drehzahl und Lagergröße abgegeben wird, um einen Ausfall zu vermeiden. Dadurch werden über 10 000 Stunden wartungsfreier Betrieb garantiert.

Nähere Angaben erhalten Sie bei NSK.

Regulierung der Fettmenge um ein Ansteigen der Lagertemperatur zu vermeiden

Wenn zu viel Fett in dem Wälzlager zugeführt wird, kann die Temperatur aufgrund der Überfettung ansteigen. Um dies zu verhindern, liefert FINE-LUB ${\rm I\!I}$ eine eingebaute Vorrichtung, die dafür sorgt, dass genau die richtige Menge Fett abgegeben wird.

Speziell zum Fettnachschmieren ausgelegte Lagerbauform

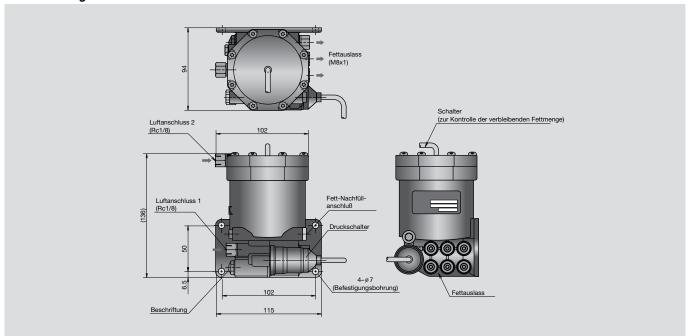
Fettnachschmierverfahren

In regelmäßigen Abständen wird durch eine Schmierbohrung in der Nähe der Außenringbahn eine geringe Menge Fett in das drehende Wälzlager gegeben. Das Fett wird in jeweils geringen Mengen zugeführt, damit die Lagertemperatur nicht ansteigt.

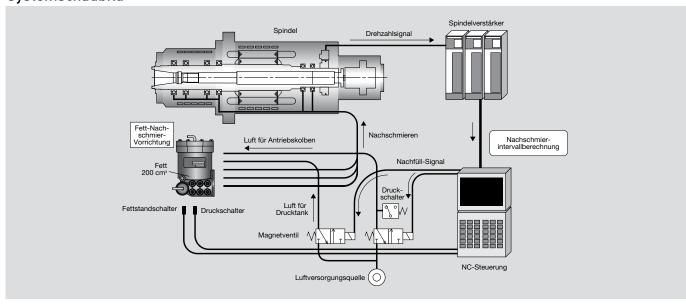
Fettabführung

Das verbrauchte Fett wird durch eine entsprechend geformte Förderscheibe an der Stirnseite des Wälzlagers in einen Depotraum umgeleitet, so dass es nicht wieder in das Wälzlager gelangen kann.

Modellbezeichnung



Dosiermenge (cm³/Intervall)	Codenummer
0.01	P1
0.02	P2


Spezifikationen

Artikel	Spezifikation
Zufuhr-Luftdruck	0,25 bis 0,4 MPa
Dosiermenge	0,01 oder 0,02 cm³ pro Wälzlagerreihe
Tankkapazität	200 cm³
Kontrollfunktion	Erkennung der verbleibenden Fettmenge, Druckerkennung (Überprüfung des Druckanstiegs)
Rohrlänge	maximal 2,5 m
Fetttyp	MTE-Fett

Abmessungen

Systemschaubild

7. Zubehör

Integrierte Hochgeschwindigkeits-Motorspindeln

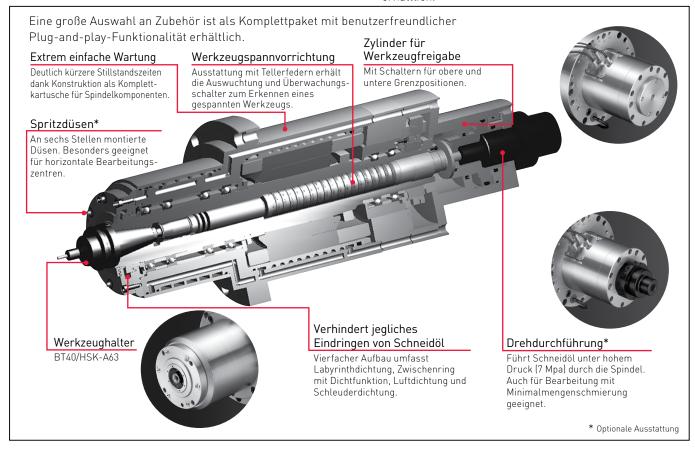
Drei Technologien für Hochgeschwindigkeits-Spindeln von NSK

Diese leistungsstarken integrierten Motorspindeln für Bearbeitungszentren vereinen die führenden Technologien von NSK in den Bereichen Wälzlager, Schmierung und Konstruktion. Mit ihrer Eignung für den Einsatz in Werkzeugmaschinen für schwere Fräsarbeiten, ihrer extrem geringen Geräuschentwicklung und ihrer niedrigen Belastung für die Umwelt sind sie herkömmlichen Hochgeschwindigkeits-Spindeln bei Weitem überlegen.

Diese Serie setzt weltweit den höchsten Standard bei kegeligen integrierten Motorspindeln mit Fettschmierung für Werkzeughalter vom Typ BT40. Sie wurde im Hinblick auf Energieeinsparung und einen noch leiseren Betrieb umfassend optimiert.

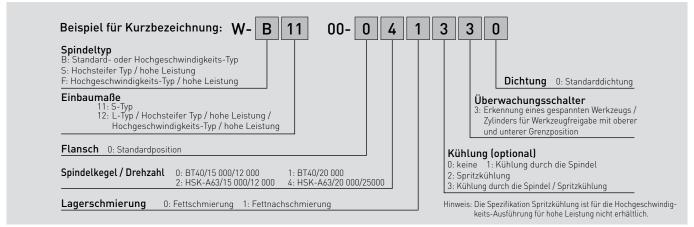
Eigenschaften

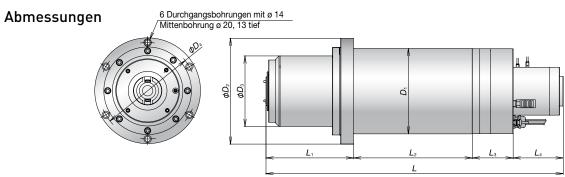
Geringe Geräuschentwicklung und Schwingungen


Dank des Fett-Nachschmiersystems von NSK lassen sich Luftgeräusche, wie sie bei einer Öl-Luft-Schmierung auftreten können, vermeiden. Bei dem Direktantrieb ohne Zahnräder oder Kupplungen kommen Auswuchttechnologien zum Einsatz, die eine geringere Geräuschentwicklung und geringere Schwingungen bewirken.

Geringe Umweltbelastung

Die Spindeln dieser Serie arbeiten sauber und energieeffizient. Zur Lagerschmierung wird weder eine große
Menge Öl noch Luft verbraucht. Es werden keine Ölpartikel
in die Atmosphäre freigesetzt und es tropfen keine
größeren Mengen Öl auf das Werkstück.


Hochvariable Komplettlösung


- Mit unserem Fett-Nachschmiersystem FINE-LUB II konnten wir diese Serie von fettgeschmierten Hochleistungs-Spindeln weiterentwickeln.
- Komponenten wie Wälzlager, Motor, Teile von Spannwerkzeugen usw. wurden in eine einzige Einheit integriert. Dies verkürzt die Vorlaufzeit und senkt die Wartungskosten.
- Bei den Standardspindeln dieser Serie können Kunden zwischen BT40 und HSK-A63, S-Typ und L-Typ, Fett-Nachschmiersystem und Fettpackung usw. wählen. Darüber hinaus sind zahlreiche optionale Spezifikationen wie Kühlung durch die Spindel oder Spritzdüsen erhältlich

Spezifikationen für integrierte Hochgeschwindigkeits-Motorspindel

Die Spezifikationszeichnungen zu Produkten enthalten Kurzbezeichnungen. Bitte geben Sie bei der Bestellung die Kurzbezeichnung des Produkts an, das Sie erwerben möchten.

	Position	Maßein-	S-	Тур	L-1	Гур	Hochsteif,	Hochgeschwindigkeit,
	Position	heit	Standard	Hochgeschwindigkeit	Standard	Hochgeschwindigkeit	hohe Leistung	hohe Leistung
=	Lagerbohrung	(mm)	ø 70	ø 70	ø 70	ø 70	ø 80	ø 70
aţic	Drehzahl	(min ⁻¹)	15 000	20 000	15 000	20 000	12 000	25 000
Hauptspezifikation	Werkzeugschaft	_	BT40 HSK-A63	←	BT40 HSK-A63	\leftarrow	BT40 HSK-A63	HSK-A63
tsp	Lagerschmierung	_	Fett	Fettnachschmierung	Fett	Fettnachschmierung	Fettnachschmierung	Fettnachschmierung
and	Leistung (kurzzeitig/Dauerbetrieb)	(kW)	18,5 (10min) /11	\leftarrow	22 (15min) /18,5	\leftarrow	25 (15min) /22	30 (25%ED) /22
Ĩ	Drehmoment	(N)	60	\leftarrow	118	\leftarrow	156	68
	D1	(mm)	210	←	230	\leftarrow	230	230
e	D2	(mm)	265	\leftarrow	285	\leftarrow	285	285
ıng	D3	(mm)	170	\leftarrow	170	\leftarrow	190	180
รรเ	D4	(mm)	240	\leftarrow	260	\leftarrow	260	260
me	L	(mm)	670	\leftarrow	800	\leftarrow	801	670
tab	L1	(mm)	235	\leftarrow	235	\leftarrow	236	140
Hauptabmessungen	L2	(mm)	190	\leftarrow	320	\leftarrow	320	270
무	L3	(mm)	110	\leftarrow	110	\leftarrow	110	125
	L4	(mm)	135	\leftarrow	135	\leftarrow	135	135

Verkürzte Vorlaufzeit

- Verkürzt die Zeit von der Bestellung bis zur Einstellung der Spindel erheblich.
- Verringert zudem den laufenden Bestand.

Reduziert Wartungskosten

- Spindeln können für verschiedene Maschinen im Werk genutzt werden.
- Verringert den notwendigen Ersatzteilbestand.

Technische Informationen

Technische Informationen 1 Lebensdauer Kapitel 5

1.	Lebensdauer	192-199
	· Ermüdungslebensdauer und dynamische Tragzahl	.,,,
	· Nominelle Lebensdauer	
	· Dynamisch äquivalente Belastung	
	· Druckwinkeleinfluss	
	· Die neue Lebensdauertheorie	
2	Statische Tragzahl und statisch äquivalente	
	Lagerbelastung	200-201
3	Gepaarte Schrägkugellager	
٥.	· Eigenschaften der Kombinationen	202 207
	· Universelle Paarungen	
/ ₁	Vorspannung und Steifigkeit	208-217
┿.	· Arten von Vorspannung und Steifigkeit	200 217
_	Grenzdrehzahlen	218-219
	Schmierung	
	Toleranzen	
΄.	· Toleranzen für Radiallager	224-200
	· Toleranzen für kegelige Bohrungen	
	· Toleranzen für Axialkugellager	
2	Ausführung von Welle und Gehäuse	22/, 220
٥.	· Wellen- und Gehäusepassungen	234-230
	· Toleranzen von Wellen und Gehäusen	
_	· Kantenkürzungen	220 272
7.	Zwischenringe	239-243
	· Abmessungen der Zwischenringe	
	· Position der Schmierdüse	

1. Lebensdauer

Ermüdungslebensdauer und dynamische Tragzahl

Lagerlebensdauer

An Wälzlagern werden entsprechend den Anwendungen unterschiedliche Anforderungen gestellt, die über die gesamte Laufzeit erfüllt werden sollen. Auch wenn die Lager richtig montiert und unter angemessenen Betriebsbedingungen laufen, ist irgendwann mit einem Lagerausfall durch Vibration, mangelnde Laufgenauigkeit, Schmierstoffausfall oder Beschädigung der Laufbahnen zu rechnen

Die Lebensdauer kann generell als der Zeitraum bezeichnet werden, in dem das Lager den gestellten Anforderungen gerecht wird.

Somit kann die Lebensdauer eines Lagers nach dem Geräuschniveau, dem Verschleiß der Funktionsflächen, der Fettgebrauchsdauer oder der Ermüdungslebensdauer definiert werden.

Neben diesen normalen, zeitabhängigen Ausfallursachen können Lagerausfälle aber auch durch Heißlaufen, Bruch oder Fressen der Ringe, Verschleiß der Dichtungen oder durch andere Schadensursachen erfolgen. Diese Ausfälle werden als "nicht normale" Lagerausfälle bezeichnet, weil sie durch falsche Lagerauswahl, ungeeignete Konstruktionen oder Lagerumgebungen, Fehler bei der Lagermontage oder unzureichende Wartung verursacht werden.

Ermüdungslebensdauer im Wälzkontakt und nominelle Lebensdauer

Wenn Wälzlager unter Last laufen, entstehen an den Laufbahnen und Wälzkörpern schwellende Spannungen. Wegen der Ermüdung des Werkstoffes treten an Laufbahnen und Wälzkörpern Abschälungen mit Grübchenbildung auf, die als "Pittings" bezeichnet werden. Die Ermüdungslebensdauer wird durch die Anzahl der Umdrehungen, bis eine Grübchenbildung entsteht, dargestellt. Auch bei scheinbar gleichen Lagern, vom gleichen Lagertyp, gleichem Material, gleicher Wärmebehandlung und Bearbeitung schwankt die Ermüdungslebensdauer sehr stark unter den exakt gleichen Betriebsbedingungen. Dies entsteht dadurch, dass die Werkstoffermüdung von vielen Faktoren abhängig ist. Deshalb wird die nominelle Lebensdauer, die die Werkstoffermüdung zur Ursache hat, mit dem statistischen Mittel berechnet. Nehmen wir an, eine Anzahl von Lagern der gleichen Type läuft unter exakt den gleichen Betriebsbedingungen. Nach einer bestimmten Zeit sind 10% der Lager durch Ermüdungsschäden ausgefallen. Die Gesamtzahl der Umdrehungen zu diesem Zeitpunkt wird als nominelle Lebensdauer definiert. Bei konstanter Drehzahl

wird die Lebensdauer auch häufig in Stunden angegeben, bis 10% der Lager durch Pittings betriebsunfähig werden. Bei der Bestimmung der Lagerlebensdauer wird häufig nur die Ermüdungslebensdauer betrachtet. Es sind jedoch auch noch andere Faktoren zu berücksichtigen: Bei fettgeschmierten Lagern ist zum Beispiel die Fettgebrauchsdauer abzuschätzen. Seitdem Lagergeräusch und Verschleiß für bestimmte Anwendungen eine Rolle spielt, mussten noch weitere Parameter für eine Modifikation der nominellen Lebensdauer entwickelt werden.

Dynamische Tragzahl

Die dynamische Tragzahl C ist ein Maß für die Kraft oder Last, bei der eine genügend große Menge gleicher Lager eine nominelle Lebensdauer von einer Millionen Umdrehungen erreicht. Für Radiallager ist die dynamische Tragzahl als eine Radiallast definiert, die mittig in konstanter Richtung und Intensität aufgebracht wird. Die dynamische Tragzahl von Axiallagern hingegen ist als eine Axiallast konstanter Intensität definiert, die in der Richtung der Mittelachse aufgebracht wird. Die dynamischen Tragzahlen sind in den Wälzlagertabellen unter C_{r} für Radiallager und C_{a} für Axiallager aufgeführt. Die dynamische Tragzahl mehrreihiger Lageranordnungen kann mithilfe der folgenden Formel berechnet werden:

Für Kugellager: $C_i = j^{0.7} \times C_1$

Für Rollenlager: $C_i = j^{7/9} \times C_1$

wobei j: Anzahl der Reihen (j≥2)

 C_1 : dynamische Tragzahl für einreihige Wälzlager C_1 : dynamische Tragzahl für mehrreihige Wälzlager

(wobei j die Anzahl der Reihen ist)

Beim Berechnen der dynamischen Tragzahl C_a für Axiallager ist besonders gewissenhaft vorzugehen, da sich j ausschließlich auf die Anzahl der Reihen bezieht, die Axiallasten ausgesetzt sind. Beispiel: In einer vierreihigen DBB-Anordnung sind lediglich zwei Reihen einer Axiallast ausgesetzt; somit ist j = 2.

Nominelle Lebensdauer

Zwischen dynamischer Tragzahl, dynamisch äquivalenter Lagerbelastung und nomineller Lebensdauer besteht folgender Zusammenhang:

 $L_{10} = \left(\frac{C}{P}\right)^3$ (10⁶ Umdrehungen) Für Kugellager:

 $L_{10} = \frac{10^6}{60p} \left(\frac{C}{P}\right)^3$ (h)

 $L_{10} = \left(\frac{C}{D}\right)^{10/3}$ (10⁶ Umdrehungen) Für Rollenlager:

 $L_{10} = \frac{10^6}{60n} \left(\frac{C}{P} \right)^{10/3} \text{ (h)}$

P: dynamisch äquivalente Lagerbelastung (N)

C: dynamische Tragzahl (N)

n : Drehzahl (min-1)

Bei Wälzlagern, die mit konstanter Drehzahl laufen, bietet es sich an, die Ermüdungslebensdauer in Stunden anzugeben.

Dynamisch äquivalente Lagerbelastung

In manchen Fällen wirken auf ein Lager nur reine Axialoder Radialkräfte ein. Meist jedoch liegen kombinierte Lasten vor, also Lasten, die sich aus axialen wie radialen Komponenten zusammensetzen. Zusätzlich sind bei solchen Belastungen meist auch noch Größe und Richtung veränderlich.

In solchen Fällen kann man die tatsächlich auf das Lager einwirkenden Kräfte nicht zur Berechnung der Lebensdauer heranziehen; sondern eine gedachte Belastung, die zentrisch, nach Größe und Richtung konstante Radialkraft auf das Lager wirkt, die aber vom Grad der Lagerbelastung der wirklichen Beanspruchung entspricht. Eine solche hypothetische Belastung wird als dynamisch äquivalente Belastung bezeichnet.

Mit der Annahme der Formelzeichen Radiallast = F_r , Axiallast = F_a und äquivalente Radialbelastung = P_r lässt sich folgende Näherungsformel für die Berechnung der äquivalenten Radiallast aus der Lagerbelastung festlegen:

$$P_r = XF_r + YF_a$$

X : Radialfaktor des Lagers Y : Axialfaktor des Lagers mit:

Der Axialfaktor richtet sich nach dem Druckwinkel. Bei einreihigen Rillenkugellagern und Schrägkugellagern nimmt der Druckwinkel mit zunehmender Axiallast zu. Eine solche Veränderung des Druckwinkels lässt sich durch das Verhältnis von Axialbelastung F_a und statischer Tragzahl COr ausdrücken. Tabelle 1.1 zeigt den Axialfaktor des Lagers bei einem Druckwinkel, der diesem Verhältnis entspricht. Bei Schrägkugellagern kann unter normalen Bedingungen die Auswirkung einer Veränderung des Druckwinkels auf

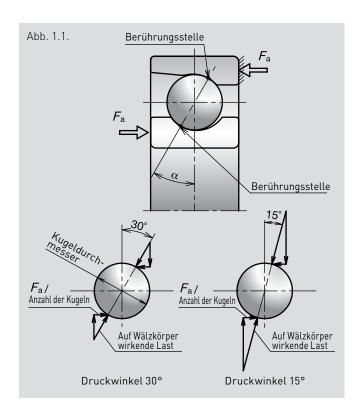
den Lastfaktor vernachlässigt werden, selbst wenn der Druckwinkel 25°, 30° oder sogar 40° beträgt.

In einem Axiallager mit einem Druckwinkel von a ≠ 90° mit gleichzeitig wirkender Radial- und Axiallast errechnet sich die äquivalente Axiallast P_a wie folgt:

$$P_a = XF_r + YF_a$$

Druckwinkeleinfluss

Wenn ein Schrägkugellager einer Last ausgesetzt wird, ändert sich die Intensität der Belastung an der Berührungsstelle infolge der veränderten Belastungsbedingungen der Kugeln, des Innenrings und des Außenrings mit Bezug zum Druckwinkel des Wälzlagers.


Abbildung 1.1 veranschaulicht Lasten, die in einem Druckwinkel von 30° und einem Druckwinkel von 15° auf zwei Wälzkörper wirken.

Die Beziehung zwischen einer Axiallast, die auf das Wälzlager wirkt, und der resultierenden Last, die auf den Wälzkörper wirkt, lässt sich wie folgt formulieren: Last auf Wälzkörper = $Fa/(Anzahl der Kugeln \times sin \alpha)$.

Das bedeutet: Je größer der Druckwinkel, desto kleiner die Last, die auf den Wälzkörper wirkt. Die Last an der Berührungsstelle und die daraus resultierende Verformung fallen geringer aus, was sich in einer längeren Lebensdauer widerspiegelt.

Wird eine Radiallast aufgebracht, gilt: Je kleiner der Druckwinkel, desto kleiner die Last, die auf den Wälzkörper wirkt. Das führt zu einer reduzierten Last an der Berührungsstelle.

Aus diesen Gründen variiert die Lagerlebensdauer je nach Druckwinkel bei ansonsten identischen Belastungsbedingungen.

1. Lebensdauer

Tabelle 1.1 Werte der Faktoren X und Y zum Berechnen der äquivalenten Last $P = XF_r + YF_a$

Tabelle 1.1 Werte der Fak		ana i zami	Derechhen				ΛΓ _r + 1Γ _a				
				Einre (i=1)	einig	<u> </u>		DB (i=2]		
				DT (i=1)	N N		DF (i=2)	Ø	
Lagerbauart		$\frac{if_oF_a}{C_{or}}$	е	DTD	(i=1)	70	$\overline{\emptyset}$	DBE	3 (i=2)	ØØ	
		or		DTT	DTT (i=1)		DFF	(i=2)			
				F/F	r≦e	$F_a/F_r > e$		F	′F _r ≦ e	F	'F _r > e
				X	Y	X	Y	X	Y	X	Υ
		0,178	0,38				1,47		1,65		2,39
		0,357	0,40				1,40		1,57		2,28
		0,714	0,43				1,30		1,46		2,11
	450	1,07	0,46			0.44	1,23		1,38	0.50	2,00
	15°	1,43	0,47	1	0	0,44	1,19	1	1,34	0,72	1,93
		2,14	0,50				1,12		1,26		1,82
		3,57	0,55				1,02		1,14		1,66
		5,35	0,56				1,00		1,12		1,63
Schrägkugellager		0,181	0,44				1,30		1,42		2,11
(C=C _r)		0,363	0,46				1,25	1	1,37	0,70	2,03
		0,726	0,48				1,18		1,30		1,92
	18°	1,09	0,50	1	0	0,43	1,14		1,25		1,85
		1,45	0,52				1,10		1,21		1,79
		2,18	0,54				1,05		1,15		1,70
		3,63	0,57				1,00		1,10		1,63
	25°	_	0,68	1	0	0,41	0,87	1	0,92	0,67	1,41
	30°	_	0,80	1	0	0,39	0,76	1	0,78	0,63	1,24
	40°	_	1,14	1	0	0,35	0,57	1	0,55	0,57	0,93
	30°	_	0,72	_	_	0,48	1	0,74	0,55	0,48	1
Axial-Schrägkugellager	40°	_	1,05	_	_	0,60	1	1,01	0,64	0,60	1
$(C=C_a)$	55°	_	1,79	_	_	0,81	1	1,60	0,60	0,81	1
	60°	_	2,17	-	_	0,92	1	1,90	0,56	0,92	1
Kegelrollenlager (¹)		_	1,5tanα	1	0	0,4	0,4cotα	1	0,45cotα	0,67	0,67cotα

Lagerbauart		e	DBBD ØØØØØ											
			Durc	ch 3 Reihen g	jestützte Axia	ıllast	Durc	h 2 Reihen g	estützte Axia	allast				
			F _a /F	r≦e	F _a /F	, > e	F _a /F	r≦e	$F_a/F_r > e$					
			Χ	Υ	Χ	Υ	Χ	Υ	Χ	Υ				
	30°	0,72	0,84	0,64	0,48	1	0,63	0,64	0,48	1				
Axial-Schrägkugellager	40°	1,05	1,15	0,60	0,60	1	0,87	0,60	0,60	1				
$(C=C_a)$	55°	1,79	1,82	0,56	0,81	1	1,37	0,56	0,81	1				
	60°	2,17	2,15	0,55	0,92	1	1,62	0,55	0,92	1				

Hinweis: Zu Kegelrollenlagern bitte auch die Werte in den Wälzlagertabellen auf den Seiten 162 und 163 beachten.

	DBD DFD DFD DFD Drugh 2 Paihan gastiitata Aviallast Drugh 1 Paiha gastiitata Aviallast											DBT ØØØ D							
Durch	Durch 2 Reihen gestützte Axiallast Durch 1 Reihe gestützte Axiallast										Durch 3 Reihen gestützte Axiallast Durch 1 Reihe gestützte Axia							allast	
i	$F_a/F_r \le e \qquad F_a/F_r > e$						$F_r \leq e$ $F_a/F_r > e$		i		r ≦ e		-> e	i		r ≦ e		-, > e	
	0,87 X		Y 1,97		X	Y 3,07	Х	3,19		Х	0,59	Х	1,81		Х	4,35	Х	3,90	
		0,83		1,86			2,91		3,02			0,56		1,71			4,12		3,70
		0,03		1,73			2,71		2,82			0,50		1,60			3,84		3,45
2		0,77		1,65			2,71	2,68	,		0,50		1,52			3,65		3,28	
$\frac{3}{2}$	1	0,70	0,59	1,58	3	1	2,48	0,95	2,57	$\frac{4}{3}$	1	0,48	0,54	1,46	4	1	3,51	1,17	3,15
		0,66		1,49			2,33		2,42			0,45		1,37			3,30		2,96
		0,61		1,37			2,14		2,22			0,41		1,26			3,02		2,71
		0,56		1,27			1,98		2,06			0,40		1,22			2,94		2,64
-		0,75		1,72			2,63		2,80			0,51		1,57			3,73		3,38
		0,72		1,66			2,53		2,69			0,49		1,51			3,59		3,26
		0,68		1,57			2,40		2,55			0,46		1,43			3,41		3,09
$\frac{3}{2}$	1	0,65	0,57	1,51	3	1	2,31	0,93	2,45	$\frac{4}{3}$	1	0,45	0,53	1,38	4	1	3,28	1,15	2,97
Z		0,63		1,46			2,24		2,38	3		0,43		1,34			3,18		2,88
		0,60		1,39			2,12		2,26			0,41		1,27			3,02		2,74
		0,56		1,29			1,97		2,10			0,40		1,22			2,91		2,64
_	1	0,48	0,54	1,16	_	1	1,71	0,89	1,88	_	1	0,33	0,50	1,08	-	1	2,45	1,08	2,33
_	1	0,41	0,52	1,01	_	1	1,45	0,84	1,64	_	1	0,28	0,48	0,93	_	1	2,05	1,03	2,01
_	1	0,29	0,46	0,76	_	1	1,02	0,76	1,23	_	1	0,20	0,42	0,71	_	1	1,46	0,92	1,54
_	0,91	0,41	0,48	1	_	0,56	0,89	0,48	1	_	0,98	0,30	0,48	1	_	0,46	1,04	0,48	1
_	1,24	0,39	0,60	1	_	0,76	0,84	0,60	1	_	1,35	0,29	0,60	1	_	0,62	0,98	0,60	1
_	1,95	0,36	0,81	1	_	1,20	0,78	0,81	1	_	2,12	0,27	0,81	1	_	0,98	0,90	0,81	1
_	2,32	0,35	0,92	1	_	1,43	0,76	0,92	1	_	2,52	0,26	0,92	1	_	1,17	0,88	0,92	1
	_													_					

	[OBTD	(X	X X	\emptyset			DB	TT	Ø	ØZ	X X X	70			
DFTD \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\									DF [*]	TT	Ø	00		$\mathbb{Z} \varnothing$		
Durch 4	Reihen g	estützte A	Axiallast	Durch	1 Reihe ge	estützte A	xiallast	Durch 5	Reihen g	estützte A	Axiallast	Durch	Ourch 1 Reihe gestützte Axiallar F₃/F₁≤ e F₃/F₁> e			
F _a /F	r ≦ e	F _a /F	-> e	F _a /F	r ≦ e	F _a /F	, > e	F _a /F	r ≦ e	F _a /F	, > e	F _a /F	r ≦ e	F _a /F	r > e	
Χ	Y	Χ	Y	Χ	Y	Χ	Y	Χ	Y	Χ	Y	Χ	Υ	Χ	Υ	
1,03	0,64	0,48	1	0,39	0,64	0,48	1	1,06	0,64	0,48	1	0,34	0,64	0,48	1	
1,41	0,60	0,60	1	0,53	0,60	0,60	1	1,45	0,60	0,60	1	0,47	0,60	0,60	1	
2,22	0,56	0,81	1	0,84	0,56	0,81	1	2,28	0,56	0,81	1	0,74	0,56	0,81	1	
2,63								2,71	0,55	0,92	1	0,88	0,55	0,92	1	

1. Lebensdauer

Die erweiterte Lebensdauertheorie

Einführung

Die herkömmliche Formel zum Berechnen der Lebensdauer auf Grundlage der Theorien von G. Lundberg und A. Palmgren berücksichtigt lediglich unter der Oberfläche entstehende Abblätterungen. Dieses Phänomen entsteht durch Risse, die die Folge dynamischer Schubspannungen direkt unterhalb der Lauffläche sind und die nach und nach die Oberfläche erreichen. Bemerkbar macht sich dies in Form von Abblätterungen.

$$\lfloor n \frac{1}{S} \alpha \frac{\tau_0^c \cdot N^e \cdot V}{Z_0^b} \cdots [1]$$

Die Wälzlagertechnologie hat sich stark weiterentwickelt, insbesondere in Bezug auf die Maßgenauigkeit der Teile und die Reinheit der Werkstoffe. Darüber hinaus gab es Fortschritte bei Technologien im Zusammenhang mit Wälzlagern, etwa bei Reinheit und Filtrierung von Schmiermitteln. Das Ergebnis: Lager können bei einer reineren Umgebung eine längere Ermüdungslebensdauer im Wälzkontakt erreichen, als nach der nominellen Lebensdauerberechnung zu erwarten wäre.

Die Lebensdauerformel von NSK geht davon aus, dass die Ermüdungslebensdauer die Gesamtsumme der kombinierten Effekte aus gleichzeitig stattfindenden Abblätterungen auf und unter der Oberfläche umfasst.

Aufbau der neuen Formel von NSK zum Berechnen der Lebensdauer

(1) Abblätterung, die unter der Oberfläche entsteht

Bevor unter der Oberfläche entstandene Abblätterungen untersucht werden, muss sichergestellt sein, dass zwischen den Wälzkörpern und der Laufbahnoberfläche ein ausreichender, durchgängiger und sauberer Ölfilm vorhanden ist.

In Abb. 1.2 ist die Lebensdauer $L_{\rm 10}$ je Testbedingung hinsichtlich der maximalen Flächenpressung ($P_{\rm max}$) auf der Y-Achse und die Anzahl der Belastungszyklen auf der X-Achse aufgetragen.

Dabei wird die Linie " L_{10} theoretisch" mithilfe der herkömmlichen Lebensdauerformel ermittelt. Mit abnehmender maximaler Flächenpressung entfernt sich die Linie der tatsächlichen Lebensdauer von der herkömmlichen Linie in Richtung einer längeren Lebensdauer. Dies weist auf das Vorliegen einer Ermüdungsgrenzbelastung $P_{\rm u}$ hin, unterhalb derer keine Ermüdung auftritt. Dies wird in Abb. 1.3 noch deutlicher. Mit der folgenden Gleichung wird eine Ermüdungsgrenze für unter der Oberfläche entstehende Abblätterungen in die Theorie von Lundberg und Palmgren eingeführt:

$$\ln \frac{1}{S} \alpha N^{e} \int_{V}^{\bullet} \frac{(\tau - \tau_{U})^{c}}{Z_{o}^{h}} dV \cdots (2)$$

Abb. 1.2 Lebensdauertest-Ergebnisse bei sauberer Schmierung

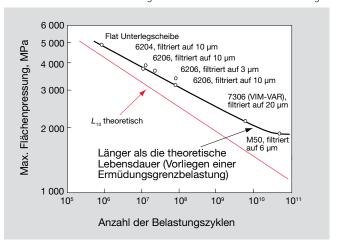
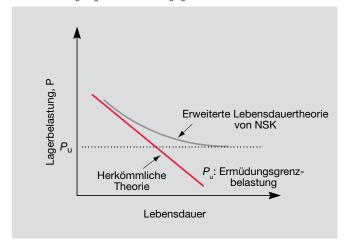
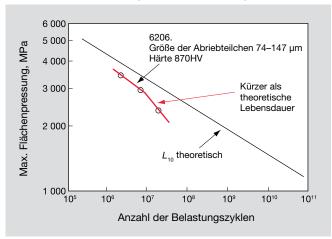



Abb. 1.3 Die erweiterte Lebensdauertheorie von NSK unter Berücksichtigung der Ermüdungsgrenze

(2) Abblätterung, die an der Oberfläche entsteht


In der Praxis kommt es vor, dass der Schmierstoff mit Fremdstoffen wie Metallpartikel, Abrieb oder Staub verunreinigt ist.

Sind diese Fremdkörper im Schmiermittel werden sie von den Wälzkörpern überrollt und in die Oberfläche von Laufbahn und Wälzkörpern eingewalzt. An den Kanten dieser Eindrückungen liegen Spannungskonzentrationen vor, es entstehen feine Risse, die sich zu Abblätterungen an den Laufbahnen und Wälzkörpern weiterentwickeln. Wie Abb. 1.4 zeigt, ist bei verunreinigtem Schmiermittel und gleicher Flächenpressung die tatsächliche Lebensdauer kürzer als die herkömmlich berechnete. Die Kurve der tatsächlichen Lebensdauer liegt unter der Kurve der theoretisch berechneten Lebensdauerwerte. Es zeigt sich außerdem, dass sich die tatsächliche Lebensdauer bei verunreinigtem Schmiermittel mit abnehmender Flächenpressung noch weiter verringert.

Tabelle 1.2 Verunreinigungsbeiwert a.

	Sehr sauber	Sauber	Normal	Verunreinigt	Stark verunreinigt
Faktor a _c	1	0,8	0,05	0,4-0,1	0,05
Richtwert / Filtriergrad	<10 µm	10–30 μm	30–100 μm	Mehr als 100 µm oder ohne Filtrierung (Ölbad, Umlaufschmierung usw.)	Keine Filtrierung, viele Feinpartikel vorhanden
Anwendungs- beispiele	Abgedichtete fettgeschmierte Lager für Elektrogeräte, IT-Ausstattung usw.	Abgedichtete fettgeschmierte Lager für Elektromotoren Abgedichtete fettgeschmierte Lager für Eisenbahn- Radsatzlager Lager für Werkzeugmaschinen usw.	Normaler Einsatz Radlagerungen in Kraftfahr- zeugen usw.	Lager für Kraftfahrzeuggetriebe, Industriegetriebe, Baumaschinen usw.	-

Abb. 1.4 Lebensdauertest-Ergebnisse bei verunreinigtem Schmiermittel

Die erweiterte NSK Lebensdauerformel berücksichtigt den Verlauf der Lebensdauerwerte aus den Tests bei sauberer Umgebung und geringer Belastung. Entsprechend ist die erweiterte Lebensdauergleichung eine Funktion von $[P-P_u]/C$. Diese Funktion wird durch die jeweiligen Schmierungs-bedingungen, die in Form eines Schmierungsparameters Berücksichtigung finden, beeinflusst. Darüber hinaus wird angenommen, dass die Auswirkungen verschiedener Typen und Formen von Fremdkörpern stark von der Lagerbelastung und den Schmierungsbedingungen abhängen und dass sich eine solche Abhängigkeit als Funktion des Lastparameters ausdrücken lässt. Dieser Lastparameter ist in der erweiterten Lebensdauerformel wie folgt berücksichtigt: $[P-P_u]/C \cdot 1/a_c$.

Auf Grundlage des vorstehend beschriebenen Konzepts lautet die Formel zum Berechnen an der Oberfläche entstehenden Abblätterungen wie folgt:

$$\ln \frac{1}{S} \alpha N^{e} \int_{V} \frac{[\tau - \tau_{U}]^{c}}{Z_{o}^{h}} dV \times \left\{ \frac{1}{f[a_{c}, a_{L}]} - 1 \right\} \cdots (3)$$

(3) Berechnung des Verunreinigungsbeiwerts a

Tests mit fettgeschmierten Kugel- und Rollenlagern und sauberem Schmiermittel haben gezeigt, dass die Lagerlebensdauer im Vergleich zur herkömmlich berechneten Lebensdauer um ein Vielfaches höher ist. Wenn ein Fremdkörper im Lager aber härter als 350 HV ist, spielt auch die Härte eine Rolle, weil dann beim Überrollen ein Eindruck in der Laufbahn entsteht. Die Ermüdungsschäden aufgrund solcher Eindrückungen können sich innerhalb kürzester Zeit zu Abblätterungen weiterentwickeln. In Tests mit Kugel- und Rollenlagern mit Verunreinigung durch Fremdkörper beträgt die Lebensdauer maximal 1/3 bis 1/10 der herkömmlich berechneten Lagerlebensdauer.

Auf Grundlage dieser Testergebnisse haben wir den Verunreinigungsbeiwert a_c als Grundkonzept in die erweiterte Lebensdauertheorie von NSK aufgenommen. Der Verunreinigungsbeiwert a_c ist in fünf Stufen klassifiziert, siehe Tabelle 1.2.

1. Lebensdauer

(4) Die erweiterte Lebensdauerformel $L_{\mbox{\tiny able}}$

Bezieht man zusätzlich die Formeln zum Berechnen der unter der Oberfläche entstehenden Abblätterungen (2) und der an der Oberfläche entstehenden Abblätterungen (3) ein, ergibt sich folgende Formel:

$$\ln \frac{1}{S} \propto N^{e} \int_{V} \frac{(\tau - \tau_{U})^{c}}{Z_{o}^{h}} dV \times \left\{ \frac{1}{f(a_{c}, a_{L})} - 1 \right\} \cdots (4)$$

Von Gleichung (4) lässt sich Gleichung (5) ableiten:

$$L_{able} = a_1 \cdot a_{NSK} \cdot L_{10}$$
 (5)

Der Zuverlässigkeitsfaktor a_1 ist in Tabelle 1.3 aufgeführt. Die Theorie nutzt zudem das Viskositätsverhältnis $\kappa(\kappa = v/v_1, wobei v die Viskosität im Betrieb und <math>v_1$ die erforderliche Viskosität ist). Der Schmierungsparameter a_L ist eine Funktion von κ . Die Theorie lässt darauf schließen, dass die Lebensdauer umso höher ist, je besser die Schmierungsbedingungen sind (d. h. je höher der κ -Wert ist). Wie Gleichung (6) zeigt, ist der Korrekturfaktor a_{NSK} eine Funktion des Schmierungsparameters a_L und des Lastparameters $(P-P_n)/C \cdot 1/a_n$.

$$a_{NSK} \propto F \left\{ \frac{P - P_u}{C} \cdot \frac{1}{a_c} \cdot a_L \right\}$$
 (6)

In den Abbildungen 1.5 und 1.6 ist der Korrekturfaktor $a_{\rm NSK}$ der erweiterten Lebensdauerformel als eine Funktion aufgetragen.

In der erweiterten Lebensdauerformel werden Kugellager und Rollenlager auf Grundlage der Testergebnisse separat berücksichtigt.

Tabelle 1.3 Zuverlässigkeitsfaktor a,

Zuverlässigkeit (%)	90	95	96	97	98	99
Zuverlässigkeitsfaktor	1,00	0,62	0,53	0,44	0,33	0,21

Liste der verwendeten Symbole:

- S : Wahrscheinlichkeit, mit der es nach N Mal wiederholter Belastung nicht zu Abblätterungen kommt
- N : Anzahl der Belastungszyklen
- τ : Interne Spannung
- τ...: Interne Spannung an Ermüdungsgrenze
- V : Spannungsvolumen
- Z_n : Tiefe, in der die maximale Schubspannung auftritt
- a : Verunreinigungsbeiwert
- a_ : Schmierungsparameter (abhängig vom Viskositätsverhältnis κ)
- P: Belastung, der das Wälzlager ausgesetzt wird
- P. : Ermüdungsgrenzbelastung
- C : Dynamische Tragzahl
- e, c, h : Konstanten

Abb. 1.5 Erweiterte Lebensdauerberechnung für Kugellager

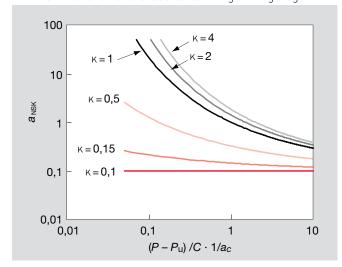
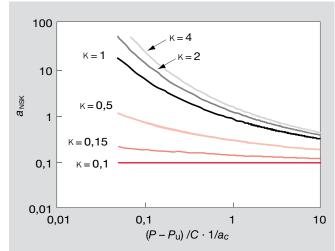



Abb. 1.6 Erweiterte Lebensdauerberechnung für Rollenlager

Lebensdauer von schnelllaufenden Lagern

Wenn Wälzlager mit hohen Drehzahlen betrieben werden, muss die auf die Wälzkörper wirkende Fliehkraft berücksichtigt werden (Abb. 1.7). In der Gleichung zur nominellen Lebensdauer auf Seite 192 wird ein Verhältnis der dynamischen Tragzahl zur externen Belastung berücksichtigt, nicht jedoch die interne Belastung, die durch die Fliehkraft erzeugt wird.

Zum Berechnen von Konvergenzen nutzt NSK eine spezielle Software. Durch diese Berechnungen lässt sich ein Gleichgewicht der auf die Wälzkörper wirkenden Kräfte einschließlich der Fliehkraft und diverser anderer erzielen. In Abb. 1.8 ist als Beispiel das Ergebnis einer solchen Berechnung der Lebensdauer eines Wälzlagers dargestellt, das mit hohen Drehzahlen betrieben wird. Nähere Informationen zum Berechnen der Lebensdauer von Wälzlagern, die in Anwendungen mit hohen Drehzahlen eingesetzt werden, erhalten Sie bei NSK.

Hinweis: Die Lagerlebensdauer drückt wie erwähnt die Ermüdungslebensdauer im Wälzkontakt aus und berücksichtigt keinen Lagerausfall, der durch Fressen, Verschleiß oder Ähnliches verursacht wird. Es ist schwer zu berechnen, wie lange ein Wälzlager seiner Funktion nachkommt, bis es zu einem Lagerausfall kommt. Nähere Angaben zur Definition der Lagerlebensdauer siehe Seite 192.

Lebensdauer von Hybridwälzlagern mit Keramikkugeln

Da Keramikkugeln eine geringere Dichte als Stahlkugeln aufweisen, ist der Anstieg der internen Belastung durch die im Betrieb mit hohen Drehzahlen auftretenden Zentrifugalkräfte geringer als bei Stahlkugeln. Die Berechnung der Lebensdauer ergibt somit einen höheren Wert.

Abb. 1.7 Veränderung des Druckwinkels durch Fliehkraft

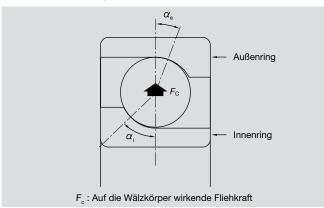
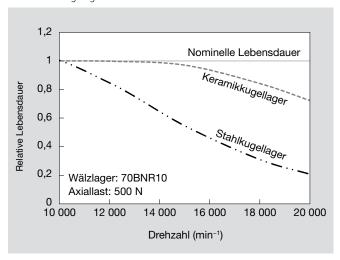



Abb. 1.8 Beispiel für berechnete Lebensdauer unter Berücksichtigung der Fliehkraft

Lebensdauerberechnung für mehrere Wälzlager in einer Gruppe

Wenn in einer Maschine mehrere Wälzlager zum Einsatz kommen, lässt sich die Ermüdungslebensdauer der einzelnen Wälzlager bestimmen, wenn die auf die einzelnen Lager einwirkenden Lasten bekannt sind. In der Regel ist die Maschine jedoch funktionsunfähig, sobald ein Wälzlager in einer ihrer Komponenten ausfällt. In manchen Fällen kann es daher erforderlich sein, die Ermüdungslebensdauer einer Gruppe von Wälzlagern zu kennen, die in einer Maschine zum Einsatz kommen.

Die Ermüdungslebensdauer von Wälzlagern basiert auf der Empirie wie zuvor beschrieben und wird durch die statistische Erlebenswahrscheinlichkeit ausgedrückt. Die Gleichung zum Berechnen der Ermüdungslebensdauer $L_{10} = \left(\frac{C}{P}\right)^p \text{ (wobei p = 3 für Kugellager und p = }\frac{10}{3}\text{ für Rollenlager Anwendung findet)} gilt für 90 % der Anzahl an gleichen Lagern und gleichen Bedingungen.}$

Mit anderen Worten: Für die berechnete Ermüdungslebensdauer eines Wälzlagers gilt eine Wahrscheinlichkeit von 90 %. Die Haltbarkeits-wahrscheinlichkeit für eine Gruppe aus mehreren Wälzlagern innerhalb einer bestimmten Zeitspanne ist ein Produkt der Haltbarkeits-wahrscheinlichkeit für die einzelnen Wälzlager innerhalb der gleichen Zeitspanne. Das bedeutet, dass sich die nominelle Lebensdauer einer Gruppe aus mehreren Wälzlagern nicht allein von der kürzesten nominellen Lebensdauer eines dieser Wälzlager ableiten lässt. Die Lebensdauer der Gruppe ist wesentlich kürzer als die Lebensdauer des Wälzlagers mit der kürzesten Ermüdungslebensdauer.

Definiert man die nominelle Lebensdauer einzelner Wälzlager als L_1 , L_2 , L_3 ... und die nominelle Lebensdauer der gesamten Wälzlagergruppe als L, lässt sich die Beziehung mithilfe der folgenden Gleichung ausdrücken:

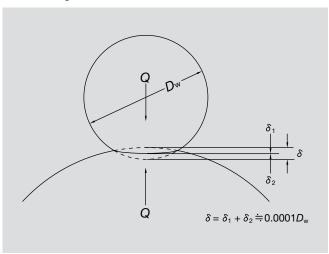
$$L = \frac{1}{\left(\frac{1}{L_{1}^{1.1}} + \frac{1}{L_{2}^{1.1}} + \frac{1}{L_{3}^{1.1}} + \cdots\right)^{\frac{1}{1.1}}}$$

2. Statische Tragzahl und statisch äquivalente Lagerbelastung

Statische Tragzahl

Statische Tragzahl

Ist ein Wälzlager einer übermäßig hohen Belastung oder einer starken Stoßbelastung ausgesetzt, entsteht eine bleibende (plastische) Verformung an Wälzkörper und Laufbahnen, wenn der Grenzwert der elastischen Verformung überschritten wird.


Sie ist umso größer und tiefer, je höher die Belastung ist, und ab einem bestimmten Wert wird das Lager beschädigt, weil Leichtgängigkeit und Laufruhe nicht mehr den Anforderungen des Anwenders genügen.

Als statische Tragzahl wurde die statische Belastung definiert, bei der in dem Wälzkörper mit der maximalen Belastung und in der Mitte der Berührungsfläche zwischen Wälzkörper und Laufbahn die folgende maximale Flächenpressung erzeugt wird:

Kugellager: 4.200 MPaRollenlager: 4.000 MPa

In dem Bereich mit der maximalen Belastung entspricht die Summe der bleibenden Verformung von Wälzkörper und Laufbahn etwa 0,0001-mal dem Durchmesser des Wälzkörpers. Die statische Tragzahl $C_{\rm o}$ wird in den Lagertabellen für Radiallager mit $C_{\rm or}$ und für Axiallager mit $C_{\rm oa}$ angegeben.

Abb. 2.1: Zusammenhang zwischen Verformungen und statischer Tragzahl

Statisch äquivalente Lagerbelastung

Die statisch äquivalente Lagerbelastung ist eine hypothetische Belastung, die eine Flächenpressung erzeugt. Diese entspricht der maximalen Flächenpressung, der ein Wälzlager unter tatsächlichen Lastbedingungen ausgesetzt ist, während das Lager in der Berührungsfläche zwischen dem am stärksten belasteten Wälzkörper und der Lagerlaufbahn stillsteht.

Bei Radiallagern wird die Radiallast, die den Lagermittelpunkt passiert, als statisch äquivalente Belastung verwendet. Bei Axiallagern wird die Axiallast in der Richtung der Mittelachse als statisch äquivalente Belastung verwendet.

(a) Statisch äquivalente Belastung bei Radiallagern Der größere der beiden berechneten Werte aus den folgenden Gleichungen sollte als statisch äquivalente Belastung für Radiallager herangezogen werden:

$$P_0 = X_0 F_r + Y_0 F_a$$
(1)

$$P_0 = F_1$$
(2)

wobei P_n : statisch äquivalente Belastung (N)

F_r: Radiallast (N) F_s: Axiallast (N)

 X_0^a : Faktor für statische Radiallast Y_0 : Faktor für statische Axiallast

(b) Statisch äquivalente Belastung bei Axiallagern

wobei P_0 : statisch äquivalente Belastung (N) α : Nenndruckwinkel

Es ist zu beachten, dass die Genauigkeit dieser Gleichung abnimmt, wenn $F_{\rm a}$ < $X_{\rm o}$ $F_{\rm r}$.

Die Werte X_0 und Y_0 der Gleichungen (1) und (3) sind in Tabelle 2.1 aufgeführt.

Es ist zu beachten, dass bei Axiallagern mit $\alpha = 90^{\circ}$ die folgende Gleichung gilt: $P_0 = F_a$.

Tabelle 2.1 Statisch äquivalente Lagerbelastung

Lagerbauart			nreihig	Zw	veireihig
			Yo	X_{0}	Y ₀
	α=15°	0,5	0,46	1	0,92
Schrägkugelleger	α=18°	0,5	0,46	1	0,92
Schrägkugellager	α=25°	0,5	0,38	1	0,76
	α=30°	0,5	0,33	1	0,66
Kegelrollenlager	Kegelrollenlager α≠0		0,22cot α	1	0,44cot α
Zylinderrollenlager	α=0	$P_0 = F_r$			
Axialkugellager	α=90°	Р			
Axialrollenlager	α=90°	$P_{0a} = F_{a}$			
Axialkugellager α≠90		$P_{0a} = F_a + 2.3F_r \tan \alpha$			an α
Axialrollenlager	α≠90°	(\	(wobei F_a >2,3 F_r tan α)		

Faktor für zulässige statische Last

Die zulässige statisch äquivalente Belastung von Wälzlagern hängt von deren statischer Tragzahl, Anwendung und Betriebsbedingungen ab. Der Faktor für die zulässige statische Last f_s ist ein Sicherheitsfaktor, der auf die statische Tragzahl angewendet wird. Er wird über das Verhältnis in der nachstehenden Gleichung definiert:

$$f_{\rm S} = \left(C_0 / P_0 \right)$$

wobei C_0 : statische Tragzahl

 P_0 : statisch äquivalente Lagerbelastung

Tabelle 2.2 zeigt die allgemein empfohlenen Werte für den Faktor $f_{\rm S}$ für die zulässige statische Last.

Tabelle 2.2 Werte für den Faktor f. für die zulässige statische Last

Betriebsbedingungen	Unterer Grenzwert von f _s			
Detriebsbedingungen	Kugellager	Rollenlager		
Ruhiger Lauf erforderlich	2,0	3,0		
Schwingungen und Stoßbelastungen	1,5	2,0		
Normale Bedingungen	1,0	1,5		

Zulässige Axiallast für Schrägkugellager

NSK hat die statisch zulässige Axiallast als den kleineren der beiden nachstehend aufgeführten Werte definiert:

- 1. Zulässige Axiallast, bei der die Druckellipse zwischen Kugel und Laufbahn die Schulter der Laufbahnrille nicht verlässt (Abb. 2.2)
- 2. Zulässige Axiallast, hinsichtlich Flächenpressung, bei der der Anpressdruck in der Mitte der Berührungszone zwischen Kugel und Laufbahnrille ein Niveau erreicht, bei dem ein Eindruck von max. 0,01 % des Kugeldurchmessers gemäß Definition der statischen Tragzahl verbleibt (Abb. 2.3)

Für eine optimale Lagerleistung hat NSK Werte für die zulässige statische Axiallast definiert. Zu diesem Zweck wurde ein Sicherheitsfaktor auf die axiale Grenzlast angewendet, der auf langjähriger Erfahrung basiert. In der Formel zum Berechnen der statischen axialen Tragzahl C_{na} findet die Schulterhöhe der Laufbahnrille keine Berücksichtigung. Daher kann der Wert C_{0a} in manchen Fällen höher als die axiale Grenzlast sein, bei deren Überschreiten die Schulter verlassen wird. In solchen Fällen ist die maximale Belastung, der ein Lager standhalten kann, niedriger als der Wert C_{0a} , sodass der Wert C_{na} nicht nutzbar ist (Abb. 2.4). Aus diesem Grund haben wir in den Wälzlagertabellen an den erforderlichen Stellen anstatt der C_{0a} -Werte die Werte für die zulässige Axiallast aufgeführt. Dies gilt insbesondere für Axial-Schrägkugellager, da sie in der Regel zum Stützen hoher Axiallasten verwendet werden.

Abb. 2.2 Zulässige Axiallast bei der die Druckellipse die Laufbahnkante nicht überschreitet

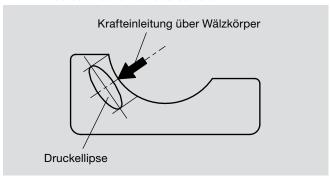


Abb. 2.3 Zulässige Axiallast bei der die max. Flächenpressung nicht überschritten wird

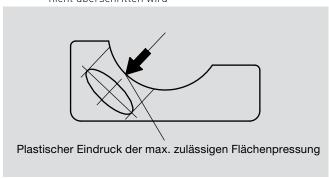
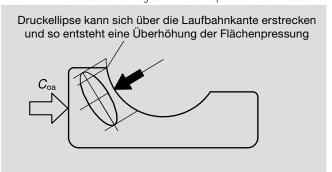



Abb. 2.4 Axiale statische Tragzahl und entsprechende Axiallast

3. Gepaarte Schrägkugellager

Mögliche Anordnungen von Schrägkugellagern

NSK liefert gepaarte Schrägkugellager normalerweise als Lagersätze bestehend aus zwei, drei oder vier Lagern. Als Festlager einer Spindellagerung werden üblicherweise mindestens zwei (Anordnung DB), drei (DBD) oder vier (DBB) Lager zusammen verbaut. In einem Dreiersatz verteilt sich jedoch die Vorspannung nicht gleichmäßig auf die Lager, so dass sich nur ein kleiner Bereich mit optimaler Vorspannung ergibt. Eine solche Anordnung ist daher für hohe Drehzahlen nicht so gut geeignet. Gepaarte Lager werden im Satz bearbeitet, so dass sich nach dem Einbau automatisch die gewünschte Vorspannung einstellt. Die Schwankungen von Bohrung und Außendurchmesser ist bei gepaarten Lagern auf weniger als 1/3 der zulässigen Toleranz eingeengt.

	DB	DF	DT	DBD	DBB
Lastrichtung					
Lastrichtung	⇔	⇔	→	⇔	⇔
Momentensteifigkeit	0	0	Δ	0	©
Drehzahleignung	0	0	©	Δ	0
Eigenerwärmung	0	0	©	Δ	0
Steifigkeit	0	0	Δ	0	©

Die Eigenschaften der einzelnen Lageranordnungen

- O-Anordnung DB

Nimmt Radiallasten und Axiallasten in beiden Richtungen auf. Großer Abstand zwischen den Lastangriffspunkten, daher für Momentenbelastungen geeignet. Wenn aber das Gehäuse nicht die erforderliche Genauigkeit aufweist und eine Schiefstellung der Spindel erfolgt, können die inneren Belastungskräfte so groß werden, dass die Lager vorzeitig ausfallen.

- X-Anordnung DF

Im Gegensatz zur DB-Anordnung ist der Abstand zwischen den Lastangriffspunkten gering. Daher können im Vergleich nur geringere Momente gut aufgenommen werden.

Andererseits ist diese Anordnung für Anwendungen geeignet, in denen die Genauigkeit der Fluchtung z.B. aufgrund größerer Wellendurchbiegung nicht gut gegeben ist.

- Tandem-Anordnung DT

Nimmt Axiallasten in einer Richtung und Radiallasten auf. Da die Steifigkeit in axialer Richtung doppelt so hoch wie bei einem Einzellager ist, sind Lager in dieser Anordnung die ideale Lösung bei hohen Axialbelastungen in nur einer Richtung (Abb. 3.2).

- Anordnung aus drei Lagern DBD Nimmt Radiallasten und Axiallasten in beiden Richtungen auf.

Die Vorspannung verteilt sich jedoch nicht gleichmäßig auf die drei Lager: Auf der Satzseite mit nur einem Lager ist sie annähernd doppelt so groß wie auf der Seite mit den zwei Lagern.

Wegen des großen Anstiegs der inneren Belastung im Einzellager, was zu Frühausfällen führen kann, ist diese Lageranordnung nicht für Anwendungen bei hohen Drehzahlen geeignet.

- Anordnung aus vier Lagern DBB Nimmt Radiallasten sowie Axiallasten in beiden Richtungen auf. Bei gleicher Einfederung der einzelnen Lager ist die Vorspannung und Steifigkeit im DBB Satz doppelt so hoch wie bei der DB Anordnung. Diese Anordnung aus vier Lagern kann somit eine größere Axiallast als eine DB-Anordnung aufnehmen.

Abb. 3.1: Abstand zwischen den Lastangriffspunkten bei O- und Y-Anordnung

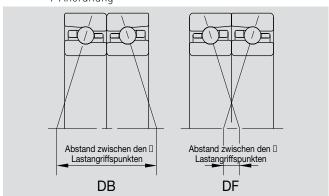


Abb. 3.2: Lastrichtung bei O- und Tandem-Anordnung

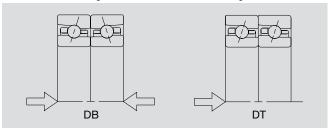
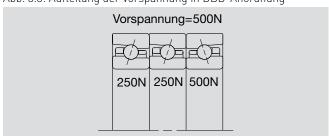



Abb. 3.3: Aufteilung der Vorspannung in DBD-Anordnung

Wellendurchbiegung in O- und X-Anordnung

Die Momentensteifigkeit einer O- und einer X-Anordnung unterscheidet sich erheblich, wie das folgende Rechenbeispiel zur Wellendurchbiegung zeigt. Hierbei sind Schrägkugellager (75BNR10XET) in DB- und DF-Anordnung als vordere Spindellagerung eingebaut. Bei einer Radialkraft von 1000 N an der Spindelnase ergeben sich folgende größte Radialverschiebungen der Welle.

$$\delta_{DB} = 2.4079 \times 10^{-2} \text{ (mm)}$$

$$\delta_{DE} = 2.9853 \times 10^{-2} \text{ (mm)}$$

Dies zeigt, welchen Einfluss der Abstand der Lastangriffspunkte auf die Durchbiegung der Spindel hat.

Paaren von Schrägkugellagern

Bei gepaarten Lagern muss unbedingt die Reihenfolge der Lager und die Belastungsrichtung beachtet werden. Wie rechts abgebildet, tragen die Lager auf jedem Außenring einen Teil einer V-förmigen Markierung. Nur wenn auf dem eingebauten Lagersatz das "V" zu erkennen ist, sind die Lager richtig ausgerichtet.

Auf der Innenringstirnfläche kennzeichnet ein "O" die Position des größten Radialschlags. Die Lagerung weist im Betrieb die größte Laufgenauigkeit auf, wenn die Lager so eingebaut werden, dass das "O" diametral zur Stelle mit der größten Exzentrizität der Welle eingebaut wird.

Die V-Markierung kennzeichnet zusätzlich die Stelle des größten Radialschlags am Außenring.

Der beste Ausgleich im Gehäusesitz wird erreicht, wenn alle Markierungen in einem Lagersatz in einer Linie verbaut werden.

Abb. 3.5: Markierung des größten Radialschlags

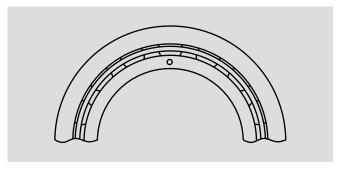


Abb. 3.4: Spindeldurchbiegung

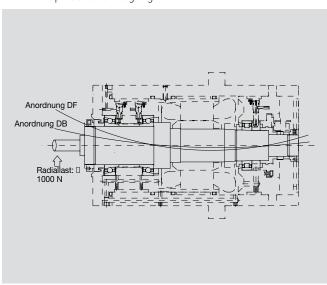
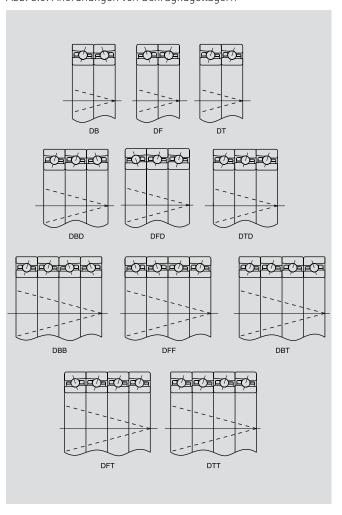
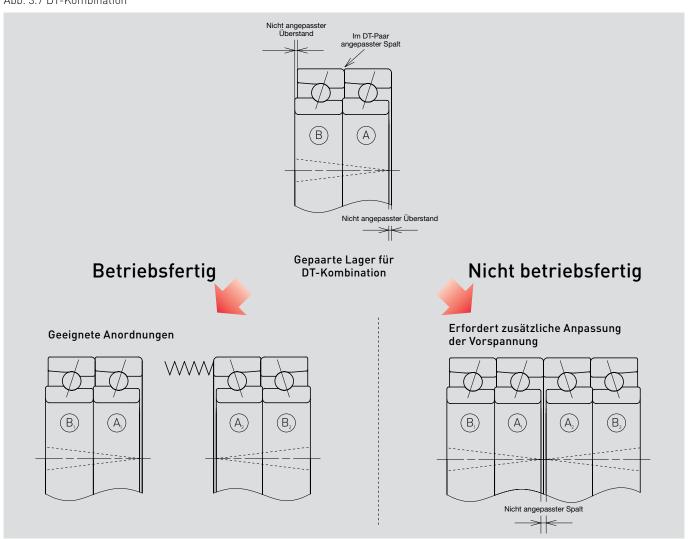
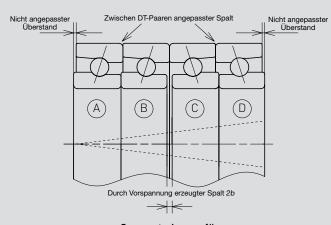



Abb. 3.6: Anordnungen von Schrägkugellagern

3. Gepaarte Schrägkugellager

Wichtige Punkte für die Verwendung speziell gepaarter Lager

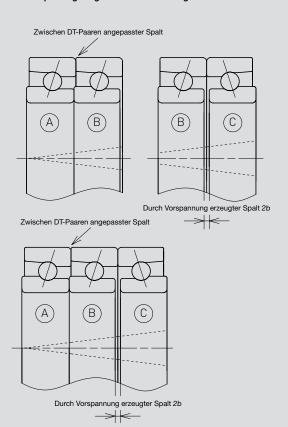

Die Vorspannung (der Überstand) jedes Wälzlagers in einem Satz gepaarter Lager (DB, DT, DFD usw.) wird ab Werk eingestellt und geprüft. So ist sichergestellt, dass die je Vorspannklasse spezifizierte Vorspannkraft erreicht wird, wenn die Lager in der durch die Markierungen an der Oberfläche ihrer Außenringe gekennzeichneten Reihenfolge angeordnet wurden. Diese Markierungen bilden ein "V", wenn die Wälzlager korrekt montiert wurden. Solange die Ausrichtung der Lager und ihre Reihenfolge nicht verändert werden, bleibt das Axialspiel bzw. der Überstand aus der Vorspannung so zwischen den einzelnen Lagern eines größeren Satzes erhalten. So kann man sogar einzelne Sequenzen des Satzes als Paar separat verwenden. In solchen Fällen behalten die Markierungen an den Außenringen die durchgehend gerade Linie und die korrekte Verbindung im V. Wird die Richtung oder die Reihenfolge gepaarter Wälzlager geändert, geht die Einstellung der Luft zwischen gepaarten Flächen verloren und die daraus resultierenden Werte für die Luft sind nicht mehr bekannt. Werden sie auf diese Weise verwendet, kann es zu Problemen infolge einer übermäßigen oder unzureichenden Vorspannung und einer ungleichmäßigen


müssen abhängig von den Messergebnissen Zwischenringe eingesetzt werden, um das Axialspiel anzupassen.
Wir empfehlen nicht, die Wälzlager maschinell zu bearbeiten, um den gewünschten Versatz zu erzielen, da ansonsten das Risiko besteht, dass Reste vom Schleifen im Inneren der Wälzlager verbleiben.

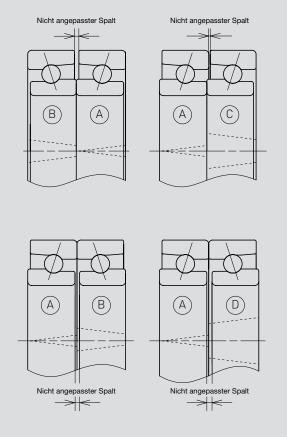
Lastverteilung kommen. Um gepaarte Lager in anderen als den beschriebenen Ausrichtungen und Reihenfolgen verwenden zu können, muss daher der Überstand (der axiale Versatz) jedes einzelnen Wälzlagers gemessen werden. Anschließend

Kunden, die die gleichen Wälzlager in verschiedenen Maschinen verwenden möchten, empfehlen wir, sich mit Lagern in Universalausführung statt mit speziell gepaarten (DB, DBB...) Wälzlagern zu bevorraten. Lager in Universalausführung sind betriebsfertig für verschiedene Anordnungen. Nähere Angaben zu Lagern in Universalausführung siehe Seite 206.

Abb. 3.7 DT-Kombination



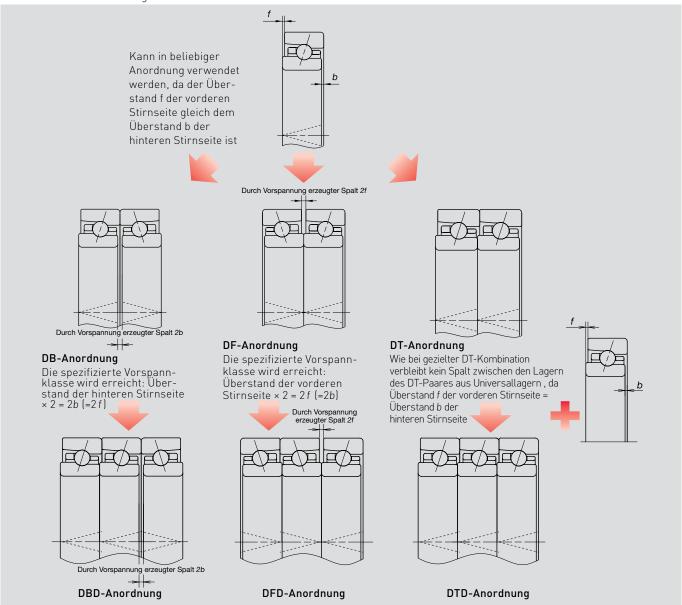
Betriebsfertig


Gepaarte Lager für DBB-Kombination

Nicht betriebsfertig

Beispiele geeigneter Anordnungen

Erfordert zusätzliche Anpassung der Vorspannung



3. Gepaarte Schrägkugellager

Lager in Universalausführung

NSK produziert Lager in Universalausführung, die im Hinblick auf einen identischen Überstand (Versatz) der vorderen und hinteren Stirnseite kontrolliert werden. Auf diese Weise erzielen Anwender bei Wälzlagern mit der gleichen Lagernummer den für die jeweilige Standardvorspannung spezifizierten Wert, unabhängig davon, welche Kombination sie wählen. Jedes Lager in Universalausführung ist mit einer V-förmigen Markierung an der Oberfläche des Außenrings versehen, um die Identifizierung der korrekten Einbaurichtung beim Montieren zu erleichtern und sicherzustellen, dass die richtige Kombination entsteht. Die V-förmige Markierung zeigt in Richtung der Axiallast, die zur richtigen Druckrichtung vom Außenring zum Innenring führt (Abb. 3.9).

Abb. 3.9 Universalausführung

Typen von Lagern in Universalausführung

NSK bietet vier Typen von Lagern in Universalausführung an, siehe Tabelle 3.2. Bei mehrreihigen Universallagern werden die Abweichungen von Bohrung und Außendurchmesser zusätzlich kontrolliert.

Tabelle 3.2 Typen von Lagern in Universalausführung und ihre Eigenschaften

	SU	DU	DUD	QU	
Anzahl der Reihen	1	2	3	4	
Abweichung von Bohrung und Außendurchmesser	_	Auf Einhaltung einer Toleranz von ¹/₃ kontrolliert			

Hinweis: Die Kontrolle auf Abweichungen ist bei Lagern der Klasse P4Y die gleiche wie bei Lagern der Klasse P4.

Hinweis zur Verwendung von Einzeluniversallagern (SU)

- Bei Wälzlagersätzen (DB, DU usw.) werden die Abweichungen von Bohrung und Außendurchmesser innerhalb der einzelnen Sätze kontrolliert. Werden allerdings einreihige Lager in Universalausführung (SU) verwendet, sollten Anwender die auf jeder Wälzlagerverpackung angegebenen Durchmessertoleranzen von Bohrung und Außendurchmesser prüfen und sicherstellen, dass die Abweichung von diesen Toleranzen gering ist. Anderenfalls kann es zu Schwankungen der Gehäuse- oder Wellenpassung kommen, die zu ungleichmäßigen Verteilungen der Belastungen führen, was wiederum Schäden an den Lagern verursachen kann.
- Eine Möglichkeit, die Abweichung von Bohrung und Außendurchmesser von SU-Wälzlagern gering zu halten, ist, die NSK Genauigkeitsklasse P4Y zu wählen. Wälzlager der Klasse P4Y weisen eine Laufgenauigkeit der ISO-Klasse 4 auf. Da der Bohrungsdurchmesser und der Außendurchmesser enger toleriert werden, eignen sich diese Lager für eine beliebige Paarung aus Einzeluniversallagern.

Abb. 3.10 Toleranzen der Genauigkeitsklassen P4 und P4Y

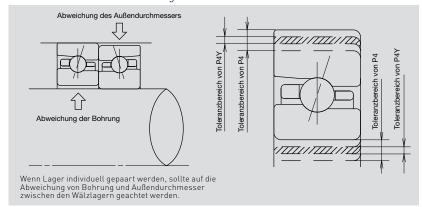
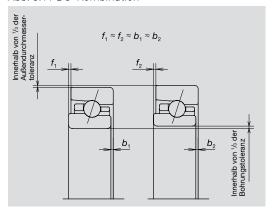
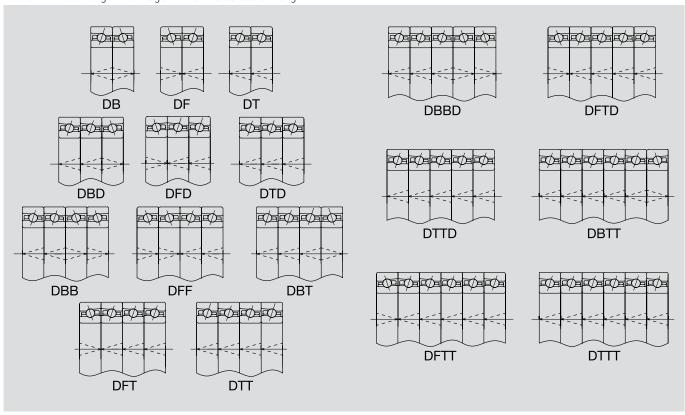




Abb. 3.11 DU-Kombination

Kombinationsmarkierung und Zusammenstellung von Lagern in Universalausführung

Abb. 3.12 Anordnungen von Lagern in Universalausführung

4. Vorspannung und Steifigkeit

Wenn man die Steifigkeit einer Werkzeugmaschinenspindel betrachtet, kann man sich die Lager als Federn vorstellen. Die axiale Verschiebung der Spindel bei Belastung mit Axialkraft hängt von der axialen Steifigkeit der Festlager ab.

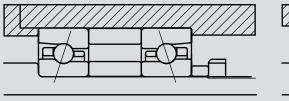
Beim Aufbringen von Radiallasten entsteht die radiale Verlagerung zwar vor allem durch die Wellendurchbiegung, aber die Auslenkung des Lagers darf man dabei auch nicht außer Acht lassen.

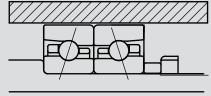
Wenn eine hohe radiale Steifigkeit gefordert ist, werden normalerweise Zylinderrollenlager verwendet. In diesem Fall werden Axialbelastungen üblicherweise von Axial-Schrägkugellagern aufgenommen. Je größer der Druckwinkel in einem Schrägkugellager ist, desto höher ist auch seine axiale Steifigkeit.

Normalerweise werden vorgespannte Lager eingesetzt, um die Steifigkeit von Werkzeugmaschinenspindeln zu erhöhen. Eine zu hohe Vorspannung kann jedoch zu Schäden wie Abblätterung oder sogar zum Blockieren des Lagers führen. Um eine größere Steifigkeit zu erzielen, wird häufig eine Lagerung aus zwei oder mehr Schrägkugellagern verwendet – insbesondere bei Stützlagern für Kugelgewindetriebe, wo eine hohe Steifigkeit gefordert, der Druckwinkel so groß wie möglich und die Vorspannung höher als bei einer Spindel ist.

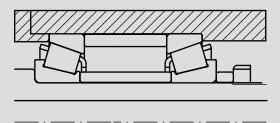
Zweck

Die Vorspannung der Lager in einer Werkzeugmaschinenspindel verfolgt mehrere Ziele:

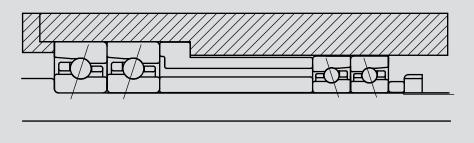

- Die Laufgenauigkeit der Spindel zu verbessern
- Die Steifigkeit der Spindel zu erhöhen
- Die Laufgeräusche infolge von Vibrationen der Spindel zu minimieren
- Einen übermäßigen Verschleiß aufgrund von Pendelbewegungen und Vibrationen zu verhindern
- Schlupf zwischen Wälzkörpern und Laufbahnen zu verhindern


Normalerweise wird die Vorspannung durch gegenseitiges Anstellen von zwei oder mehr Lagern – wie Schräg-kugellagern oder Kegelrollenlagern – in einem Lagersatz aufgebracht. Zylinderrollenlager können auch vorgespannt werden, indem das Radialspiel kleiner als null eingestellt wird.

(1) Starre Vorspannung


Eine starre Vorspannung wird erreicht, indem sich zwei axial gegenüberliegende Lager so fixiert werden, dass ihre Positionen zueinander während des Betriebs unverändert bleiben. In der Praxis werden üblicherweise die drei nachstehend aufgeführten Methoden angewendet, um eine starre Vorspannung zu erzielen.

- 1. Durch Verwendung eines Zwischenrings oder einer Ausgleichsscheibe geeigneter Größe, um den erforderlichen Abstand bzw. die erforderliche Vorspannung zu erzielen, siehe Abb. 4.1 (a) links, (b) und (c).
- 2. Durch Einbau eines Wälzlagersatzes unter Eliminierung des Vorspannspaltes. Dabei werden die sich im lastfreien Zustand nicht berührenden Ringe zusammengeführt und axial geklemmt, siehe Abb. 4.1 (a) rechts.
- 3. Durch Anpassen der axialen Vorspannung mithilfe von Bolzen oder Muttern, siehe Abb. 4.1 (d). Dabei muss zunächst das Anlaufmoment gemessen werden, um zu überprüfen, ob die richtige Vorspannung erzeugt wurde. Dieses Verfahren ist jedoch für Präzisionswerkzeugmasc hinenspindeln nicht zu empfehlen, weil sich die richtige Vorspannung nur schwierig bestimmen lässt und die Gefahr einer vertikalen Verschiebung (Verkippung) des Lagers besteht.



(a) Schrägkugellager in starrer Vorspannung

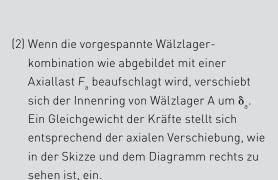


Hinweis: Die Käfige von Kegelrollenlagern ragen üblicherweise über die Stirnflächen des Wälzlagers heraus. Kunden, die den Lagerabstand verkleinern möchten, sollten die erforderliche Mindestbreite der Zwischenringe beachten.

(b) Kegelrollenlager in starrer Vorspannung

(c) Wälzlagerkombinationen unterschiedlich großer Wälzlager in starrer Vorspannung

(d) Starre Vorspannung ohne Zwischenringe


4. Vorspannung und Steifigkeit

Axiallast und Verschiebung in starrer Vorspannung (DB-Anordnung)

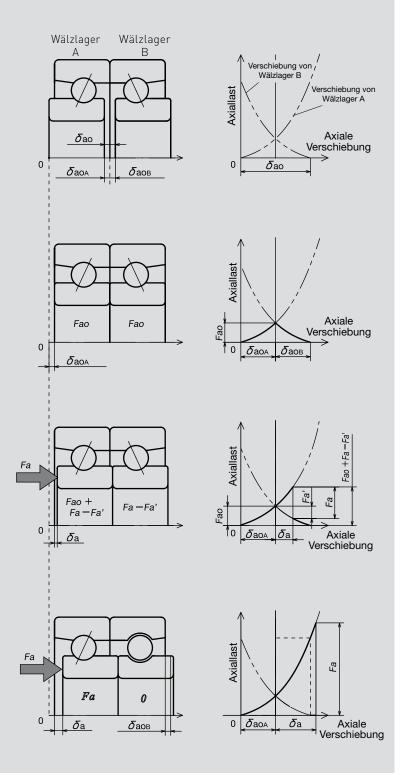
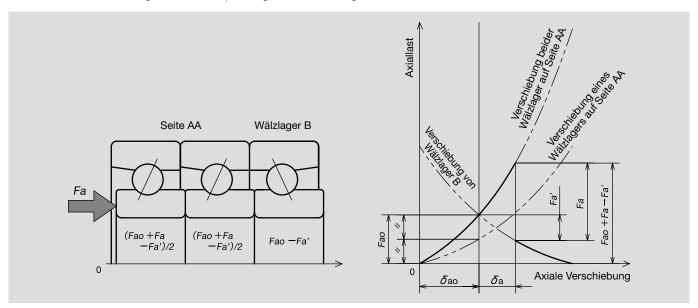

Abb. 4.2 veranschaulicht den Mechanismus von Vorspannung und Axiallast in Wälzlagerkombinationen.

Abb. 4.2 Axiale Verschiebung in starrer Vorspannung (DB-Anordnung)

1) Wenn die Innenringe axial fixiert werden, verschieben sich die Wälzlager A und B um δ_{a0A} bzw. δ_{a0B} . Die Axialluft (Spalt für die Vorspannung) δ_{a0} zwischen den Innenringen ist somit beseitigt. In diesem Zustand wird jeder Ring mit der Vorspannung F_{a0} beaufschlagt.

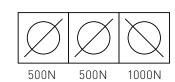

(3) Wenn eine so große Axiallast aufgebraucht wird, dass die Verschiebung des Innenrings von Wälzlager B größer als δ_{a0B} ist, nimmt Wälzlager B keine Axiallast mehr auf. Die Axiallast wird ausschließlich von Wälzlager A aufgenommen. Die axiale Steifigkeit verringert sich daher.

Axiallast und Verschiebung in starrer Vorspannung (DBD-Anordnung)

In der DBD-Anordnung wird die Axiallast in die Richtung des Tandems annähernd gleichmäßig auf beide Lager aufgeteilt. Davon abgesehen ist das Grundkonzept das gleiche wie bei DB-Anordnungen (siehe Abb. 4.2)

Abb. 4.3 Axiale Verschiebung in starrer Vorspannung (DBD-Anordnung)

Entlastungskraft


Wenn vorgespannte Wälzlager wie in Abb. 4.2 (3) gezeigt mit einer großen Axiallast beaufschlagt werden, wird das Lager gegenüber der Seite, die dem Axialdruck ausgesetzt wird, von der Axiallast entlastet. In solchen Fällen kann es zu Schlupf zwischen den Wälzkörpern und den Laufbahnen kommen. Bei hohen Drehzahlen kann dies zu übermäßigem Verschleiß oder Lagerschäden führen.

Wenn Wälzlager der gleichen Bauart miteinander kombiniert werden, kann die Höhe der Belastung, die die Vorspannung aufhebt, bei Schrägkugellagern ungefähr mit dem 3-Fachen der Vorspannung eines einzelnen Lagers und bei Kegelrollenlagern ungefähr mit dem 2-Fachen der Vorspannung eines einzelnen Wälzlagers angegeben werden. Tabelle 4.1 zeigt die Faktoren für Kombinationen von Schrägkugellagern und ein Beispiel für die Berechnung der Kraft, die zu diesem Abheben führt.

Tabelle 4.1 Annäherungswerte für Abhebekräfte

Kombination	Kombinations- kennzeichen	Richtung der Kraft	Faktor Abhebekraft (mit Betrag der Vorspannung für eine Reihe multiplizieren)
	DB		3
	DD		3
	DBD		6
	טטט		2,1
	DBB		6
	DDD		6
	DBT		9
	DDT		1,8
	DBBD		9
	0000		2,3

Berechnungsbeispiel

Richtung der Kraft	Entlastungskraft
	500 × 6 = 3 000N
	1 000 × 2,1 = 2 100N

4. Vorspannung und Steifigkeit

Standardisierung für Lagerluftklassen

NSK bietet gepaarte Schrägkugellager in vier standardmäßigen Vorspannklassen an:

EL: extraleichte Vorspannung

M: mittlere Vorspannung

H: hohe Vorspannung

Darüber hinaus sind zwei spezielle Lagerluftklassen für gepaarte Schrägkugellager und für Kegelrollenlager verfügbar:

CA: Axialluft (positive Lagerluft in axialer Richtung)
CP: Spalt für Vorspannung (eine Vorspannung wird nach
Montage und Eliminierung des Spaltes erzeugt)

Anpassung der Vorspannung mit Zwischenringen

Die gemessene Axialluft der einzelnen Lager ist in den Tabellen in Kapitel 4 dieses Katalogs angegeben. Die aufgeführten Werte beziehen sich auf DB- und DF-Anordnungen und berücksichtigen weder den Einfluss der Wellen- und Gehäusepassung noch einer Klemmkraft.

Zum Anpassen der gegebenen Vorspannklasse (beispielsweise L \rightarrow EL, L \rightarrow M) können Zwischenringe verwendet werden. Dabei muss lediglich die Differenz zwischen der vorhandenen Vorspannklasse und beliebiger Zielklasse direkt durch Addition oder Subtaktion der Werte für das gemessene Lagerspiel auf die Länge der Zwischenringe übertragen werden.

Für eine Erhöhung der Vorspannung in einer DB-Anordnung muss somit die Distanz zwischen den Innenringen verkürzt oder zwischen den Außenringen verlängert werden. Die Umkehrung bewirkt eine Abnahme der Vorspannung (Beispiel in Abb.4.5).

Für Lager in Universalausführung gilt Folgendes:

In einer DB-Anordnung entspricht der Überstand b (Seite 206) auf der geschlossenen Seite (Rückseite) dem Wert des gemessenen Spiels für die Vorspannung.

In einer DF-Anordnung entspricht der Überstand f (Seite 206) auf der offenen Seite (Vorderseite) dem Wert des gemessenen Spiels der Vorspannung.

Bitte passen Sie die Differenz im Hinblick auf das erforderliche Axialspiel mithilfe von Zwischenringen an. Tabelle 4.2 zeigt die Messlasten zum Messen der axialen Lagerluft. Die Werte in der Tabelle geben die Höhe der Belastung an, die nötig ist, um stabile Messwerte zu erhalten.

Abb. 4.4 Spezielle Lagerluftarten

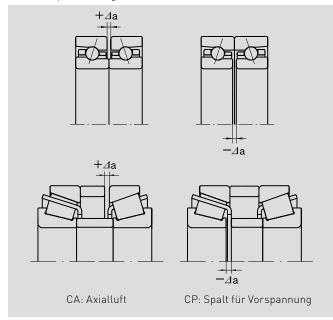
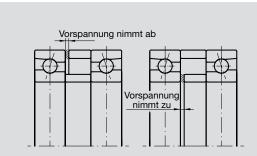



Abb. 4.5 Anpassung der Axialluft mit Zwischenringen

Beispiel für Anpassung mithilfe von Zwischenringen: 100BER10ETDBELP4, Vorspannung von EL in L ändern EL: 0

L: -12

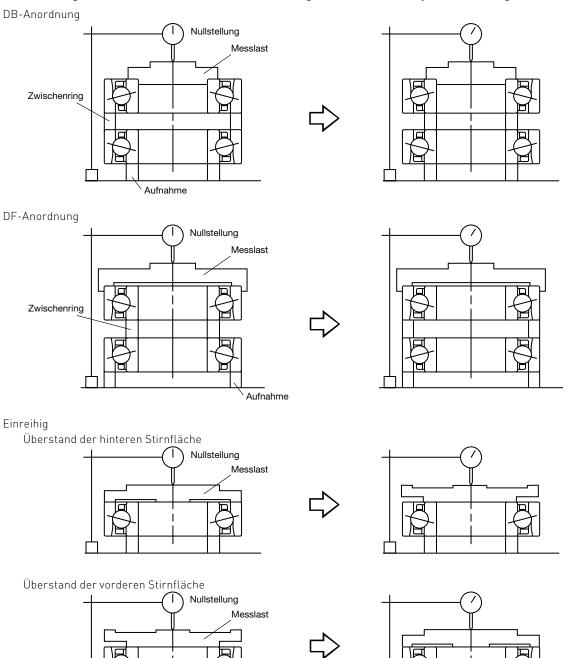
Der Zwischenring für den Innenring sollte 12 µm schmaler sein als der Zwischenring für den Außenring.

Tabelle 4.2 Messlasten zum Messen der Axialluft

Wälzlager-Nennaußendurchmesser D (mm)		Messlast (N)
Größer als	Bis zu	
10 (1)	50	24,5
50	120	49
120	200	98
200	400	196

(1) Der Außendurchmesser von 10 mm ist in diesem Bereich enthalten.

Messung der Axialluft bei gepaarten Schrägkugellagern


Bei der DB-Anordnung wird zunächst die Nullstellung der Messanordnung unter Messlast ohne Unterstützung der Innenringe, wie in der Abbildung unten zu sehen ist, gesucht. Erst wenn sich die Messung stabilisiert hat, kann man die Nullstellung definieren.

Daraufhin wird der Zwischenring zwischen den Außenringen entfernt und ein Zwischenring zwischen die Innenringe eingebracht. Die Differenz der Messungen und der Höhe der Zwischenringe ergibt den Wert für die gemessene Lagerluft. Ein positiver Wert bedeutet eine positive axiale Lagerluft CA. Ein negativer Wert beutet eine negative axiale Lagerluft CP, also eine Vorspannung.

Die Messung der Axialluft in DF-Anordnung wird vergleichbar zur DB-Anordnung gemessen. Allerdings müssen hierbei die Zwischenringe jeweils die andere Position besetzen: Aufnahme ist jeweils am Außenring und zur Ermittlung der Nullstellung erfolgt die Unterstützung über die Innenringe.

Bei einer DT-Anordnung sollte die Summe der Überstände zwischen der Vorderseite und der Rückseite der im Tandem zugewandten Stirnflächen null betragen.

Bei Einzellagern lasst sich die Axialluft für eine Paarung durch Addieren der jeweils einzeln gemessenen Werte erzielen.

4. Vorspannung und Steifigkeit

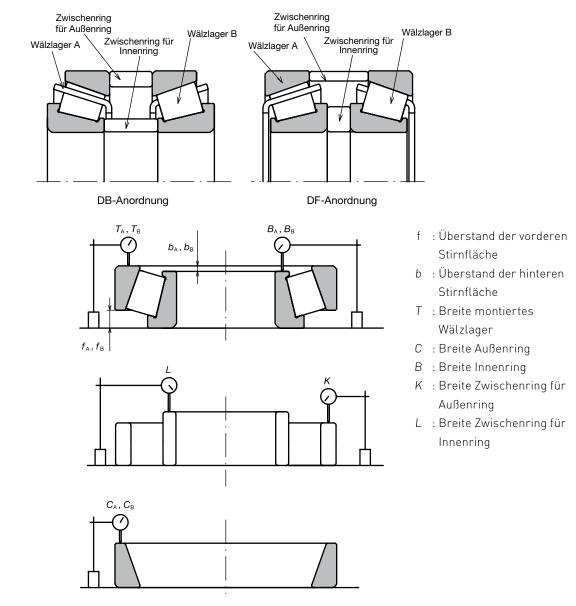
Messung der Axialluft bei gepaarten Kegelrollenlagern (Methode mit Messung des Überstands)

Messung der Axialluft bei gepaarten Kegelrollenlagern (Methode mit Messung des Überstands) In einer DB-Anordnung wird zunächst das Lager mit der Rückseite des Innenrings auf die Messunterlage gesetzt, sodass die offene Seite des Außenrings auch nach unten weist.

Drehen Sie den Außenring (mindestens 10 Umdrehungen), um die Rollen zu stabilisieren. Messen Sie anschließend die Breite des Innenrings und die Breite des zusammengebauten Wälzlagers. Messen Sie anschließend beim zweiten Wälzlager auf die gleiche Weise die Breite des Innenrings und die Breite des zusammengebauten Wälzlagers. Messen Sie schließlich die Breiten K und L der Zwischenringe.

Nach Einsetzen der Messwerte in die nachstehende Gleichung erhalten Sie die Axialluft ⊿,.

$$\Delta_{a} = (L-K)-(b_{A}+b_{B}) = (L-K)-[(T_{A}-B_{A})+(T_{B}-B_{B})]$$

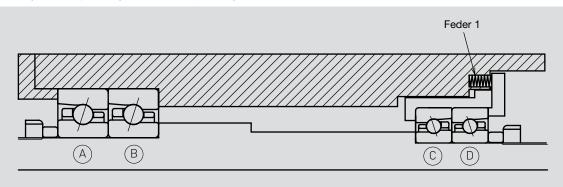

 Δ_{3} < 0 bedeutet Vorspannung.

Messen Sie bei einer DF-Anordnung den Außenring statt des Innenrings. Dadurch erhalten Sie die folgende Gleichung für die Axialluft:

$$\Delta_{a} = (K-L)-(f_{A}+f_{B}) = (K-L)-[(T_{A}-C_{A})+(T_{B}-C_{B})]$$

Kegelrollenlager in DF-Anordnung werden häufig ohne Zwischenring für den Innenring betrieben, sodass sich die Innenringe beider Lager direkt berühren. In diesem Fall gilt L=0.

Die Käfige ragen heraus. Stellen Sie daher beim Messen von Kegelrollenlagern sicher, dass Sie die Lager mit der richtigen Seite auf Messunterlage setzen. Achten Sie außerdem darauf, dass es zu keiner mechanischen Wechselwirkung mit anderen Teilen kommt, um eine Verformung der Käfige zu verhindern.


(2) Federvorspannung

Eine Federvorspannung lässt sich mit einer Schrauben- oder Tellerfeder erzielen. Auch dann, wenn sich die relative Position der Wälzlager während des Betriebs ändert, bleibt die Höhe der Vorspannung über die verschiedenen Betriebsbedingungen hinweg relativ konstant. Daher wird für Kombinationen aus Schrägkugellagern in Anwendungen mit hohen Drehzahlen eine Federvorspannung verwendet.

Ein Beispiel ist in Abb. 4.6 dargestellt. Da die Federsteifigkeit im Vergleich zur Lagersteifigkeit in der Regel gering ist, ist die Änderung der Vorspannung mit einer Feder aufgrund einer Verlagerung im Wälzlager zu vernachlässigen. Die Vorspannung, mit der die Wälzlager C, D und E in der nachstehenden Abbildung beaufschlagt werden, ist daher in Konfigurationen mit vertikal und horizontal angeordneten Wellen etwa gleich.

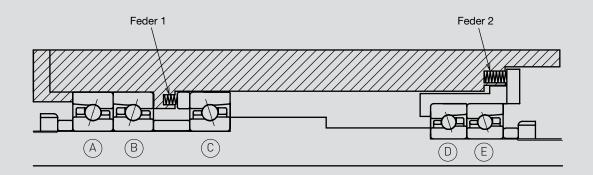

Allerdings wirkt auf die Wälzlager A und B zusätzlich zu den Kräften der einzelnen Federn auch die Eigenmasse der Welle im vertikalen Betrieb. Axiallasten, die von den Loslagern in Richtung der Festlager (in der nachstehenden Abbildung von rechts nach links) wirken, verringern die Vorspannung der Wälzlager A und B. Diese Effekte müssen beim Festlegen der Vorspannung für die Wälzlager A und B berücksichtigt werden, damit diese nicht entspannt werden.

Abb. 4.6 Verteilung der Vorspannung bei Federvorspannung

	Vorspannung (N)						
	Wälzlager A	Wälzlager C	Wälzlager D				
Horizontale Welle	250	250	250	250			
Vertikale Welle	200	200	250	250			

(a) Wellengewicht = 100 N, Feder 1 = 500 N

	Vorspannung (N)						
	Wälzlager A	Wälzlager B	Wälzlager C	Wälzlager D	Wälzlager E		
Horizontale Welle	250	250	300	100	100		
Vertikale Welle	200	200	300	100	100		

(b) Wellengewicht = 100 N, Feder 1 = 300 N, Feder 2 = 200 N

4. Vorspannung und Steifigkeit

Vorspannung und axiale Steifigkeit

Wenn ein Wälzlager mit einer Axiallast F_a beaufschlagt wird, kann die axiale Verschiebung δ_a des Wälzlagers in der Regel mit der folgenden Formel berechnet werden:

Bei Schrägkugellagern: $\delta_a = cF_a^{-2/3}$ Bei Kegelrollenlagern: $\delta_a = cF_a^{-0.9}$

Wobei c eine Konstante ist, die von der Innenkonstruktion des Wälzlagers abhängt.

Da sich die Verschiebung durch die Axiallast bei Kegelrollenlagern um 0,9 und bei Kugellagern um $^2/_3$ erhöht, ist die Wirkung der Beaufschlagung mit einer Vorspannung mit dem Ziel, die Verschiebung zu verringern, bei Kugellagern größer.

Die vorstehende Gleichung bezieht sich auf die elastische Verschiebung zwischen den Wälzkörpern (Kugeln, Kegelrollen) und den Innen- und Außenringen. Die tatsächliche axiale Verschiebung hängt außerdem vom Werkstoff und von der Stärke von Welle und Gehäuse sowie von der Wellenpassung und der Gehäusepassung ab. Angaben zu einer axialen Verschiebung, bei der diese Montagefaktoren Berücksichtigung finden, erhalten Sie bei NSK.

Abb. 4.7 Axiallast und axiale Verschiebung bei einreihigen Wälzlagern

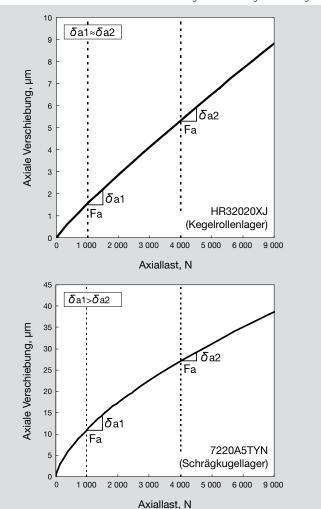
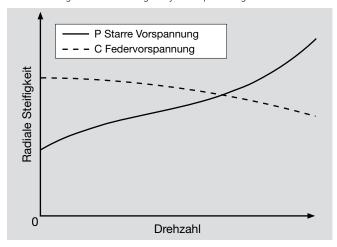



Abb. 4.8 Vergleich der Steifigkeit je Vorspannungsmethode

Vergleich der Vorspannungsmethoden

Im Vergleich stellen sich die starre Vorspannung und die Federvorspannung wie folgt dar:

- (1) Bei gleich großer Vorspannung bietet die starre Vorspannung eine höhere Lagersteifigkeit als die Federvorspannung. Mit anderen Worten: Die Auslenkung aufgrund externer Lasten ist bei Lagern mit starrer Vorspannung geringer.
- (2) Bei starrer Vorspannung variiert die Vorspannung während des Betriebs in Abhängigkeit von verschiedenen Faktoren wie unterschiedlicher axialer Ausdehnung aufgrund eines Temperaturunterschieds zwischen Welle und Gehäuse, unterschiedlicher radialer Ausdehnung wegen eines Temperaturunterschieds zwischen Innenund Außenring sowie Auswirkungen der auf die Wälzkörper wirkenden Fliehkraft. Bei einer Federvorspannung sind Schwankungen der Federbelastung bedingt durch das Ausdehnen und Zusammenziehen der Welle usw. minimal. Die Auswirkungen solcher Schwankungen sind daher zu vernachlässigen.

Bei einer starren Vorspannung erhöht sich die Lagersteifigkeit in der Regel mit steigender Spindeldrehzahl, da die Vorspannung während des Betriebs zunimmt. Im Gegensatz dazu verändert sich die Höhe der Vorspannung bei einer Federvorspannung nicht. Allerdings ändert sich der Druck-winkel aufgrund der Fliehkraft, die auf die Kugeln wirkt (Abb. 1.7 auf Seite 199). In der Folge nimmt die Steifigkeit ab (Abb. 4.8). Somit werden starre Vorspannungen vorzugsweise dort

verwendet, wo eine erhöhte Steifigkeit gewünscht ist.
Federvorspannungen hingegen eignen sich besser für Anwendungen mit hohen Drehzahlen sowie für Anwendungen, bei denen axiale Schwingungen verhindert werden müssen und für Axiallager auf horizontalen Wellen usw.

Höhe der Vorspannung

Eine höhere Vorspannung führt zu einer höheren Steifigkeit. Wird die Vorspannung erhöht, sinkt allerdings die Ermüdungslebensdauer und es kommt zu einer höheren Wärmeentwicklung. Im Extremfall kann eine übermäßige Vorspannung zu unnormalem Verschleiß oder sogar zum Blockieren der Lager führen.

Spindeln bei hohen Drehzahlen und Vorspannung

Spindeln bei hohen Drehzahlen und Vorspannung In schnelllaufenden Lagern steigt die interne Belastung durch die Ausdehnung des Innenrings infolge der Fliehkraft, der Wirkung der Fliehkraft auf die Kugeln sowie des Temperaturunterschieds zwischen Innen- und Außenring. Außerdem steigt der Flächendruck zwischen den Kugeln und den Laufbahnen von Innen- und Außenring. Bei Lagern, die einen Druckwinkel aufweisen – beispielsweise bei Schrägkugellagern – kommt es neben der reinen Rollbewegung zu Schlupf infolge von drehungsbedingten Momenten und Kreiselmomenten an den Kugeln. Der Schlupf nimmt mit steigender Wälzlagerdrehzahl zu. In der Folge entsteht an den Berührungsflächen mehr Wärme und die Viskosität des Schmieröls nimmt ab. In manchen Fällen reißt der Ölfilm und es kommt zum Blockieren des Lagers. Das bedeutet: Selbst bei gleicher Flächenpressung bei niedrigen und hohen Drehzahlen wird die Wärmeentwicklung aufgrund von Schlupf bei hohen Drehzahlen größer.

Bei NSK setzen wir auf die rechnergestützte Ermittlung der Flächenpressung und des Ausmaßes von Schlupfeffekten bei hohen Drehzahlen. Basierend auf unseren eigenen umfangreichen empirischen Testdaten und auf Marktergebnissen haben wir Grenzfaktoren unter Berücksichtigung der jeweiligen Schmiermethode und Drehzahl bestimmt; auf dieser Grundlage ermitteln wir die Vorspannung. Nähere Angaben zu Anwendungen mit über 800 000 d_m erhalten Sie bei NSK.

Bei Hochgeschwindigkeitslagern, die mit einer Federvorspannung beaufschlagt werden, wird üblicherweise eine mittlere Vorspannung (M) pro Reihe als Richtwert gewählt und dann entsprechend der erforderlichen Steifigkeit und dem Temperaturanstieg im Betrieb mit hohen Drehzahlen angepasst.

Vorspannung für Axiallager

Axiallager müssen in der Regel mit einer Axiallast beaufschlagt werden, um einen Schlupf zwischen den Wälzkörpern und den Scheiben zu verhindern.

Die minimale Axiallast, die erforderlich ist, um einen Schlupf der Wälzkörper zu verhindern, kann anhand der nachstehenden Gleichung berechnet werden. In Fällen, in denen die Eigenmasse der Welle nicht ausreicht, muss eine Vorspannung hinzugefügt werden, die beispielsweise mit einer Feder erzeugt wird.

Angaben zur minimalen Axiallast horizontaler Wellen erhalten Sie bei NSK.

Für Axialkugellager gilt: $F_{a \min} = Mn^2$

wobei $F_{a min}$: minimale Axiallast (kN)

M : Minimallastfaktor (in Wälzlagertabellen

aufgeführt)

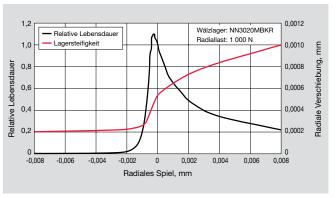
n : Höchstdrehzahl im Betrieb (min-1)

Für Axial-Zylinderrollenlager gilt: $F_{a,min} = 0.0005C_{0a} + Mn^2$

wobei $F_{a min}$: minimale Axiallast (kN)

M : Minimallastfaktor (in Wälzlagertabellen

aufgeführt)


 C_{0a} : statische axiale Tragzahl (kN) n : Höchstdrehzahl im Betrieb (min⁻¹)

Lagerluft bei Zylinderrollenlagern

Damit Werkzeugmaschinenspindeln mit großer Laufgenauigkeit und hoher Steifigkeit betrieben werden können, werden Lager mit minimaler Lagerluft bzw. Vorspannung im eingebauten Zustand verwendet. Bei Zylinderrollenlagern werden üblicherweise Lager mit kegeligen Bohrungen verwendet, damit sich die Lagerluft leichter einstellen lässt. Im Allgemeinen werden Zylinderrollenlager am vorderen Spindelende (Festlager) beim Einbau so eingestellt, dass im Betrieb eine Vorspannung vorhanden ist. Die Lager am hinteren Ende (Loslager) werden beim Einbau auf eine geringe Lagerluft im Betrieb eingestellt. Die Größe der radialen Lagerluft nach dem Einbau hängt von Faktoren wie Drehzahl, Belastung, Schmiermethode, Lagergröße, erforderlicher Steifigkeit und Lebensdauer ab.

Abb. 4.9 zeigt den Zusammenhang zwischen der radialen Lagerluft und der Ermüdungslebensdauer im Wälzkontakt sowie den Zusammenhang zwischen der radialen Lagerluft und der radialen elastischen Verschiebung bei einem Zylinderrollenlager (NN3020, Bohrungsdurchmesser 100 mm, Außendurchmesser 150 mm, Breite 37 mm).

Abb. 4.9 Einfluss der radialen Lagerluft auf die Ermüdungslebensdauer im Wälzkontakt und die Steifigkeit in einem zweireihigen Zylinderrollenlager

5. Grenzdrehzahlen

Grenzdrehzahlen

Bei den in den Wälzlagertabellen aufgeführten Grenzdrehzahlen handelt es sich um Richtwerte. Sie finden Anwendung, wenn jedes der folgenden Kriterien erfüllt ist:

- Einzelnes Wälzlager, mithilfe von Federn auf geeignete Weise vorgespannt
- Präzise gewuchtetes Spindelsystem
- Gute Wärmeabführung
- Gute Schmierung
- Drehbarer Innenring

Die Werte werden nicht für einen Dauerbetrieb über einen längeren Zeitraum garantiert. Insbesondere bei Fettschmierung wird empfohlen, geeignete Drehzahlen unter Berücksichtigung der Schmiermittelgebrauchsdauer zu wählen

Die Grenzdrehzahlen bei Fettschmierung erfordern, dass geeignete Mengen hochwertigen Schmierfetts sachgemäß eingebracht werden und dass die entsprechenden Wälzlager ausreichend lange eingelaufen werden. Verfahren zum Aufbringen von Schmierfett siehe Seite 258. Angaben zum Einlaufen siehe Seite 270.

Die Grenzdrehzahlen für Ölschmierung basieren auf einer Öl-Luft-Schmierung (oder Ölnebelschmierung). Wenn über das Schmieröl gleichzeitig Wärme abgeführt werden kann, sind auch höhere Drehzahlen möglich, beispielsweise bei einer Öleinspritzschmierung.

Um einen Betrieb bei hohen Drehzahlen zu ermöglichen, müssen die Lagerbelastung (einschließlich der internen Belastung), die Wärmeentwicklung und der Temperaturanstieg gering gehalten werden. Über die genannten Faktoren hinaus haben auch die folgenden einen Einfluss auf die Grenzdrehzahlen:

(1) Vorspannungsmethode

Bei starrer Vorspannung steigt die interne Vorspannung mit zunehmender Drehzahl. In der Regel ist die Grenzdrehzahl bei starrer Vorspannung niedriger als bei einer Federvorspannung.

(2) Lagerstellen und Anordnung

Die Anzahl der Reihen in einer Lagerkombination beeinflusst die Lastverteilung. Die Grenzdrehzahl wird von dem Wälzlager bestimmt, das in einer Kombination der größten Spannung ausgesetzt ist. Darüber hinaus wird die Wärmeableitung selbst bei gleicher Vorspannung vom Vorhandensein oder Fehlen von Zwischenringen sowie von der Länge der Zwischenringe beeinflusst.

(3) Lagerbelastung

Hohe Drehzahlen und hohe Belastungen sind schwer zu kombinieren. Die Belastbarkeit wird von der Drehzahl beeinflusst.

(4) Antriebsmethode

Spindelantriebssysteme lassen sich grob in drei Gruppen unterteilen: (a) Kupplungsantriebe, (b) integrierte Motorantriebe, (c) Riemen- oder Zahnradantriebe. (a) Die hohe Exzentrizität bei Kupplungsantrieben führt zu Vibrationen der Welle, die wiederum niedrigere Grenzdrehzahlen nach sich ziehen. (b) Bei integrierten Motorantrieben ist die interne Wärmeentwicklung so hoch, dass vor allem Lager in der Nähe des Motors durch die Wärme beeinträchtigt oder gar beschädigt werden können. Bei Spindeln mit Mantelkühlung kommt es tendenziell zu einer Vergrößerung des Temperaturunterschieds zwischen

Tabelle 5.1 Drehzahlfaktoren für starre Vorspannung

	Anordnung	Vorsp	annung	nach Mo	ntage
	Anorunding	EL	L	М	Н
DB	\varnothing	0,85	0,80	0,65	0,55
DBB	$\emptyset\emptyset$	0,80	0,75	0,60	0,45
DBD	\emptyset	0,75	0,70	0,55	0,40
DBBD	$\emptyset\emptyset\emptyset\emptyset\emptyset$	0,75	0,70	0,55	0,40

Innenring und Außenring; bei einer starren Vorspannung führt dies zu einer höheren internen Belastung, was wiederum niedrigere Grenzdrehzahlen bedeutet (Abb. 5.2). (c) Bei Zahnrad- oder Riemenantrieben muss ggf. die Antriebskraft an sich berücksichtigt werden. Vorsicht ist insbesondere bei Spindeln mit hohem Drehmoment und bei schnelllaufenden Spindeln geboten.

(5) Einbaubedingungen

Bei starrer Vorspannung wirkt sich die Wellenpassung auf die Vorspannung aus. Die Länge der Zwischenringe und die Festziehkraft wirken sich ebenfalls auf die Lagerluft aus, wodurch sich wiederum die Vorspannung ändert.

Die Bedingungen für die Gehäusepassung haben einen großen Einfluss auf die Vorspannung, insbesondere im Betrieb. Eine zu kleine Lagerluft zwischen Wälzlager und Gehäuse führt aufgrund der unterschiedlichen Wärmeausdehnung von Wälzlager und Gehäuse zu einem Festsitz; dadurch erhöht sich die interne Vorspannung (Abb. 5.3).

Werden Zylinderrollenlager mit einer zu negativen Lagerluft montiert, sinkt die Grenzdrehzahl aufgrund der zunehmenden Wärmeentwicklung (Seite 48).

Drehzahlfaktoren für starre Vorspannung

Die Grenzdrehzahl einer Schrägkugellagerkombination wird durch Multiplizieren der Grenzdrehzahl eines einzelnen Wälzlagers in der Kombination mit dem geeigneten Anpassungsfaktor in Tabelle 5.1 errechnet. Die Klassifizierung der Vorspannung in der Tabelle bezieht sich auf die Vorspannung, die vorliegt, nachdem die Wälzlager in der Spindel montiert worden sind (d. h. die Vorspannung nach der Montage).

In der Regel hängt die nach der Montage entstehende Vorspannung von der Wellenpassung und der Verformung des Zwischenrings bzw. der Zwischenringe ab und kann größer sein als die ursprüngliche Axialluft. So kann beispielsweise ein in einer sehr festen Passung montiertes, mit einer extraleichten (EL) Vorspannung beaufschlagtes Lager nach der Montage eine Vorspannung aufweisen, die einer mittleren (M) Vorspannung entspricht. Je nach Einsatzbedingung ist es dann erforderlich, die Axialluft mithilfe von Zwischenringen anzupassen.

Um einen dauerhaft stabilen Betrieb sicherzustellen, ist es ratsam, die Werte in Tabelle 5.1 um einen Sicherheitsfaktor von 0,75 weiter zu reduzieren.

Berechnungsbeispiel:

Zielwert für 70BNR10HTDB, extraleichte (EL) Vorspannung nach der Montage, Fettschmierung: (Grenzdrehzahl) $20\,000\times$ (EL) $0.85\times$ (Sicherheitsfaktor) $0.75=12\,750\,\mathrm{min^{-1}}$

Faktoren, die die Vorspannung beeinflussen

Abb. 5.1 Abfolge der Faktoren, die die Vorspannung beeinflussen

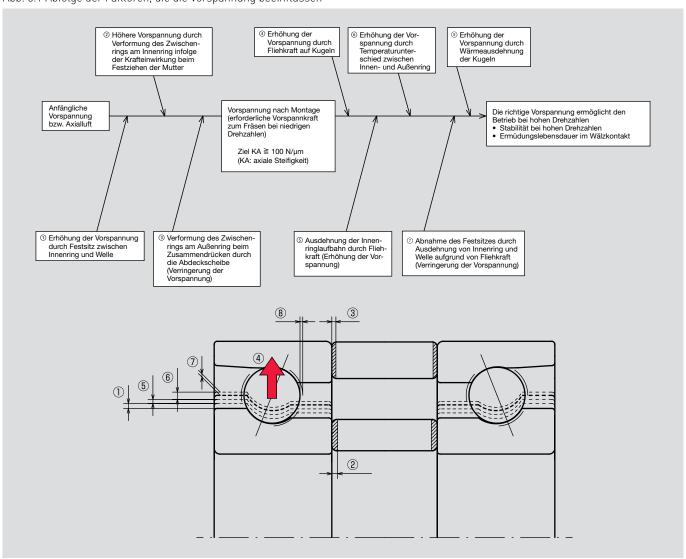


Abb. 5.2 Einfluss der Mantelkühlung auf Grenzdrehzahl

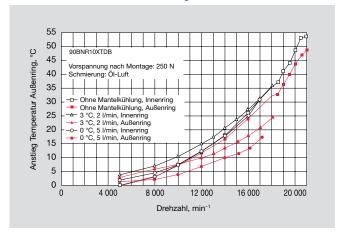
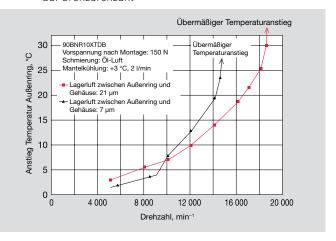



Abb. 5.3 Einfluss der Lagerluft zwischen Wälzlager und Gehäuse auf Grenzdrehzahl

6. Schmierung

Der Zweck der Schmierung

Die Schmierung in einem Wälzlager dient dazu, Reibung und Verschleiß zu vermindern und so einen vorzeitigen Lagerausfall zu vermeiden. Sie bewirkt im Einzelnen folgendes:

(1) Weniger Reibung und Verschleiß

Der Schmierfilm verhindert den metallischen Kontakt von Ringen, Wälzkörpern und Käfig und sorgt für weniger Reibung und Verschleiß in den Kontaktzonen.

(2) Längere Ermüdungslebensdauer

Die Ermüdungslebensdauer eines Lagers wird entscheidend von der Viskosität und Dicke des Schmierfilms im Wälzkontakt beeinflusst. Die Ermüdungslebensdauer steigt mit zunehmender Schmierfilmdicke. Bei unzureichender Viskosität des Schmieröls wird nur ein zu dünner Schmierfilm aufgebaut und die Ermüdungslebensdauer wird vermindert.

(3) Wärmeabfuhr

Mit einer Öl-Umlaufschmierung wird die Reibungswärme aus dem Lager oder Wärme aus der Lagerumgebung schnell abgeführt, so dass übermäßige Erwärmung des Lagers und vorzeitige Alterung des Schmierstoffs verhindert werden.

(4) Weitere Folgen

Ausreichende Schmierung schützt das Lager auch vor dem Eindringen von Fremdstoffen und schützt vor Korrosion und Rost.

Arten der Schmierung

Bei Werkzeugmaschinenspindeln, mit der Anforderung an hohe Genauigkeit, ist besonders auf eine geringe Erwärmung zu achten, damit die damit verbundenen Maßänderungen durch die Wärmeausdehnung klein bleiben. Die Erwärmung im Lager entsteht grundsätzlich aus zwei Faktoren: dem Lastfaktor, der von Lagerbauart und Belastung abhängt, und dem Drehzahlfaktor, der von der Art der Schmierung und der Lagerdrehzahl beeinflusst wird. Normalerweise spielt bei Spindellagern der Drehzahlfaktor dabei eine größere Rolle, aber wenn bei geschickter Auswahl der Schmierung der Drehzahlfaktor klein ist, muss man auch den Lastfaktor beachten. Daher sollte sowohl beim Lager (Lastfaktor) als auch bei der Schmierung (Drehzahlfaktor) immer auf geringe Eigenerwärmung geachtet werden. Nicht nur die Art der Schmierung sondern auch die Menge des Schmierstoffs wirken sich auf die Temperatur im Lagers aus.

Meist wird eine Minimalschmierung eingesetzt, weil sie wirtschaftlich und wartungsfrei betrieben werden kann und nur wenig Wärme erzeugt. Um bei hohen Drehzahlen eine konstant niedrige Temperatur im Lager zu halten, ist die Öl-Luft-Schmierung mit ihrer geringen Ölmenge am besten geeignet. Der Zusammenhang zwischen Ölmenge, Wärmeerzeugung (Reibungsverluste) und Temperaturanstieg ist in Abb. 6.1 dargestellt. Für Werkzeugmaschinenspindeln ergibt sich die beste Betriebstemperatur bei einer Schmierung in Zone A oder B. Beide Arten der Schmierung sind in Tabelle 6.1 dargestellt.

Dynamisches
Reibmoment des
Lagers
(Wärmeentwicklung) M=MI+Mv

Lastfaktor (bestimmt durch Lagerbauart und Belastung)

 $MI=f_1Fd_m$

mit f_1 : Koeffizient für Lagerbauart und Belastung

F: Lagerbelastung

d_m: Teilkreisdurchmesser des Lagers

- Drehzahlfaktor (bestimmt durch Ölviskosität und -menge, Drehzahl)

 $Mv = f_o(v_o n)^{2/3} d_m^3$

mit fo: Koeffizient für Lager und Schmierung

 $v_{\rm o}$: kinematische Viskosität des Öls

n: Drehzahl

Abb. 6.1: Ölmenge und Temperaturanstieg

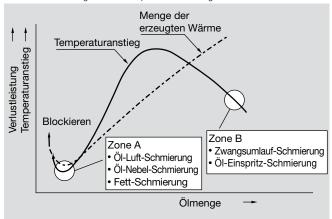


Tabelle 6.1: Vergleich der verschiedenen Schmiermethoden

Schmiermethoden	Vorteile	Nachteile
Fett-Schmierung	KostengünstigEingeschränkte Erwärmung möglichWartungsfrei	Wenn das Fett die Schmierfähigkeit verliert, kann das Lager blockieren. Möglicherweise Eindringen von Staub oder Kühlschmierstoff
Öl-Nebel-Schmierung	 Es wird kontinuierlich Frischöl zugeführt, konstante Ölqualität. Kein Eintritt von Staub und Kühlschmierstoff ins Lager 	 Verschmutzung der Umwelt. Die zugeführte Ölmenge hängt von der Ölviskosität und Temperatur ab, so kann keine minimale Durchflussmenge garantiert werden. Schwierige Überwachung des Ölflusses
Öl-Einspritz-Schmierung	 Hohe Öldurchflussmenge, daher können weder Staub noch Kühlschmierstoff eindringen; das Lager blockiert so gut wie nie. Durch die Ölkühlung lässt sich die Lagertemperatur in einem gewissen Grad steuern. 	 Hohe Reibungsverluste. Ölaustritt, daher für vertikalen Einbau in Spindeln nicht geeignet. Kostenintensiv.
Öl-Luft-Schmierung	Steuerung der Ölmenge; dadurch Zuführung der optimalen Ölmenge und geringe Erwärmung Geringe Wärmeerzeugung im Lager und Kühlwirkung der Luft; daher geringe Lagertemperatur Simit kontinuierlich Frischöl zugeführt, konstante Ölqualität, Staub und Kühlschmierstoff können nicht ins Lager eindringen. Nur geringe Umweltbeeinträchtigung durch Ölnebel.	- Kostenintensiv - Schwierige Überwachung des Ölflusses

Fettschmierung (1) Empfohlene Schmierfette

Lithiumseifenfette mit mineralischem Grundöl verfügen über eine gute Haftfähigkeit und sind außerordentlich gut zur Schmierung von Wälzlagern geeignet. Ihr Temperaturbereich liegt zwischen –10 °C und +110 °C.

Für schnelllaufende Werkzeugmaschinenspindeln, die bei geringer Lagererwärmung eine hohe Lebensdauer erreichen müssen, empfiehlt NSK ein Fett der Konsistenzklasse 2 mit synthetischem Grundöl (Diester, Diester plus Mineralöl usw.).

In Tabelle 6.2 sind die verschiedenen Sorten von Schmierfetten aufgeführt, die in Werkzeugmaschinenhauptspindeln und Axiallagern für Kugelgewindetriebe häufig eingesetzt werden

(2) Fettgebrauchsdauer

Die Fettgebrauchsdauer hängt in erster Linie von der Betriebstemperatur ab. Deshalb muss die Lagertemperatur (einschließlich der Umgebungstemperatur) niedrig bleiben, damit eine längere Fettgebrauchsdauer erreicht wird. Hochleistungsfette für einen weiten

Tabelle 6.2 Verschiedene Schmierfette und ihre Eigenschaften

Temperatureinsatzbereich werden häufig für schnelllaufende Spindellager oder Motorspindeln eingesetzt. Die folgende Gleichung gibt die mittlere Lebensdauer eines Fettes für einen weiten Temperatureinsatzbereich an:

$log t=6.12-1.4n/N_{max}-(0.018-0.006n/N_{max}) T$

mit t: mittlere Fettlebensdauer (h)

N_{max}: Drehzahlgrenze des Lagers (min⁻¹)

n: Betriebsdrehzahl (min⁻¹)

T: Betriebstemperatur des Lagers (°C)

(3) Fettmenge für schnelllaufende Spindellager

Bei schnelllaufenden Lagern mit Fettschmierung sollten nur 10 bis 20% des gesamten Freiraums im Lager mit Fett befüllt werden. Bei übermäßiger Befüllung erwärmt sich das Lager beim Einlaufen zu stark und das Fett wird möglicherweise geschädigt. Spindeln müssen daher vor dem Betrieb ausreichend lange einlaufen. NSK hat empirisch die beste Fettfüllmenge ermittelt, die eine ausreichende Schmierung und ein problemloses Einlaufen garantiert. Die Werte sind der Tabelle auf Seite 259 zu entnehmen.

Marke/Bezeichnung	Verdicker	Grundöl	Viskosität des Grund- öls, mm²/s (40°C)	Tropf- punkt (°C)	Betriebs- Temperatur- bereich(1) (°C)	Hauptanwendungen
MTE Grease	Bariumkomplex	Mineralöl + Esteröl (3)	23	>260	-20 to +130	Wälzlager für schnelllaufende Spindeln
MTS Grease	Harnstoff (2)	Polyalphaolefin + Esteröl (3)	22	>220	-40 to +130	Wälzlager für schnelllaufende Spindeln
TURMOGREASE HIGHSPEED L252	Lithiumseife	Polyalphaolefin + Esteröl (3)	25	>250	-50 to +120	Wälzlager für schnelllaufende Spindeln
ISOFLEX NBU15	Bariumkomplex	Mineralöl + Esteröl (3)	23	>260	-20 to +120	Wälzlager für Spindeln
STABURAGS NBU 8 EP	Bariumkomplex	Mineralöl	105	>220	-10 to +130	Wälzlager für hochbelastete Spindeln
EA7 Grease	Harnstoff (2)	Polyalphaolefin-Öl	46	>260	-40 to +160	Wälzlager für Motoren
ENS Grease	Harnstoff (2)	Polyol-Esteröl (3)	30,5	>260	-40 to +160	Wälzlager für Motoren
Alvania S2	Lithium	Mineralöl	130	185	-10 to +110	Stützlager für Kugelgewindetriebe
WPH	Harnstoff (2)	Polyalphaolefin-Öl	95,8	259	-40 to +150	Stützlager für Kugelgewindetriebe
FS2	Lithiumseife	Mineralöl	139	205	-10 to +110	Stützlager für Kugelgewindetriebe, Anwendungen mit hohen Belastungen
Multemp PS No. 2	Lithiumseife	Polyalphaolefin + Diesteröl (3)	15,9	190	-50 to +110	Stützlager für Kugelgewindetriebe, Anwendungen mit geringen Belastungen
Klüberplex BEM 41-132	Lithiumseife	Mineralöl + Polyalphaolefin-Öl	120	>250	-40 to +150	Stützlager für Kugelgewindetriebe (Standardfett für BSBD-Serie)

⁽¹⁾ Informationen zu speziellen Anwendungsbedingungen, wie unterer und oberer Temperaturbereich oder zum Einsatz im Vakuum, erhalten Sie bei NSK.

^[2] Vorsicht: Schmierfett, das Harnstoff als Verdicker enthält, zersetzt fluorbasierte Werkstoffe.

⁽³⁾ Vorsicht: Schmierfett auf Esterölbasis lässt Acrylwerkstoffe anschwellen.

6. Schmierung

Ölschmierung

Für die Ölschmierung von Wälzlagern werden hochreine Mineral- und Synthetiköle mit guten oxidations- und korrosionshemmenden Eigenschaften verwendet, die sich gut für hohe Belastungen eignen.

Der wichtigste Faktor bei der Schmierölauswahl ist die Viskosität, die es bei Betriebstemperatur aufweist. Wenn die Viskosität zu gering ist, ist der Ölfilm unzureichend, was zu übermäßigem Verschleiß und zum Blockieren des Lagers führen kann. Je höher die Viskosität desto zäher ist der Schmierstoff und bietet mehr Widerstand gegen die Rotation der Kugeln und führt somit zu einer stärkeren Wärmeentwicklung und zu Leistungsverlusten. Die Ölfilmbildung wird auch durch die Betriebsdrehzahl und die Belastungsbedingungen beeinflusst.

Allgemein gilt: Je höher die Betriebsdrehzahl, desto niedriger sollte die Viskosität des Öls sein. Je höher die Lagerbelastung und je größer das Wälzlager, desto höher sollte die Viskosität des Öls sein. Tabelle 6.3 enthält Richtwerte für die Ölviskosität bei Öltemperaturen in der Nähe der unter normalen Betriebsbedingungen betriebenen Lager.

Um Ihnen die Auswahl des Schmieröls zu erleichtern, zeigt Abb. 6.2 den Zusammenhang zwischen Öltemperatur und Ölviskosität.

(1) Ölnebel- und Öl-Luft-Schmierung (Öl-Minimalschmierung)

Bei der Ölnebelschmierung wird Öl mit Druckluft vernebelt und an die Schmierstellen transportiert.

Bei der Öl-Luft-Schmierung wird dem Lager kontinuierlich Öl zugeführt. Dazu wird über ein Mischventil, das in regelmäßigen Abständen über einen speziellen Kolben die erforderliche Mindestölmenge liefert, Öl in einen Druckluftstrom eingespritzt. In Abb. 6.3 sind die empfohlenen Ölmengen für

Abb. 6.2 Zusammenhang zwischen Viskosität und Temperatur des Schmieröls

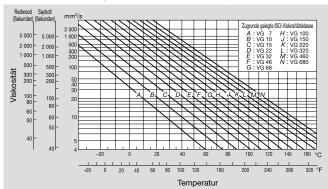


Abb. 6.4 Öl-Luft-Schmiersystem (Beispiel)

diese Öl-Minimalschmierungen dargestellt; die Mengenangaben gelten jeweils für ein Lager. Bei der Ölnebelschmierung muss die Ölmenge individuell eingestellt oder nachgeregelt werden, weil auch die Auslegung der Rohrleitungen (Verzweigungen) und der Ölaustritt an den Zwischenringen zu berücksichtigen sind.

Angaben zur Position der Schmierdüse siehe Seite 242-243.

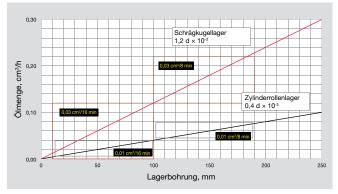
Beispiel für ein Öl-Luft-Schmiersystem Luftversorgung

- Saubere und trockene Druckluft
- Taupunkt 3 °C oder niedriger
- Luftdruck: 0,2 bis 0,5 MPa (empfohlen: 0,4 bis 0,45)

Schmieröl

- Sauberes Öl für schnelllaufende Spindeln oder Turbinen (bei Bedarf mit Leitungsfilter)
- Viskosität: 22 bis 68 cSt

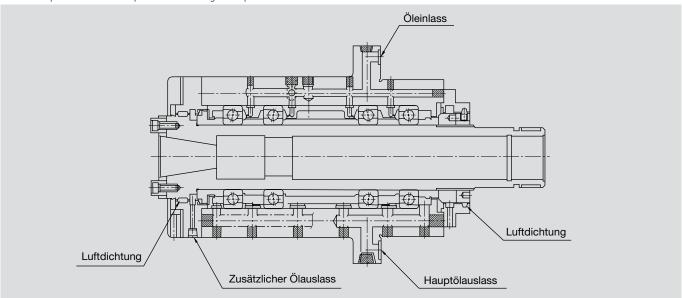
Verteilerrohr für Öl-Luft


- Länge des Verteilerrohrs: 1,5 bis 5 m (empfohlen: 3,5 bis 5 m)
- Innendurchmesser des Verteilerrohrs: 2 bis 2,5 mm (transparentes Urethanrohr mit 4 mm Außendurchmesser usw.)

Nähere Angaben entnehmen Sie bitte der vom Hersteller Ihrer Schmiervorrichtung bereitgestellten Bedienungsanleitung.

Tabelle 6.3 Erforderliche Viskosität des Schmieröls je Lagerbauart

Lagerbauart	Kinematische Viskosität während des Betriebs
Kugellager, Zylinderrollenlager	13 cSt oder höher
Kegelrollenlager	20 cSt oder höher


Abb. 6.3 Empfohlene Ölmenge je Bohrungsdurchmesser eines Wälzlagers (Öl-Minimalschmierung)

(2) Öleinspritzschmierung

Die Öleinspritzschmierung findet hauptsächlich bei schnelllaufenden Lagern mit $d_{\rm m}n$ -Werten von über $1,0\times 10^6$ Anwendung. Durch eine oder mehrere Düsen wird das Schmieröl mit gleichbleibendem Druck in das Lager eingespritzt. In Anwendungen mit hohen Drehzahlen wird die Luft um ein Lager mitgerissen und bildet eine Wand aus Luft. Die Geschwindigkeit des Strahls aus jeder Düse muss mindestens 20 % höher sein als die Umfangsgeschwindigkeit an der Außenfläche des Innenrings. Um Lager und Welle gleichmäßig herunterzukühlen, ist es vorteilhaft, die Anzahl der Düsen zu erhöhen. Auch eine Vergrößerung der Ölauslassöffnung oder eine Zwangsableitung sollten in Betracht gezogen werden, um die Wärmeabfuhr zu verbessern. Obwohl dadurch die Abmessungen der Ausrüstung zunehmen, wird diese Methode in einigen Anwendungen bei Spindellagern für Werkzeugmaschinen verwendet, um einen stabilen Betrieb bei ultrahohen Drehzahlen zu ermöglichen (siehe Abb. 6.5). Angaben zur Position der Schmierdüse siehe Seite 242–243.

Abb. 6.5 Spindel mit Öleinspritzschmierung (Beispiel)

Ölmenge bei Zwangsumlaufschmierung

Mithilfe der nachstehenden empirischen Gleichung kann näherungsweise ermittelt werden, wie viel Öl für ein Wälzlager mit Zwangsumlaufschmierung benötigt wird.

$$Q = \frac{0.19 \cdot 10^{-5}}{T_2 - T_1} d \cdot \mu \cdot n \cdot F \text{ (N)} \dots (1)$$

wobei Q: Ölfördermenge (Liter/min)

T₁: Öltemperatur am Öleinlass (°C)

 T_2 : Öltemperatur am Ölauslass (°C)

d: Lagerbohrung (mm)

 μ : Koeffizient für dynamische Reibung (Richtwert, wird nach Lagerbauart bestimmt, siehe Tabelle 6.4)

n: Wälzlagerdrehzahl (min-1)

F: Lagerbelastung (N)

Tabelle 6.4 Koeffizient für dynamische Reibung (Richtwerte)

Koeffizient µ
0,0015
0,0011
0,0010
0,0022
0,0040

Der mit Gleichung (1) errechnete Wert ist lediglich ein Richtwert. Er kann unter Berücksichtigung von Faktoren wie Größeneinschränkungen für die Öleinlass- und Ölauslassbohrung angepasst werden.

Beachten Sie, dass das Ölablassrohr und die Ölauslassbohrung so groß ausgelegt sein müssen, dass es zu keinem Stocken des umlaufenden Öls im Gehäuse kommen kann.

Die mit Gleichung (1) ermittelte Ölmenge ist zu groß für große Wälzlager (Bohrungsdurchmesser von über 200 mm), wenn sie schweren Belastungen ausgesetzt sind. In diesen Fällen sollte ein Wert von etwa 2/3 bis 1/2 des errechneten Werts als Richtwert verwendet werden und der endgültige Wert festgelegt werden, nachdem er an der tatsächlichen Maschine bestätigt wurde.

7. Toleranzen

Die Toleranzen der Hauptabmessungen und die Laufgenauigkeit von NSK Radiallagern entsprechen den Festlegungen in "Accuracies of Rolling Bearings" nach ISO 492/199/582/1132-1 und "Rolling Bearing Tolerances" nach JIS B 1514. Daneben fertigt NSK noch Schrägkugellager in den Genauigkeitsklassen ABEC 5, 7 und 9 gemäß dem Standard 20 der American Bearing Manufacturers Association (ABMA). Tabelle 7.1 und Abb. 7.1 zeigt die Erklärungen der Begriffe für die Laufgenauigkeit und erklärt grob das Messverfahren. Weitere Einzelheiten sind der ISO 5593, dem "Rolling Bearing Vocabulary" nach JIS B 0104 und den "Measuring Methods for Rolling Bearings" nach JIS B 1515 zu entnehmen.

Tabelle 7.1

Laufgenauigkeit		Innenring	Außenring	Messuhr
Rundlauf des Innenrings am zusammengebauten Lager (Radialschlag)	Kia	dreht	steht	А
Rundlauf des Außenrings am zusammengebauten Lager (Radialschlag)	K _{ea}	steht	dreht	А
Planlauf der Innenringseitenfläche zur Laufbahn am zusammengebauten Lager (Axialschlag)	Sin	dreht	steht	B ₁
Planlauf der Außenringseitenfläche zur Laufbahn am zusammengebauten Lager (Axialschlag)	S	steht	dreht	B ₂
Planlauf der Innenringstirnseite zur Bohrung (Seitenschlag)	S	dreht	steht	C
Schwankung der Neigung der Mantellinie zur Bezugsseitenfläche (Seitenschlag)	S	_	dreht	D
Breitenschwankung Wellenscheibe (Gehäusescheibe) zwischen Laufbahn und Rückseite	S _i S _e	Nur die Wellensc Gehäusescheibe		Е

Toleranzen von Radiallagern Innenring

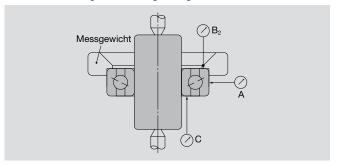
Tabelle 7.2: Innenring Klasse 5

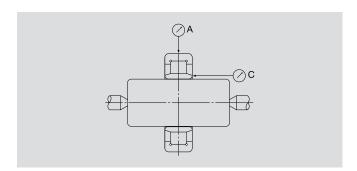
Maßeinheit: μm

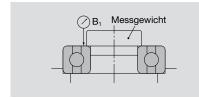
Bohr durchr	ungs- nesser	Abweich mittleren I	iung des Bohrungs-	' ' D !' 1/ (2)		mittleren Bohrungs- des	Radialschlag des	Planlauf des Innenrings	Planlauf der Innenringstirnfläche		ung der Bre inenrings ⊿		Breitenschwankung
(m	d ml		essers in ne Δ_{dmp} (2)	Durchme	sserreihe 0, 2, 3	durchmessers V_{dmp} (2)	Innenrings K_{ia}	zur Bohrung $oldsymbol{\mathcal{S}}_{ ext{d}}$	zur Laufbahn S _{ia} (4)	Einzellager, Sätze, Universalausführung	Einzel- lager	Einzellager, Sätze, Universalausführung	des Innenrings $oldsymbol{V_{Bs}}$
über	bis	oberes	unteres		u, z, s ax	max	max	max	max	oberes		(¹) eres	max
2,5	10	0	- 5	5	4	3	4	7	7	0	- 40	-250	5
10	18	0	- 5	5	4	3	4	7	7	0	- 80	-250	5
18	30	0	- 6	6	5	3	4	8	8	0	- 120	-250	5
30	50	0	- 8	8	6	4	5	8	8	0	- 120	-250	5
50	80	0	- 9	9	7	5	5	8	8	0	- 150	-250	6
80	120	0	-10	10	8	5	6	9	9	0	- 200	-380	7
120	180	0	-13	13	10	7	8	10	10	0	- 250	-380	8
180	250	0	-15	15	12	8	10	11	13	0	- 300	-500	10
250	315	0	-18	18	14	9	13	13	15	0	- 350	-500	13
315	400	0	-23	23	18	12	15	15	20	0	- 400	-630	15

Tabelle 7.3: Innenring Klasse 4

Maßeinheit: µm


Bohru durchn	ungs- nesser		nung des Bohrungs-		Abweichung eines Bohrungsdurchmessers		Bohrungsdurch- adialebene V_{dp} (2)	Schwankung des mittleren Bohrungs-		Innenrings	Planlauf der Innenring-		ung der Bronenrings Z		Breiten- schwankung des
(-		essers in		Ebene	Durchme		durchmessers	Innenrings	zur Bohrung	stirnfläche zur Laufbahn	Einzellager, Sätze,	Einzel-	Einzellager, Sätze, Universalausführung	Innenrings
(m	ımı	einer Eber	ne ⊿ _{dmp} (²)	Δ_d :	₅ (²)	9	0, 2, 3	V _{dmp} (2)	K _{ia}	S _d	S _{ia} (4)	Universalausführung	lager	(1)	V _{Bs}
über	bis	oberes	unteres	oberes	unteres	m	ax	max	max	max	max	oberes	unt	eres	max
2,5	10	0	- 4	0	- 4	4	3	2	2,5	3	3	0	- 40	-250	2,5
10	18	0	- 4	0	- 4	4	3	2	2,5	3	3	0	- 80	-250	2,5
18	30	0	- 5	0	- 5	5	4	2,5	3	4	4	0	-120	-250	2,5
30	50	0	- 6	0	- 6	6	5	3	4	4	4	0	-120	-250	3
50	80	0	- 7	0	- 7	7	5	3,5	4	5	5	0	-150	-250	4
80	120	0	- 8	0	- 8	8	6	4	5	5	5	0	-200	-380	4
120	180	0	-10	0	-10	10	8	5	6	6	7	0	-250	-380	5
180	250	0	-12	0	-12	12	9	6	8	7	8	0	-300	-500	6


- (¹) Gilt für jeden einzelnen Ring bei Lagersätzen und Universalausführung.
- (2) Gilt für Lager mit zylindrischer Bohrung.
- (3) Klasse 3 ist eine Sondergenauigkeitsklasse von NSK. Toleranz des Bohrungs- und Außendurchmessers nach Klasse 4, alle anderen Toleranzen nach Klasse 2.
- (4) Gilt für Kugellager.


Anmerkungen:

- 1. Die oberen Toleranzgrenzen der Bohrung und die unteren Toleranzgrenzen des Außendurchmessers gelten nicht unbedingt im Bereich des 1,2-fachen der Kantenverrundung r(max) an den Stirnflächen.
- 2. Die Toleranzen nach ABMA-Standards ABEC 5, ABEC 7 und ABEC 9 entsprechen den ISO-(JIS)-Klassen 5, 4 und 2. ABMA-Standards gelten nur für Schrägkugellager.

Abb. 7.1: Messungen der Laufgenauigkeit

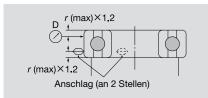


Tabelle 7.4: Innenring Klasse 3 (3)

Maßeinheit: μm

	ungs- nesser		nung des Bohrungs-		ung eines Irchmessers	Schwankung des Bohrungsdurch- messers in einer	Schwankung des mittleren Bohrungs-	Radialschlag des	Planlauf des Innenrings	Planlauf der Innenringstirn-		ung der Bre nenrings ∠		Breiten- schwankung
(m	d m)		essers in ne Δ_{dmp} (2)	in einei ⊿de	Ebene (²)	Radialebene V_{dp} (2)	durchmessers V_{dmp} (2)	Innenrings $oldsymbol{\mathcal{K}}_{ia}$	zur Bohrung $oldsymbol{\mathcal{S}}_{ ext{d}}$	fläche zur Laufbahn S _{ia} (4)	Einzellager, Sätze, Universalausführung	Einzel- lager	Einzellager, Sätze, Universalausführung (¹)	${\color{red} \textbf{des Innenrings}} \\ {\color{red} \textbf{\textit{V}}_{Bs}}$
über	bis	oberes	unteres	oberes	unteres	max	max	max	max	max	oberes	unt	eres	max
2,5	10	0	- 4	0	- 4	2,5	1,5	1,5	1,5	1,5	0	- 40	-250	1,5
10	18	0	- 4	0	- 4	2,5	1,5	1,5	1,5	1,5	0	- 80	-250	1,5
18	30	0	- 5	0	- 5	2,5	1,5	2,5	1,5	2,5	0	-120	-250	1,5
30	50	0	- 6	0	- 6	2,5	1,5	2,5	1,5	2,5	0	-120	-250	1,5
50	80	0	- 7	0	- 7	4	2	2,5	1,5	2,5	0	-150	-250	1,5
80	120	0	- 8	0	- 8	5	2,5	2,5	2,5	2,5	0	-200	-380	2,5
120	150	0	-10	0	-10	7	3,5	2,5	2,5	2,5	0	-250	-380	2,5
150	180	0	-10	0	-10	7	3,5	5	4	5	0	-250	-380	4
180	250	0	-12	0	-12	8	4	5	5	5	0	-300	-500	5

Tabelle 7.5: Innenring Klasse 2

Maßeinheit: µm

Bohr durchr	ungs- nesser		nung des Bohrungs-	Rohrungsdurchmessers B		Bohrungsdurch- mittleren		Rohrungedurch-		Radialschlag des	Planlauf des Innenrings	Planlauf der Innenringstirn-		ung der Bre nenrings 🛆	Breiten- schwankung
(m	d m)		essers in ne Δ_{dmp} (2)	in einer Ebene ⊿ _{ds} (²)		Radialebene durchmessers V_{dp} (2) V_{dmp} (2)		_{chmessers} Innenrings zur E		fläche zur Laufbahn S _{ia} (4)	Einzellager, Sätze, Universalausführung	Einzel- lager	Einzellager, Sätze, Universalausführung	des Innenrings V_{Bs}	
über	bis	oberes	unteres	oberes	unteres	max	max	max	max	max	oberes	unt	eres	max	
2,5	10	0	-2,5	0	-2,5	2,5	1,5	1,5	1,5	1,5	0	- 40	-250	1,5	
10	18	0	-2,5	0	-2,5	2,5	1,5	1,5	1,5	1,5	0	- 80	-250	1,5	
18	30	0	-2,5	0	-2,5	2,5	1,5	2,5	1,5	2,5	0	-120	-250	1,5	
30	50	0	-2,5	0	-2,5	2,5	1,5	2,5	1,5	2,5	0	-120	-250	1,5	
50	80	0	-4	0	-4	4	2	2,5	1,5	2,5	0	-150	-250	1,5	
80	120	0	-5	0	-5	5	2,5	2,5	2,5	2,5	0	-200	-380	2,5	
120	150	0	-7	0	-7	7	3,5	2,5	2,5	2,5	0	-250	-380	2,5	
150	180	0	-7	0	-7	7	3,5	5	4	5	0	-250	-380	4	
180	250	0	-8	0	-8	8	4	5	5	5	0	-300	-500	5	

Innenring (Klasse 4Y)

Tabelle 7.6 Toleranz von Innenring- Bohrung

Maßeinheit: µm

Bohrungsdurc	hmesser (mm)	Klas	se 4	Klasse 4Y (Mitte der Toleranz)			
über	bis	oberes	unteres	oberes	unteres		
30	50	0	- 6	-1	-3		
50	80	0	- 7	-2	-5		
80	120	0	- 8	-3	-6		
120	150	0	-10	-3	-7		

* Für Lager Bohrung kleiner 30 mm gelten die Werte für 30-50 mm. Die Klasse 4Y ist eine NSK eigene Genauigkeitsklasse bei der die Bohrungs- und Außendurchmessertoleranz auf die Mittellage von P4 eingeengt sind. Alle anderen Toleranzwerte entsprechen P4. Sie wird für Lager in Universalausführung verwendet.

7. Toleranzen

Toleranzen von Radiallagern

Außenring

Tabelle 7.7: Außenring Klasse 5

Maßeinheit: μm

durchn <i>L</i>		mittleren A messers in	nung des ußendurch- einer Ebene	in einer Rad	ußendurchmessers ialebene V_{Dp} sserreihe 0, 2	Schwankung des mittleren Außen- durchmessers V _{Dmp}	Radial- schlag des Außenrings $K_{\rm ea}$	Schwankung der Neigung der Mantellinie zur Bezugsseitenfläche Sn	Planlauf des Außenrings zur Laufbahn S_{ea} (1)	Abweichung der Breite eines Außenrings	Breiten- schwankung des Außenrings V _{Cs}
über	bis	oberes	unteres		ax	max	max	max	max	∆cs	max
6	18	0	- 5	5	4	3	5	8	8		5
18	30	0	- 6	6	5	3	6	8	8		5
30	50	0	- 7	7	5	4	7	8	8	Identisch mit	5
50	80	0	- 9	9	7	5	8	8	10	(⊿ _{Bs}) für	6
80	120	0	-10	10	8	5	10	9	11	den Innenring	8
120	150	0	-11	11	8	6	11	10	13	desselben	8
150	180	0	-13	13	10	7	13	10	14		8
180	250	0	-15	15	11	8	15	11	15	Lagers	10
250	315	0	-18	18	14	9	18	13	18	derselben	11
315	400	0	-20	20	15	10	20	13	20	Lager-	13
400	500	0	-23	23	17	12	23	15	23	bezeichnung	15
500	630	0	-28	28	21	14	25	18	25		18
630	800	0	-35	35	26	18	30	20	30		20

Tabelle 7.8: Außenring Klasse 4

Maßeinheit: μm

L	nesser	mittlerer durchme einer	nung des n Außen- essers in Ebene	einzelne durchn	ung eines n Außen- nessers	Schwankung des Ar in einer Radi Diamete	alebene $oldsymbol{V_{Dp}}$	Schwankung des mittleren Außendurch- messers V _{Dmp}	Radial- schlag des Außenrings $K_{\rm ea}$	Schwankung der Neigung der Mantellinie zur Bezugsseiten- fläche Sn	Planlauf des Außenrings zur Laufbahn S_{ea} (1)	Abweichung der Breite eines Außenrings	Breiten- schwankung des Außen- rings V _{Cs}
über	bis	oberes	unteres	oberes	unteres	m.		max	max	max	max	$arDelta c_{s}$	max
	18	0	,	ODCICS	,	,	3	2	3	,	5		
- 6		-	- 4	U	- 4	4	3		3	4			2,5
18	30	0	- 5	0	- 5	5	4	2,5	4	4	5		2,5
30	50	0	- 6	0	- 6	6	5	3	5	4	5	Identisch mit	2,5
50	80	0	- 7	0	- 7	7	5	3,5	5	4	5	(⊿ _{Rs}) für	3
80	120	0	- 8	0	- 8	8	6	4	6	5	6		4
120	150	0	- 9	0	- 9	9	7	5	7	5	7	den Innenring	5
150	180	0	-10	0	-10	10	8	5	8	5	8	desselben	5
180	250	0	-11	0	-11	11	8	6	10	7	10	Lagers	7
250	315	0	-13	0	-13	13	10	7	11	8	10		7
315	400	0	-15	0	-15	15	11	8	13	10	13		8

⁽¹) Gilt für Kugellager.

- Anmerkungen: 1. Die oberen Toleranzgrenzen der Bohrung und die unteren Toleranzgrenzen des Außendurchmessers gelten nicht innerhalb eines Abstandes von 1,2-mal (r max.) von der Ringstirnfläche.
 - 2. Die Toleranzen nach ABMA-Standards ABEC 5, ABEC 7 und ABEC 9 entsprechen den ISO-(JIS)-Klassen 5, 4 und 2. ABMA-Standards gelten nur für Schrägkugellager.

⁽²⁾ Klasse 3 ist eine Sondergenauigkeitsklasse von NSK. Toleranz des Bohrungs- und Außendurchmessers nach Klasse 4, alle anderen Toleranzen nach Klasse 2.

Tabelle 7.9: Außenring Klasse 3 (2)

Maßeinheit: μm

durchr	Gen- messer D nm)	mittlerer durchme einer	nung des n Außen- essers in Ebene	einzelne durchm	ung eines n Außen- nessers	Schwankung des Außendurch- messers in einer Radialebene $V_{\mathcal{D}_{p}}$	Schwankung des mittleren Außendurch- messers V_{Dmp}	Radial- schlag des Außenrings $K_{\rm ea}$	Schwankung der Neigung der Mantellinie zur Bezugsseiten- fläche S _D	Planlauf des Außenrings zur Laufbahn $S_{\rm ea}$ (1)	Abweichung der Breite eines Außenrings	Breiten- schwankung des Außen- rings V_{Cs}
über	bis	oberes	unteres	oberes	unteres	max	max	max	max	max	∆cs	max
6	18	0	- 4	0	- 4	2,5	1,5	1,5	1,5	1,5		1,5
18	30	0	- 5	0	- 5	4	2	2,5	1,5	2,5		1,5
30	50	0	- 6	0	- 6	4	2	2,5	1,5	2,5	Identisch mit	1,5
50	80	0	- 7	0	- 7	4	2	4	1,5	4	(⊿ _{Bs}) für	1,5
80	120	0	- 8	0	- 8	5	2,5	5	2,5	5		2,5
120	150	0	- 9	0	- 9	5	2,5	5	2,5	5	den Innenring	2,5
150	180	0	-10	0	-10	7	3,5	5	2,5	5	desselben	2,5
180	250	0	-11	0	-11	8	4	7	4	7	Lagers	4
250	315	0	-13	0	-13	8	4	7	5	7		5
315	400	0	-15	0	-15	10	5	8	7	8		7

Tabelle 7.10: Außenring Klasse 2

Maßeinheit: µm

Diam <i>L</i>	Outside neter) m)	mittlerei durchme einer	nung des n Außen- essers in Ebene	einzelne durchm	ung eines n Außen- nessers	Schwankung des Außen- durchmessers in einer Radial- ebene V_{Dp}	Schwankung des mittleren Außendurch- messers V_{Dmp}	Radial- schlag des Außenrings \mathcal{K}_{ea}	Schwankung der Neigung der Mantellinie zur Bezugsseiten- fläche S _D	Planlauf des Außenrings zur Laufbahn $S_{\rm ea}$ (1)	Abweichung der Breite eines Außenrings	Breitenschwankung des Außenrings $V_{\rm Cs}$
über	bis	oberes	unteres	oberes	unteres	max	max	max	max	max	∆cs	max
6	18	0	- 2,5	0	- 2,5	2,5	1,5	1,5	1,5	1,5		1,5
18	30	0	- 4	0	- 4	4	2	2,5	1,5	2,5		1,5
30	50	0	- 4	0	- 4	4	2	2,5	1,5	2,5	Identisch mit	1,5
50	80	0	- 4	0	- 4	4	2	4	1,5	4	(⊿ _{Rs}) für	1,5
80	120	0	- 5	0	- 5	5	2,5	5	2,5	5	_53	2,5
120	150	0	- 5	0	- 5	5	2,5	5	2,5	5	den Innenring	2,5
150	180	0	- 7	0	- 7	7	3,5	5	2,5	5	desselben	2,5
180	250	0	- 8	0	- 8	8	4	7	4	7	Lagers	4
250	315	0	- 8	0	- 8	8	4	7	5	7		5
315	400	0	-10	0	-10	10	5	8	7	8		7

Außenring (Klasse 4Y)

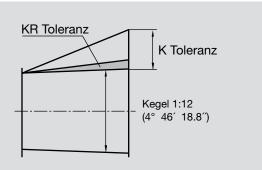
Tabelle 7.11 Toleranz von Außendurchmesser

Maßeinheit: µm

Außendurch	messer (mm)	Klas	se 4	Klasse 4Y (Mitt	e der Toleranz)
über	bis	oberes	unteres	oberes	unteres
30	50	0	- 6	-2	-6
50	80	0	- 7	-2	-6
80	120	0	- 8	-2	-6
120	150	0	- 9	-3	-7
150	180	0	-10	-3	-7
180	200	0	-11	-4	-9
200	215 and less	0	-11	-2	-9

^{*} Für Lager Bohrung kleiner 30 mm gelten die Werte für 30-50 mm. Die Klasse 4Y ist eine NSK eigne Genauigkeitsklasse bei der die Bohrungs- und Außendurchmessertoleranz auf die Mittelwerte eingeengt sind. Im Übrigen entsprechen die Toleranzwerte P4. Sie wird für Lager in Universalausführung verwendet.

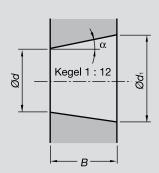
7. Toleranzen


Toleranzen von kegeligen Bohrungen in Zylinderrollenlagern

Die Toleranzen einer kegeligen Bohrung

Die Genauigkeiten der kegeligen Lagerbohrungen ist in DIN bzw. ISO 492 festgelegt. Diese Norm sieht jedoch relativ große Toleranzen vor, da die Toleranzen nur für die Genauigkeitsklasse P0 festgelegt sind.

Für Hochgenauigkeits-Zylinderrollenlager wurde von NSK ein wesentlich engerer Toleranzbereich festgelgt. Wie Abb. 7.2 zeigt, sind im Toleranzbereich nach DIN/ISO zwei Toleranzbereiche von NSK enthalten.

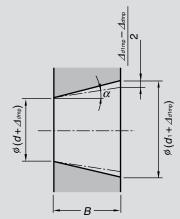

Abb. 7.2: Toleranzen

- K: Die NSK-eigene Toleranz für kegelige Bohrungen hat einen eingeengten Toleranzbereich, der etwa in der Mitte des Toleranzbereichs der ISO-Norm liegt.
 Ab 400mm Bohrungsdurchmesser entspricht die K Toleranz der ISO.
- KR: Die neue Toleranz für kegelige Bohrungen hat einen weiter eingeengten Toleranzbereich, der am unteren Ende des ISO-Standardbereichs liegt. Diese NSK Toleranz ist noch enger gefasst und ermöglichen somit einen einfacheren Einbau.

Abb. 7.3: Toleranzen einer kegeligen Bohrung

Nenndurchmesser der kegeligen Bohrung

d: Nenndurchmesser der Bohrung


 ${\bf d_1}$: theoretischer größter Bohrungsdurchmesser der kegeligen Bohrung

 $d_1 = d + \frac{1}{12}B$

 $\Delta_{
m dmp}$: Abweichung des mittleren Bohrungsdurchmessers in einer Ebene am kleinen Bohrungsdurchmesser

 $\Delta_{ ext{d1mp}}$: Abweichung des mittleren Bohrungsdurchmessers in einer Ebene am großen Bohrungsdurchmesser

kegelige Bohrung mit einer Abweichung des mittleren Bohrungsdurchmessers in einer Ebene der Nenndurchmesser

 V_{dp} : Schwankung des Bohrungsdurchmessers in einer Radialebene

B : Nennbreite des Innenrings

 $\alpha \quad : \quad \text{halber Kegelwinkel der kegeligen} \\ \qquad \qquad \quad \text{Bohrung}$

 $\alpha = 2^{\circ}23'9,4''$

= 2,38594°

= 0,041643 rad

Tabelle 7.12: kegelige Bohrung KR

Maßeinheit: µm

	d (1) im)		dmp		wert] (³) -⊿ _{dmp}	V _{dp} (²)
über	bis	oberes	unteres	oberes	unteres	max
18	30	+ 13	0	+ 3	0	4
30	50	+ 16	0	+ 3	0	5
50	80	+ 19	0	+ 4	0	6
80	120	+ 22	0	+ 5	0	7
120	180	+ 25	0	+ 7	0	9
180	250	+ 29	0	+ 9	0	12
250	315	+ 32	0	+ 11	0	14
315	400	+ 36	0	+ 12	0	16

⁽¹) Angaben zu Wälzlagern mit einer Bohrung > 400 mm erhalten Sie bei NSK.

Tabelle 7.13: kegelige Bohrung K

Maßeinheit: μm

(ı	d mm)	⊿ .	dmp	arDeltad1mp	[—] ⊿dmp	V _{dp} (1)
über	bis	oberes	unteres	oberes	unteres	max
18	30	+ 33	0	+ 21	0	13
30	50	+ 39	0	+ 25	0	16
50	80	+ 46	0	+ 30	0	19
80	120	+ 54	0	+ 35	0	22
120	180	+ 63	0	+ 40	0	40
180	250	+ 72	0	+ 46	0	46
250	315	+ 81	0	+ 52	0	52
315	400	+ 89	0	+ 57	0	57
400	500	+ 97	0	+ 63	0	63
500	630	+ 110	0	+ 70	0	70
630	800	+ 125	0	+ 80	0	_

^[1] Schwankung des Bohrungsdurchmessers in einer Radialebene, die für alle Radialebenen der kegeligen Bohrungen gilt

^[2] Schwankung des Bohrungsdurchmessers in einer Radialebene, die für alle Radialebenen der kegeligen Bohrungen gilt

⁽³⁾ Winkeltoleranz des Kegels, 4°46′18,8′′ $^{+25}$

7. Toleranzen

Toleranzen für Axial-Schrägkugellager

Toleranzen für Hochgeschwindigkeits-Axial-Schrägkugellager für die Bauformen BAR, BTR und TAC2xF (Klasse 4A(¹))

Tabelle 7.14: Innenring Maßeinheit: μm

Bohru durchn c (m	nesser d	Abweich mittl Bohru durchme einer	eren ungs- essers in Ebene	eines ei Bohr durchm	chung nzelnen ungs- nessers	Schwank Bohrung messers Radial V Diamete	sdurch- in einer ebene de r Series	Schwankung des mittleren Bohrungs- durchmessers	Radial- schlag des Innen- rings K_{ia}	Planlauf des Innenrings zur Bohrung S _d			einze Innen ⊿	eines elnen erings
über	bis	oberes	unteres	oberes	unteres	max	0 max	max	max	max	max	max	oberes	Paarungen unteres
ubei		operes	unteres	operes	unteres	IIIdX		IIIdX	IIIdX	IIIdX	IIIdX		operes	
-	50	0	- 6	0	- 6	6	5	3	4	4	4	3	0	-250
50	80	0	- 7	0	- 7	7	5	3.5	4	5	5	4	0	-250
80	120	0	- 8	0	- 8	8	6	4	5	5	5	4	0	-380
120	150	0	-10	0	-10	10	8	5	6	6	7	5	0	-380
150	180	0	-10	0	-10	10	8	5	6	6	7	5	0	-500
180	250	0	-12	0	-12	12	9	6	8	7	8	6	0	-500

Tabelle 7.15: Außenring Maßeinheit: µm

Auß durchn <i>L</i> (m	messer O	des mi Außen mess einer	chung ttleren durch- ers in Ebene	eines ei Außen mes	chung nzelnen durch- sers	Schwanki Außendurd in einer eben Diamete	chmessers Radial- e V Dp	Schwankung des mittleren Außendurch- messers V _{Dmp}		Schwankung der Neigung der Mantel- linie zur Bezugs seitenfläche S _D	zur	Breitenschwankung des Außenrings V_{Cs}	Abweichung der Breite eines einzelnen Außenrings Δcs Lager für Paarungen
über	bis	oberes	unteres	oberes	unteres	max	max	max	max	max	max	max	oberes unteres
	80	-30	-37	-30	-37	7	5	3.5	5	4	5	3	
80	120	-40	-48	-40	-48	8	6	4	6	5	6	4	Identisch mit
120	150	-50	-59	-50	-59	9	7	5	7	5	7	5	(⊿ _{Bs}) für den
150	180	-50	-60	-50	-60	10	8	5	8	5	8	5	Innenring des-
180	250	-50	-61	-50	-61	11	8	6	10	7	10	7	selben Lagers derselben Lager-
250	315	-60	-73	-60	-73	13	10	7	11	8	10	7	bezeichnung
315	400	-60	-80	-60	-80	15	11	8	13	10	13	8	bezeichnung

^[1] NSK Spezifikation. Entspricht ISO-Klasse 4 mit Ausnahme der Außendurchmessertoleranz.

Toleranz von zweireihigen Schrägkugellagern der Bauform (Klasse 7(2)) NSKTAC2xD

Tabelle 7.16: Toleranzen von Innenring, Außenring und Lagerhöhe

Tabelle 7.17: Toleranz des Außenrings Maßeinheit: µm Maßeinheit: µm

								Mabelilliere, pili				illicit. pili
	-	mittleren durchme	nung des Bohrungs- essers in Ebene	tatsäcl Lage	nung der hlichen rhöhe	Radialschlag des Lagerinnenrings (-Außenrings) eingebaut	Planlauf des Innen- rings zur Bohrung	Planlauf der Innen- ring- (Außenring-) Stirnfläche zur Laufbahn	durchr <i>L</i>	Ben- messer D m)	Außen mes	ung eines durch- sers
(111	111)	Δι	dmp			$K_{ia}(K_{ea})$	S_{d}	$S_{ia}(S_{ea})$	über	bis	oberes	unteres
über	bis	oberes	unteres	oberes	unteres	max	max	max	30	50	-25	- 41
_	30	0	- 5	0	- 300	5	4	3	50	80	-30	- 49
30	50	0	- 5	0	- 400	5	4	3	80	120	-36	- 58
50	80	0	- 8	0	- 500	6	5	5	120	180	-43	- 68
80	120	0	- 8	0	- 600	6	5	5	180	250	-50	- 79
120	180	0	-10	0	- 700	8	8	5	250	315	-56	- 88
180	250	0	-13	0	- 800	8	8	6	315	400	-62	- 98
250	315	0	-15	0	- 900	10	10	6	400	500	-68	-108
315	400	0	-18	0	-1 200	10	12	7	500	630	-76	-120

⁽²⁾ NSK Spezifikation

Toleranzen für Axial-Schrägkugellager zum Lagern von Kugelgewindetrieben

Toleranzen für hochsteife Axial-Schrägkugellager (Klasse PN7C(3) der Bauart NSKTACxxC)

Tabelle 7.18: Serie NSKTAC C

Maßeinheit: µm

durchr	nring)	mittleren durchmess Eb	nung des Bohrungs- ers in einer ene	eines ei Bohrung mes	chung nzelnen gsdurch- sers	mittleren A messers in	nung des ußendurch- einer Ebene	einzelnen A mes	ung eines ußendurch- sers	Breite eine Inner	nung der s einzelnen nrings	Planlauf der Innenring(Außen- ring)-Stirnfläche zur Laufbahn S _{ia} (S _{ea})
Über	Bis	Hoch	Niedrig	Hoch	Niedrig	Hoch	Niedrig	Hoch	Niedrig	Hoch	Niedrig	Max.
10	18	0	-4	0	-4	-	-	_	-	0	-120	2,5
18	30	0	-5	0	-5	-	-	-	-	0	-120	2,5
30	50	0	-6	0	-6	0	-6	0	-6	0	-120	2,5
50	80	0	-7	0	-7	0	-7	0	-7	0	-150	2,5
80	120	0	-8	0	-8	0	-8	0	-8	0	-200	2,5

⁽³⁾ NSK-Spezifikation

Toleranzen für Axial-Schrägkugellager für Anwendungen mit hoher Last (Klasse PN5D(4) der Bauarten NSKTAC0xD und NSKTACxx-3)

Tabelle 7.19 NSKTAC03-Serie

Maßeinheit: µm

Bohru durchn (Auße (m	nesser	Bohrungsdu in einer	des mittleren Irchmessers - Ebene	mittleren Auße in einer	oung des ndurchmessers - Ebene		g der Breite en Innenrings	Planlauf der Innenring(Außen- ring)-Stirnfläche zur Laufbahn S _{ia} (S _{ea})
Über	Bis	Hoch	Niedrig	Hoch	Niedrig	Hoch	Niedrig	Max.
10	18	0	- 5	_	-	0	- 80	5
18	30	0	- 6	-	-	0	-120	5
30	50	0	- 8	0	- 7	0	-120	5
50	80	0	- 9	0	- 9	0	-150	8
80	120	0	-10	0	-10	0	-200	8
120	150	0	-13	0	-11	0	-250	10
150	180	0	-13	0	-13	0	-250	10
180	250	-	-	0	-15	-	-	10
250	315	_	-	0	-18	-	-	11
315	400	-	-	0	-20	-	-	13

⁽⁴⁾ NSK-Spezifikation

Toleranzen für zweireihige Wälzlager der BSBD-Serie (Klasse P2B(5) der Bauarten BSF und BSN)

Tabelle 7.20 Zweireihige Wälzlager der BSBD-Serie (Bauart BSF und BSN)

Maßeinheit: μm

	ungs- nesser m)	Abweichung o Bohrungsdu in einer	rchmessers Ebene	mittleren A messers in		Planlauf der Innen- ringstirnfläche zur Laufbahn S _{ia}	Radialschlag des Innenrings $K_{\rm ia}$	Breiten	toleranz
Über	Bis	Hoch	Niedrig	Hoch	Niedrig	Max.	Max.	Hoch	Niedrig
10	18	0	-5	0	-10	1,5	1,5	0	-250
18	30	0	-5	0	-10	2,5	2,5	0	-250
30	50	0	-5	0	-10	2,5	2,5	0	-250
50	80	0	-8	0	-15	2,5	2,5	0	-250

7. Toleranzen

Toleranzen für metrische Kegelrollenlager **Innenring**

Tabelle 7.21 Innenring (Klasse 5)

Maßeinheit: µm

Bohrungsdurchmesser d(mm)		Abweichung des mittleren Bohrungs- durchmessers in einer Ebene ⊿ dmp		Schwankung des Bohrungsdurchmessers in einer Radialebene $oldsymbol{V_{dp}}$	Schwankung des mittleren Bohrungsdurchmessers $V_{d{ m mp}}$	Radialschlag des Innenrings $K_{\rm ia}$	Planlauf des Innen- rings zur Bohrung $S_{\rm d}$
Über	Bis	Hoch	Niedrig	Max.	Max.	Max.	Max.
10	18	0	- 7	5	5	3,5	7
18	30	0	- 8	6	5	4	8
30	50	0	-10	8	5	5	8
50	80	0	-12	9	6	5	8
80	120	0	-15	11	8	6	9
120	180	0	-18	14	9	8	10
180	250	0	-22	17	11	10	11
250	315	0	-25	_	_	13	13
315	400	0	-30	_	_	15	15
400	500	0	-35	_	_	18	19

Tabelle 7.22 Innenring (Klasse 4)

Maßeinheit: µm

Bohru durchn d(m	nesser	Bohrungsdui einer	des mittleren rchmessers in Ebene	Bohrungsdu	ines einzelnen rchmessers	Schwankung des Bohrungsdurchmessers in einer Radialebene $oldsymbol{V}_{dp}$	Schwankung des mittleren Bohrungs- durchmessers V_{dmp}	Radialschlag des Innenrings K_{ia}	Planlauf des Innenrings zur Bohrung S _d	Planlauf der Innen- ringstirnfläche zur Laufbahn \mathcal{S}_{ia}
Über	Bis	Hoch	Niedrig	Hoch	Niedrig	Max.	Max.	Max.	Max.	Max.
10	18	0	- 5	0	- 5	4	4	2,5	3	3
18	30	0	- 6	0	- 6	5	4	3	4	4
30	50	0	- 8	0	- 8	6	5	4	4	4
50	80	0	- 9	0	- 9	7	5	4	5	4
80	120	0	-10	0	-10	8	5	5	5	5
120	180	0	-13	0	-13	10	7	6	6	7
180	250	0	-15	0	-15	11	8	8	7	8
250	315	0	-18	0	-18	_	_	10	8	10
315	400	0	-23	0	-23	_	_	12	10	14
400	500	0	-27	0	-27	_	_	14	13	17

Anmerkungen: 1. Die Grenzen für den Außendurchmesser gelten nicht zwingenderweise innerhalb eines Abstands des 1,2-Fachen der Kantenkürzung r (max.) von der Ringstirnfläche.

2. Einige der Toleranzen beziehen sich auf die von NSK selbst festgelegte Spezifikation.

Außenring

Tabelle 7.23 Außenring (Klasse 5)

Maßeinheit: µm

Außendur <i>D</i> (n	chmesser nm)	Abweichung des mittleren Außendurchmessers in einer Ebene ⊿ Dmp		Schwankung des Außendurchmessers in einer Radialebene $oldsymbol{V_{Dp}}$	Schwankung des mittleren Außendurchmessers V _{Dmp}	Radialschlag des Außenrings K_{ea}	Schwankung der Neigung der Mantellinie zur Bezugsseitenfläche \mathcal{S}_{D}
Über	Bis	Hoch	Niedrig	Max.	Max.	Max.	Max.
18	30	0	- 8	6	5	6	8
30	50	0	- 9	7	5	7	8
50	80	0	-11	8	6	8	8
80	120	0	-13	10	7	10	9
120	150	0	-15	11	8	11	10
150	180	0	-18	14	9	13	10
180	250	0	-20	15	10	15	11
250	315	0	-25	19	13	18	13
315	400	0	-28	22	14	20	13
400	500	0	-33	_	_	23	15
500	630	0	-38	_	_	25	18

Tabelle 7.24 Außenring (Klasse 4)

Maßeinheit: µm

Auß durchr D(n		mittleren A messers in	hung des Lußendurch- einer Ebene		ines einzelnen chmessers	Schwankung des Außendurchmessers in einer Radialebene $oldsymbol{V}_{Dp}$	Schwankung des mittleren Außen- durchmessers V _{Dmp}	Radialschlag des Außen- rings K _{ea}	Schwankung der Neigung der Mantellinie zur Bezugsseitenfläche S _D	Planlauf der Außen- ringstirnfläche zur Laufbahn $S_{\rm ea}$
Über	Bis	Hoch	Niedrig	Hoch	Niedrig	Max.	Max.	Max.	Max.	Max.
18	30	0	- 6	0	- 6	5	4	4	4	5
30	50	0	- 7	0	- 7	5	5	5	4	5
50	80	0	- 9	0	- 9	7	5	5	4	5
80	120	0	-10	0	-10	8	5	6	5	6
120	150	0	-11	0	-11	8	6	7	5	7
150	180	0	-13	0	-13	10	7	8	5	8
180	250	0	-15	0	-15	11	8	10	7	10
250	315	0	-18	0	-18	14	9	11	8	10
315	400	0	-20	0	-20	15	10	13	10	13
400	500	0	-23	0	-23	_	_	15	11	15
500	630	0	-28	0	-28	_	_	18	13	18

Anmerkungen: 1. Die in dieser Tabelle für die "Schlechtseite" spezifizierte Toleranzgrenze (hoch) für den Durchmesser der zylindrischen Bohrung gilt nicht zwingenderweise innerhalb eines Abstands des 1,2-Fachen der Kantenkürzung r (max.) von der Ringstirnfläche.

2. Einige der Toleranzen beziehen sich auf die von NSK selbst festgelegte Spezifikation.

Toleranzen für Axialkugellager Wellenscheibe

Tabelle 7.25 Wellenscheibe (Klasse 5)

Maßeinheit: μm

Bohrungsdurchmesser d(mm)		Abweichung des mittleren Bohrungs- durchmessers in einer Ebene \$\triangle dmp\$		Schwankung des Bohrungsdurchmessers in einer Radialebene $oldsymbol{V_{dp}}$	Breitenschwankung Wellenscheibe (Gehäusescheibe) zwischen Laufbahn und Rückseite $S_{\rm i}$ ($S_{\rm e}$)		
Über	Bis	Hoch	Niedrig	Max.	Max.	Hoch	Niedrig
18	30	0	- 10	8	3	0	- 75
30	50	0	- 12	9	3	0	-100
50	80	0	- 15	11	4	0	-125
80	120	0	- 20	15	4	0	-150
120	180	0	- 25	19	5	0	-175
180	250	0	- 30	23	5	0	-200
250	315	0	- 35	26	7	0	-225
315	400	0	- 40	30	7	0	-300
400	500	0	- 45	34	9	0	-350
500	630	0	- 50	38	11	0	-450
630	800	0	- 75	_	13	0	-550
800	1 000	0	-100	_	15	0	-700
1 000	1 250	0	-125	_	18	0	-900

Tabelle 7.26 Wellenscheibe (Klasse 4)

Maßeinheit: μm

Bohrungsdurchmesser d(mm)		Abweichung des mittleren Bohrungs- durchmessers in einer Ebene \$\triangle dmp\$		Schwankung des Bohrungsdurchmessers in einer Radialebene $oldsymbol{V_{dp}}$	Breitenschwankung Wellenscheibe (Gehäusescheibe) zwischen Laufbahn und Rückseite $S_{\rm i} \left(S_{\rm e} \right)$	aufbahn und Rückseite der Wälzl	
Über	Bis	Hoch Niedrig		Max.	Max.	Hoch	Niedrig
18	30	0	- 8	6	2	0	- 75
30	50	0	- 10	8	2	0	- 100
50	80	0	- 12	9	3	0	- 125
80	120	0	- 15	11	3	0	- 150
120	180	0	- 18	14	4	0	- 175
180	250	0	- 22	17	4	0	- 200
250	315	0	- 25	19	5	0	- 225
315	400	0	- 30	23	5	0	- 300
400	500	0	- 35	26	6	0	- 350
500	630	0	- 40	30	7	0	- 450
630	800	0	- 50	_	8	0	- 550

Gehäusescheibe

Tabelle 7.27 Gehäusescheibe (Klasse 5) Maßeinheit: µm

Außen- durchmesser $D(\text{mm})$ Abweichung des mittleren Außen- durchmessers in einer Ebene ΔD_{mp} Schwankung des Außendu messers in einer Radialei V_{Dp}	
Üben Die Heeb Mindele Men	
Über Bis Hoch Niedrig Max.	
30 50 0 - 16 12	
50 80 0 – 19 14	
80 120 0 – 22 17	
120 180 0 – 25 19	
180 250 0 - 30 23	
250 315 0 – 35 26	
315 400 0 - 40 30	
400 500 0 - 45 34	
500 630 0 - 50 38	
630 800 0 - 75 55	
800 1 000 0 -100 75	
1 000 1 250 0 -120 -	
<u> 1 250 1 600 0 -160 — </u>	

Tabelle 7.28 Gehäusescheibe (Klasse 4)

Maßeinheit: µm

Außen- durchmesser <i>D</i> (mm)			in einer Ebene	Schwankung des Außendurchmessers in einer Radialebene $oldsymbol{V_{Dp}}$
Über	Bis	Hoch	Niedrig	Max.
30	50	0	- 9	7
50	80	0	-11	8
80	120	0	-13	10
120	180	0	-15	11
180	250	0	-20	15
250	315	0	-25	19
315	400	0	-28	21
400	500	0	-33	25
500	630	0	-38	29
630	800	0	-45	34

8. Ausführung von Welle und Gehäuse

Wellen- und Gehäusepassung

Ein Hochgenauigkeitslager muss sorgfältig an Welle und Gehäuse angepasst sein, damit im Betrieb die Eigenschaften wie Rundlaufgenauigkeit, hohe Drehzahleignung und geringe Eigenerwärmung auch vollständig ausgeschöpft werden. Wenn ein Lager mit Übermaß auf der Welle oder im Gehäuse sitzt, überträgt sich die Form von Welle oder Gehäuse und eine eventuelle Unrundheit natürlich auf die Lagerringe und damit auch auf die Laufbahnen. Dadurch leidet die Laufgenauigkeit. Beim Paaren von Lagern beeinflusst die Zylindrizität der Ringe die Verteilung der Vorspannung zwischen den Lagern. Alle Passflächen müssen daher so genau wie möglich bearbeitet sein.

Unzureichend ausgewählte Lagersitze können auf der Welle Riefen und Markierungen, sogenannte Fressspuren verursachen, welche in letzter Folge die Oberflächengüte des zu bearbeitenden Werkstücks beeinträchtigen können. In den Tabellen 8.1 bis 8.4 sind empfohlene Werte für Passungen für Wälzlager aufgeführt, die unter Standardbedingungen und mit Drehzahlen von weniger als $800\,000\,d_{\rm m}n$ betrieben werden (die Tabellen 8.1 und 8.2 beziehen sich auf Spindellagerungen für Werkzeugmaschinen, die Tabellen 8.3 und 8.4 auf Stützlager für Kugelgewindetriebe).

Für Axial-Zylinderrollenlager und Axialkugellager empfehlen wir die Wellenpassung h6 und die Gehäusepassung G7 als Zielvorgabe. Spielpassungen werden üblicherweise sowohl für die Wellenscheibe als auch für die Gehäusescheibe verwendet. Allerdings sind insbesondere bei Axialkugellagern, bei denen beide Scheiben mit der Welle fluchten müssen, enge Toleranzen innerhalb des zulässigen Bereichs vorzuziehen.,

Tabelle 8.1: Wellenpassungen

Lagor	Außendurchmess	er der Welle (mm)	Toleranz des Wellenauf	Bendurchmessers (mm)	anzustrebendes Übermaß(¹)(²) (mm)		
Lager	über	bis	min.	max.	min.	max.	
	10	18	-0,003	0	0	0,002T	
	18	50	-0,004	0	0	0,003T	
	50	80	-0,005	0	0	0,003T	
C : 1 !!	80	120	-0,003	0,003	0	0,004T	
Spindellagerungen für Werkzeugmaschinen	120	180	-0,004	0,004	0	0,006T	
Werkzeagmasemmen	180	250	-0,005	0,005	0	0,008T	
	250	315	-0,008	0,008	0	0,010T	
	315	400	-0,009	0,009	0	0,013T	
	400	500	-0,010	0,010	0	0,015T	

⁽¹⁾ Verwenden Sie den Wert für das anzustrebende Übermaß, wenn das Lager mit der Welle oder dem Gehäuse zusammengepasst werden kann. Anderenfalls verwenden Sie den Wellenaußendurchmesser und die Minimum- und Maximumwerte für die Gehäusebohrung, um beliebige Paarungen herzustellen.

⁽²⁾ T = Festsitz oder Presssitz, L = Spielpassung oder loser Sitz

Tabelle 8.2: Gehäusepassungen

	Gehäusebohrungso	durchmesser (mm)	Toleranz der Geh	äusebohrung (mm)	Anzustrebendes Übermaß (1)(2) (mm)	
Lagerbauart	Über	Bis	Min.	Max.	Min.	Max.
	18	50	-0,002	0,002	0,002L	0,005L
	50	80	-0,0025	0,0025	0,002L	0,005L
	80	120	-0,003	0,003	0,002L	0,006L
	120	180	-0,004	0,004	0,003L	0,009L
Schrägkugellager	180	250	-0,005	0,005	0,004L	0,012L
(Festlager)	250	315	-0,006	0,006	0,005L	0,015L
	315	400	-0,007	0,007	0,007L	0,02L
	400	500	-0,008	0,008	0,008L	0,023L
	500	630	-0,008	0,008	0,008L	0,024L
	630	800	-0,009	0,009	0,009L	0,027L
	50	80	-0,005	0	0,025L	0,037L
	80	120	-0,007	0	0,033L	0,047L
	120	150	-0,008	0	0,042L	0,059L
Axial-Schrägkugellager	150	180	-0,011	0	0,039L	0,059L
(bei Verwendung mit	180	250	-0,012	0	0,038L	0,061L
Radiallagern)	250	315	-0,013	0	0,047L	0,073L
	315	400	-0,015	0	0,045L	0,080L
	400	500	-0,016	0	0,054L	0,091L
	500	630	-0,018	0	0,052L	0,094L
	18	50	0,004	0,007	0,006L	0,009L
	50	80	0,005	0,008	0,007L	0,01L
	80	120	0,006	0,010	0,008L	0,012L
	120	180	0,008	0,014	0,011L	0,017L
Schrägkugellager	180	250	0,010	0,018	0,014L	0,022L
(Loslager)	250	315	0,012	0,022	0,017L	0,027L
	315	400	0,013	0,026	0,021L	0,034L
	400	500	0,015	0,030	0,024L	0,039L
	500	630	0,016	0,032	0,026L	0,042L
	630	800	0,018	0,036	0,031L	0,049L
	50	80	-0,005	0	0,002L	0,002T
	80	120	-0,007	0	0,002L	0,002T
	120	180	-0,008	0	0,003L	0,003T
7.1. 1. 1. 1	180	250	-0,011	0	0,004L	0,004T
Zylinderrollenlager, Kegelrollenlager (³)	250	315	-0,012	0	0,005L	0,005T
Negenonemager ()	315	400	-0,013	0	0,007L	0,007T
	400	500	-0,015	0	0,008L	0,008T
	500	630	-0,016	0	0,008L	0,008T
	630	800	-0,018	0	0,009L	0,009T

⁽¹⁾ Verwenden Sie den Wert für das anzustrebende Übermaß, wenn das Lager mit der Welle oder dem Gehäuse zusammengepasst werden kann. Anderenfalls verwenden Sie den Wellenaußendurchmesser und die Minimum- und Maximumwerte für die Gehäusebohrung, um beliebige Paarungen herzustellen.

^[2] T = Festsitz oder Presssitz, L = Spielpassung oder loser Sitz

 $[\]left[^{3}\right]$ Nur anwendbar, wenn der Außenring separat in das Gehäuse eingesetzt wird.

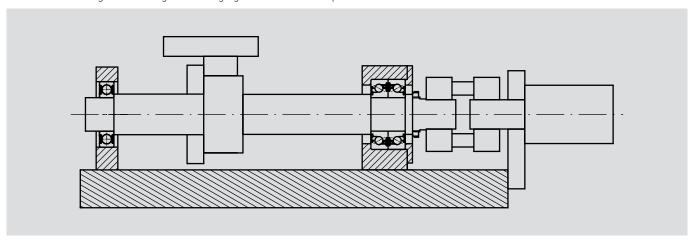
8. Ausführung von Welle und Gehäuse

In den Tabellen 8.3 und 8.4 sind empfohlene Werte für Passungen bei Standardbetriebsbedingungen von Kugelgewindetrieben aufgeführt.

Bei Verwendung von Axial-Schrägkugellagern als Stützlager für hochbelastete Kugelgewindetriebe ist es in Fällen, in denen ein Wellenende abgestützt wird und die Momentenbelastungen hoch sind, empfehlenswert, bei Bedarf einen höheren Festsitz, beispielsweise k5, zu wählen.

Stellen Sie bei Anwendungen, bei denen höchste Genauigkeit gefordert ist, während Konstruktion und Montage Folgendes sicher: Der Fluchtungsfehler der Neigung soll unter 1/2 000 rad liegen (Soll: unter 1/5 000 rad).

Die Exzentrizität soll unter 0,020 mm liegen.


Tabelle 8.3 Wellenpassungen

Lawanhawant	Wellenaußendu	rchmesser (mm)	Toleranz des Wellenaußendurchmessers (mm)			
Lagerbauart	Über	Bis		Min.	Max.	
	10	18	h5	-0,008	0	
Axial-Schrägkugellager	18	30		-0,009	0	
zum Lagern von Kugelgewindetrieben in	30	50		-0,011	0	
Werkzeugmaschinen	50	80		-0,013	0	
J	80	120		-0,015	0	
	10	18		-0,004	0,004	
zum Lagern von	18	30		-0,0045	0,0045	
Kugelgewindetrieben in	30	50	js5	-0,0055	0,0055	
Anwendungen mit hoher	50	80		-0,0065	0,0065	
Last	80	120		-0,0075	0,0075	

Tabelle 8.4 Passungen bei Gehäusen

Lagorhauart	Gehäusebohrungs	durchmesser (mm)	Toleranz des Gehäusebohrungsdurchmessers (mm)			
Lagerbauart	Über	Bis		Min.	Max.	
	30	50	Н6	0	0,016	
	50	80		0	0,019	
Axial-Schrägkugellager	80	120		0	0,022	
zum Lagern von Kugelgewindetrieben	120	180		0	0,025	
	180	250		0	0,029	
	250	315		0	0,032	

Abb. 8.1 Anordnung von Stützlagern für Kugelgewindetriebe (Beispiel)

In den nachstehenden Tabellen sind die empfohlene Genauigkeit und Oberflächenrauheit für Lagersitze in Anwendungen mit Werkzeugmaschinenspindeln aufgeführt.

Wenn bei Zylinderrollenlagern mit kegeliger Bohrung der Kegel des Innenrings nicht zum Kegel der Welle passt, führt der Fluchtungsfehler der Innenringlaufbahn zu einer unregelmäßigen Bewegung der Rollen. Bei zweireihigen Zylinderrollenlagern verbleibt ein unterschiedliches Restlagerspiel zwischen den Reihen. In der Folge wird die Last nicht gleichmäßig aufgenommen und die Steifigkeit nimmt ab.

Wir empfehlen Ihnen, die kegeligen Teile, die mit den Wälzlagern zusammengepasst werden sollen, zu messen. In einem Bereich von über 80 % der gesamten Fläche sollte es zu einer Berührung kommen,

und sich somit auch bei der Messung wiederspiegeln. Auf Seite 250 finden sich eine Beschreibung und nähere Angaben zum Messen von Wellenkegeln.

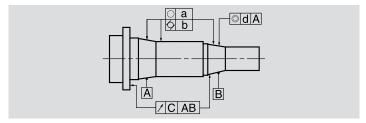
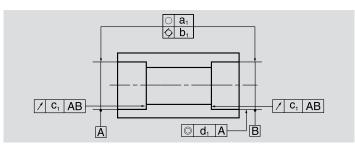
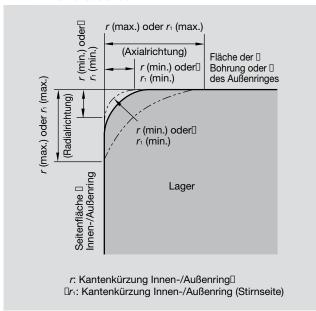


Tabelle 8.5 Toleranz und Mittenrauwert von Wellen

		Toleranzen und Mittenrauwert (µm)										
Wellendur	Wellendurchmesser (mm)		heit (0)	Zylindrizität (⁄⁄⁄)	Planla	auf (⁄)	Koaxia	lität (©)	Rauheit			
(m			3	b	(С		d	R _a			
		Lagergenauigkeit		Lagergenauigkeit	Lagerge	nauigkeit	Lagerge	nauigkeit	Lagergenauigkeit			
Über	Bis	P5	P4,P3,P2	Alle Genauigkeitsklassen	P5	P4,P3,P2	P5	P4,P3,P2	Alle Genauigkeitsklassen			
_	10	0,7	0,5	0,7	2	1,2	4	2,5	0,2			
10	18	1	0,6	1	2,5	1,5	5	3	0,2			
18	30	1,2	0,7	1,2	3	2	6	4	0,2			
30	50	1,2	0,7	1,2	3,5	2	7	4	0,2			
50	80	1,5	1	1,5	4	2,5	8	5	0,2			
80	120	2	1,2	2	5	3	10	6	0,4			
120	180	2,5	1,7	2,5	6	4	12	8	0,4			
180	250	3,5	2,2	3,5	7	5	14	10	0,4			
250	315	4	3	4	8	6	16	12	0,4			
315	400	4,5	3,5	4,5	9	6,5	18	13	0,8			
400	500	5	4	5	10	7,5	20	15	0,8			




Tabelle 8.6 Toleranzen und Mittenrauwert von Gehäusen

0.1		Toleranzen und Mittenrauwert (µm)										
	Gehäusebohrungs- durchmesser (mm)		heit (O)	Zylindrizität (⟨♀) Planlauf (╭)			Koaxia	lität (©)	Rauheit			
			11	b ₁	(1	C	i ₁	R _a			
·			nauigkeit	Lagergenauigkeit Lagergenauigkeit		Lagerge	nauigkeit	Lagergenauigkeit				
Über	Bis	P5	P4,P3,P2	Alle Genauigkeitsklassen	P5	P4,P3,P2	P5	P4,P3,P2	Alle Genauigkeitsklassen			
10	18	1	0,6	1	2,5	1,5	5	3	0,4			
18	30	1,2	0,7	1,2	3	2	6	4	0,4			
30	50	1,2	0,7	1,2	3,5	2	7	4	0,4			
50	80	1,5	1	1,5	4	2,5	8	5	0,4			
80	120	2	1,2	2	5	3	10	6	0,8			
120	180	2,5	1,7	2,5	6	4	12	8	0,8			
180	250	3,5	2,2	3,5	7	5	14	10	0,8			
250	315	4	3	4	8	6	16	12	1,6			
315	400	4,5	3,5	4,5	9	6,5	18	13	1,6			
400	500	5	4	5	10	7,5	20	15	1,6			
500	630	5,5	4,5	5,5	11	8	22	16	1,6			
630	800	6,5	5	6,5	12,5	9	25	18	1,6			

8. Ausführung von Welle und Gehäuse

Grenzwerte der Kantenabstände und Eckenradien an Welle und Gehäuse

Abb. 8.2: Kantenabstände

Anmerkungen: Die genaue Form der Radien ist nicht festgelegt, aber das Profil in der Axialebene darf einen Bogen mit Radius r (min.) oder r_1 (min.) nicht unterschreiten, der zwischen der Stirnfläche des Innenrings und der Bohrung bzw. der Stirnfläche des Außenrings und der Mantelfläche des Außenrings liegt.

Tabelle 8.7 Grenzmaße für Kantenkürzung bei Radiallagern (ohne Kegelrollenlager)

Tabelle 8.8 Grenzmaße für Kantenkürzung bei Kegelrollenlagern

ung bei Tabelle 8.9 Grenzmaße für Kantenkürzung bei Axiallagern ßeinheit: mm Maßeinheit: mm

Maßeinheit: mm

Bohrungsdurchmesser oder
de Außendurchmesser

Maßeinheit: mm

Bezugswert
Abrundungsradius von
Welle oder Gehäuse

Maßeinheit: mm

Bezugswert

Kleinste
zulässige
KantenKürzung

KantenKürzung

Maßeinheit: mm									
Kleinste	Bohru			zulässige ikürzung	Bezugswert				
zulässige Kanten- kürzung	dur mes	ser	r (ma	x.) oder max.)	Abrundungsradius von Welle oder Gehäuse r _a				
r (min.) oder r ₁ (min.)	Über	Bis	Radial- richtung	Axial- richtung (¹)	Max.				
0,15	_	_	0,3	0,6	0,15				
0,3	_	40	0,6	1	0,3				
0,3	40	_	0,8	1	0,3				
0,6	_	40	1	2	0,6				
0,6	40	_	1,3	2	0,6				
1	_	50	1,5	3	1				
1	50	_	1,9	3	1				
1,1	_	120	2	3,5	1				
1,1	120	_	2,5	4	1				
1,5	_	120	2,3	4	1,5				
1,5	120		3	5	1,5				
2	_	80	3	4,5	2				
2	80	220	3,5	5	2				
2	220	_	3,8	6	2				
2,1	_	280	4	6,5	2				
2,1	280	_	4,5	7	2				
2,5	_	100	3,8	6	2				
2,5	100	280	4,5	6	2				
2,5	280		5	7	2				
3	_	280	5	8	2,5				
3	280	_	5,5	8	2,5				
4	_	_	6,5	9	3				
5		_	8	10	4				
6	_	_	10	13	5				

Kleinste zulässige Kanten- kürzung	Bohrung messe Außend mes d o	r oder durch- ser	Kanter	zulässige nkürzung max.)	Bezugswert Abrundungsradius von Welle oder Gehäuse \mathbf{r}_{a}		
r (min.)	Über	Bis	Radial- Axial- richtung richtung (¹)		Max.		
0,6	_	40	1,1	1,7	0,6		
0,6	40	_	1,3	2	0,6		
1	_	50	1,6	2,5	1		
1	50	-	1,9	3	1		
1,5	- 1	120	2,3	3	1,5		
1,5	120	250	2,8	3,5	1,5		
1,5	250	_	3,5	4	1,5		
2	_	120	2,8	4	2		
2	120	250	3,5	4,5	2		
2	250	_	4	5	2		
2,5		120	3,5	5	2		
2,5	120	250	4	5,5	2		
2,5	250	_	4,5	6	2		
3	_	120	4	5,5	2,5		
3	120	250	4,5	6,5	2,5		
3	250	400	5	7	2,5		
3	400	_	5,5	7,5	2,5		
4	_	120	5	7	3		
4	120	250	5,5	7,5	3		
4	250	400	6	8	3		
4	400	_	6,5	8,5	3		
5	_	180	6,5	8	4		
5	180	_	7,5	9	4		
6	_	180	7,5	10	5		
6	180	_	9	11	5		

Abrundungsradius von Welle oder Gehäuse kürzung kürzung r_a r (max.) r (min.) Radial- und Max. oder r₁ (min.) Axialrichtung 0,6 1,5 0,6 2,2 2,7 1,1 1 1,5 3,5 1,5 2 4 2 2,1 4,5 2 3 5,5 2,5 4 6,5 3 5 8 4 10 5 6 7,5 12,5 6 15 8 12 18 10 15 21 12 19 25 15

Bezugswert

^[1] Für Innenringkantenkürzung den Wert für d in den Spalten "Über" bzw. "Bis" ermitteln; für Außenringkantenkürzung den Wert für D in den Spalten "Über" bzw. "Bis" ermitteln.

Abmessungen der Zwischenringe

Die Abmessungen der Zwischenringe für offene Schrägkugellager (Serie 19, 29, 10, 20 und 02) in der Standardausführung sind nachstehend aufgeführt.

Zusätzliche Angaben:

Werkstoff des Zwischenrings: Wälzlagerstahl oder Kohlenstoffstahl

Bei der Verwendung von Zwischenringen sollte die Parallelität der Zwischenringseitenflächen den folgenden Vorgaben entsprechen:
Weniger als 0,003 mm (für Zwischenringe mit Bohrungsdurchmesser bis 300 mm)
Weniger als 0,004 mm (für Zwischenringe mit Bohrungsdurchmesser > 300 mm)

Serie 19 oder 29

Zwischenringe in der Standardausführung für Maßreihe 19 oder 29 (79, BNR19, BER19, BNR29, BER29, BSR19)

Maßeinheit: mm

Bohrungs-	Durchmesser	Wälzlageraußen-	Zwischenring f	ür Außenring	Zwischenring	für Innenring	Kantenkürzung	
kennzahl	Wälzlagerbohrung d	durchmesser D	Außendurchmesser (1)	Bohrung	Außendurchmesser	Bohrung (²)	des Zwischenring	
00	10	22	21,5	17,5	14,5	10,5	0,2	
01	12	24	23,5	19,5	16,5	12,5	0,2	
02	15	28	27,5	23,5	19,5	15,5	0,2	
03	17	30	29,5	25,5	21,5	17,5	0,2	
04	20	37	36,5	31,5	26	20,5	0,2	
05	25	42	41,5	36	31	25,5	0,2	
06	30	47	46,5	41	36	30,5	0,2	
07	35	55	54,5	48	42	35,5	0,3	
08	40	62	61,5	54,5	47,5	40,5	0,3	
09	45	68	67,5	60	53	45,5	0,3	
10	50	72	71,5	66	56	50,5	0,3	
11	55	80	79,5	72	64	55,5	0,5	
12	60	85	84,5	77	68	60,5	0,5	
13	65	90	89,5	82	73	65,5	0,5	
14	70	100	99,5	91,5	79	70,5	0,5	
15	75	105	104,5	96,5	84	75,5	0,5	
16	80	110	109,5	101,5	89,5	80,5	0,5	
17	85	120	119,5	110	95	85,5	0,5	
18	90	125	124,2	116	100	90,5	0,5	
19	95	130	129,2	120	106	95,5	0,5	
20	100	140	139,2	129	112	100,5	0,5	
21	105	145	144,2	133	117	105,5	0,5	
22	110	150	149,2	138	122	110,5	0,5	
24	120	165	164,2	152	133	120,5	0,5	
26	130	180	179,2	166	144	130,8	0,8	
28	140	190	189,2	176	154	140,8	0,8	
30	150	210	209,2	193	167	150,8	1,0	
32	160	220	219,2	203	175	160,8	1,0	
34	170	230	229,2	214	188	170,8	1,0	
36	180	250	249,2	231	200	180,8	1,0	
38	190	260	259,2	242	206	190,8	1,0	
40	200	280	279,2	255	225	200,8	1,0	
44	220	300	299,2	275	245	220,8	1,2	
48	240	320	319,2	297	263	240,8	1,2	
52	260	360	359,2	322	290	260,8	1,2	
56	280	380	379,2	348	312	280,8	1,2	
60	300	420	419,2	386	335	300,8	1,2	
64	320	440	439,2	400	360	320,8	1,2	
68	340	460	459,2	425	375	340,8	1,2	
72	360	480	479,2	441	399	360,8	1,2	
76	380	520	519,2	475	425	380,8	1,5	
80	400	540	539,2	494	446	400,8	1,5	

⁽¹⁾ In Lagern mit Ölnebelschmierung oder Öleinspritzschmierung empfehlen wir, dass der Außendurchmesser des Zwischenrings am Außenring gleich dem Außendurchmesser des Lagers ist; hierbei sollte eine Toleranz von g5 oder besser angesetzt werden.

⁽²) Bei hohen Drehzahlen von mehr als 700 000 d_mn empfehlen wir, dass der Bohrungsdurchmesser des Zwischenrings am Innenring gleich dem Bohrungsdurchmesser des Lagers ist; hierbei sollte eine Toleranz von F6 oder besser angesetzt werden.

9. Zwischenringe

Zusätzliche Angaben:

Werkstoff des Zwischenrings: Wälzlagerstahl oder Kohlenstoffstahl

Bei der Verwendung von Zwischenringen sollte die Parallelität der Zwischenringseitenflächen den folgenden Vorgaben entsprechen:

Weniger als 0,003 mm (für Zwischenringe mit Bohrungsdurchmesser bis 300 mm)

Weniger als 0,004 mm (für Zwischenringe mit Bohrungsdurchmesser > 300 mm)

Serie 10 oder 20

Zwischenringe in der Standardausführung für Maßreihe 10 oder 20 [70, BNR10, BER10, BNR20, BER20, BSR10]

Maßeinheit: mm

Bohrungs-	Durchmesser	Wälzlageraußen-	Zwischenring f	für Außenring	Zwischenring	für Innenring	Kantenkürzung des Zwischenrings	
kennzahl	Wälzlagerbohrung d	durchmesser D	Außendurchmesser (1)	Bohrung	Außendurchmesser	Bohrung (²)		
00	10	26	25,5	21,5	14,5	10,5	0,2	
01	12	28	27,5	23,5	17	12,5	0,2	
02	15	32	31,5	27	20	15,5	0,2	
03	17	35	34,5	29,5	23	17,5	0,2	
04	20	42	41,5	35	27	20,5	0,3	
05	25	47	46,5	40,5	32	25,5	0,3	
06	30	55	54,5	47,5	38	30,5	0,5	
07	35	62	61,5	54	43	35,5	0,5	
08	40	68	67,5	60	48	40,5	0,5	
09	45	75	74,5	66	55	45,5	0,5	
10	50	80	79,5	71	60	50,5	0,5	
11	55	90	89,5	81	66	55,5	0,5	
12	60	95	94,5	86	69	60,5	0,5	
13	65	100	99,5	91	74	65,5	0,5	
14	70	110	109,5	98	83	70,5	0,5	
15	75	115	114,5	105	85	75,5	0,5	
16	80	125	124,2	112	93	80,5	0,5	
17	85	130	129,2			85,5	0,5	
18	90	140	139,2	126	104	90,5	0,8	
19	95	145	144,2	131	109	95,5	0,8	
20	100	150	149,2	136	114	100,5	0,8	
21	105	160	159,2	144	121	105,5	1,0	
22	110	170	169,2	153	128	110,5	1,0	
24	120	180	179,2	166	136	120,5	1,0	
26	130	200	199,2	177	150	130,8	1,0	
28	140	210	209,2	190	160	140,8	1,0	
30	150	225	224,2	203	172	150,8	1,2	
32	160	240	239,2	217	183	160,8	1,2	
34	170	260	259,2	230,5	199,5	170,8	1,2	
36	180	280	279,2	250	210	180,8	1,2	
38	190	290	289,2	261	221	190,8	1,2	
40	200	310	309,2	278	232	200,8	1,2	
44	220	340	339,2	305	255	220,8	1,2	
48	240	360	359,2	325	275	240,8	1,2	
52	260	400	399,2	345	304	260,8	1,5	
56	280	420	419,2	380	320	280,8	1,5	
60	300	460	459,2	412	352	300,8	1,5	
64	320	480	479,2	440	360	320,8	1,5	
68	340	520	519,2	470	390	340,8	2,0	
72	360	540	539,2	490	410	360,8	2,0	
76	380	560	559,2	502	438	380,8	2,0	
80	400	600	599,2	536	464	400,8	2,0	

^[1] In Lagern mit Ölnebelschmierung oder Öleinspritzschmierung empfehlen wir, dass der Außendurchmesser des Zwischenrings am Außenring gleich dem Außendurchmesser des Lagers ist; hierbei sollte eine Toleranz von g5 oder besser angesetzt werden.

⁽²⁾ Bei hohen Drehzahlen von mehr als 700 000 d_m n empfehlen wir, dass der Bohrungsdurchmesser des Zwischenrings am Innenring gleich dem Bohrungsdurchmesser des Lagers ist; hierbei sollte eine Toleranz von F6 oder besser angesetzt werden.

Maßeinheit: mm

ъ.	Durchmesser	Wälzlageraußen-	Zwischenring f	für Außenring	Zwischenring	für Innenring	12 1 1 "
Bohrungs- kennzahl	Wälzlagerbohrung d	durchmesser D	Außendurchmesser (1)	Bohrung	Außendurchmesser	Bohrung (²)	Kantenkürzung des Zwischenrings
00	10	30	29,5	25	17	10,5	0,3
01	12	32	31,5	27	18	12,5	0,3
02	15	35	34,5	29	21	15,5	0,3
03	17	40	39,5	33	24	17,5	0,3
04	20	47	46,5	39	28	20,5	0,5
05	25	52	51,5	44	33	25,5	0,5
06	30	62	61,5	53	40	30,5	0,5
07	35	72	71,5	62	46	35,5	0,5
08	40	80	79,5	68	52	40,5	0,5
09	45	85	84,5	75	56	45,5	0,5
10	50	90	89,5	80	60	50,5	0,5
11	55	100	99,5	90	65	55,5	0,8
12	60	110	109,5	95	75	60,5	0,8
13	65	120	119,5	105	80	65,5	0,8
14	70	125	124,2	110	85	70,5	0,8
15	75	130	129,2	115	90	75,5	0,8
16	80	140	139,2	125	95	80,5	1,0
17	85	150	149,2	135	105	85,5	1,0
18	90	160	159,2	140	110	90,5	1,0
19	95	170	169,2	150	115	95,5	1,0
20	100	180	179,2	160	125	100,5	1,0
21	105	190	189,2	170	132	105,5	1,0
22	110	200	199,2	175	135	110,5	1,0
24	120	215	214,2	190	145	120,5	1,0
26	130	230	229,2	203	157	130,8	1,2
28	140	250	249,2	220	170	140,8	1,2
30	150	270	269,2	233	189	150,8	1,2
32	160	290	289,2	255	195	160,8	1,2
34	170	310	309,2	270	210	170,8	1,5
36	180	320	319,2	277	223	180,8	1,5
38	190	340	339,2	300	235	190,8	1,5
40	200	360	359,2	320	250	200,8	1,5

⁽¹) In Lagern mit Ölnebelschmierung oder Öleinspritzschmierung empfehlen wir, dass der Außendurchmesser des Zwischenrings am Außenring gleich dem Außendurchmesser des Lagers ist; hierbei sollte eine Toleranz von g5 oder besser angesetzt werden.

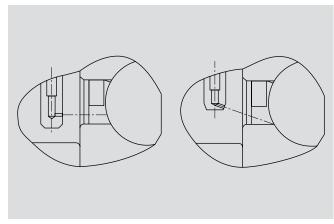
 $[\]binom{2}{3}$ Bei hohen Drehzahlen von mehr als 700 000 $d_m n$ empfehlen wir, dass der Bohrungsdurchmesser des Zwischenrings am Innenring gleich dem Bohrungsdurchmesser des Lagers ist; hierbei sollte eine Toleranz von F6 oder besser angesetzt werden.

9. Zwischenringe

Position der Schmierdüse

Die folgende Tabelle gibt die Position der Schmierdüse für Öl-Luft-, Ölnebel- und Öleinspritzschmiersysteme an.

Maßeinheit: mm


Bohrungs- kennzahl	Wälz- lager-	Serie	e 79	Serie	e 70	Serie	Serie 72		XMR rdserie)	N10XXR (NSKROBUST-Serie)	
Kennzant	bohrung	ØA (1)	В	ØA (1)	В	ØA	В	ØA	В	ØA	В
00	10	14,5	0,4	16,1	0,5	18,1	0,5	_	_	_	_
01	12	16,5	0,4	18,3	0,5	19,6	0,5	-	-	-	-
02	15	20,0	0,5	21,3	0,5	22,6	0,7	-	-	-	-
03	17	21,8	0,5	23,5	1,0	25,9	0,7	-	-	-	-
04	20	26,1	0,5	28,2	1,0	30,5	1,0	-	-	-	-
05	25	31,1	0,5	32,9	1,0	35,5	1,0	-	-	-	-
06	30	36,1	0,5	39,5	1,0	41,8	1,0	39,7	1,2	_	-
07	35	42,6	0,5	44,6	1,0	48,6	0,7	45,4	1,5	-	-
08	40	47,9	0,5	50,0	1,0	54,6	0,7	50,6	1,5	_	-
09	45	53,4	0,5	55,6	1,0	59,4	0,7	56,5	2,0	60,0	1,2
10	50	57,9	0,5	60,6	1,0	64,4	1,0	61,5	2,0	64,5	1,3
11	55	64,0	0,5	67,3	1,0	70,8	1,0	69,2	2,5	71,0	1,2
12	60	69,0	0,5	72,5	1,0	77,4	0,7	74,3	2,5	76,5	1,2
13	65	74,0	0,5	77,5	1,0	84,6	0,7	79,2	2,5	81,5	1,2
14	70	80,9	0,7	83,7	1,0	89,4	0,7	86,6	3,0	89,0	1,5
15	75	85,5	0,7	89,4	1,0	94,5	0,7	90,0	2,5	94,5	1,5
16	80	90,5	0,7	96,5	1,0	101,4	0,7	98,5	3,0	101,0	2,0
17	85	98,8	0,7	101,5	1,0	109,8	1,0	103,5	3,0	106,0	2,0
18	90	102,8	0,7	108,6	1,0	116,7	1,0	109,0	3,0	_	-
19	95	107,7	0,7	113,3	1,0	123,6	1,0	115,5	2,5	-	-
20	100	116,0	0,7	118,6	1,0	130,6	1,0	119,0	2,5	_	_
21	105	119,5	0,7	125,1	0,7	137,4	1,0	125,5	3,0	-	-
22	110	124,5	0,7	131,9	0,7	144,4	1,0	134,0	3,0	-	-
24	120	136,3	0,7	142,3	0,7	156,3	1,0	142,0	3,0	-	-
26	130	149,3	0,7	156,2	1,0	168,9	1,0	156,1	4,5	-	-
28	140	158,1	0,7	165,7	2,5	182,6	1,0	168,0	4,5	-	-
30	150	171,8	0,7	178,1	2,5	196,5	1	-	-	-	-
32	160	181,8	0,7	190,4	2,5	210	1	190	5	-	-
34	170	191,8	0,7	203,4	2,5	223	1	203	5	_	-
36	180	205,6	0,7	217,1	2,5	233	1	-	-	-	-
38	190	215,4	0,7	227,1	2,5	248	1	_	-	_	-
40	200	229	0,7	240,9	2,5	262	1	242	6,5	-	-
44	220	249	0,7	264,3	5	290	1,5	_	-	_	-
48	240	271,4	0,7	287	5	320	2	-	-	-	-

(¹) Die ØA der Wälzlager der Serien 79 und 70 entsprechen DIN 628-6.

Wichtig

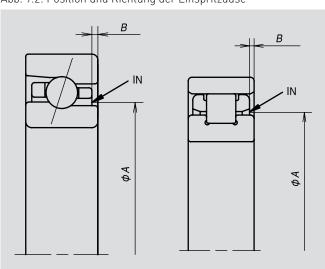

- Bei Lagern, die unter normalen Drehzahlen betrieben werden, ist es ausreichend, die Schmierdüse parallel zur Welle, zwischen Innenring und Käfig anzuordnen.
 Bei Dauerbetrieb mit hohen Drehzahlen sollte die Einspritzdüse so positioniert sein, dass der Schmierstoff in einem Winkel von ca. 15 bis 20° ins Lagerinnere gelangt.
 Bitte wenden Sie sich an NSK.
- Das eingespritzte Schmieröl muss über eine ausreichend große Ablauföffnung wieder aus dem Lager ablaufen.
 Sonst kann durch zu viel Schmierstoff die Lagertemperatur zu stark ansteigen, was schließlich zu einem vorzeitigen Lagerausfall führt.
- NSK empfiehlt, das Schmieröl vor dem Einfüllen in das Schmierungssystem zu filtern (Filterfeinheit 5 μm oder besser).

Abb. 9.1: Winkel des Schmierstoffstrahls

Madelifiett									innicit.			
Wälz- lager-		R19 R19		R10 R10	BSR19 BSR10		R10	BSR02		BAR10 BTR10		
bohrung	ØA	В	ØA	В	ØA	В	ØA	В	ØA	В	ØA	В
6	-	-	_	_	-	_	9,0	0,4	-	_	_	-
7	-	-	-	-	-	-	10,5	0,4	-	-	-	-
8	-	_	_	_	_	_	12,0	0,5	_	_	_	-
10	-	-	-	-	13,5	0,4	14,5	0,5	17,0	1,0	-	-
12	-	-	_	-	15,5	0,4	16,5	0,5	18,0	0,5	_	-
15	_	-	_	_	18,5	0,5	20,0	1,0	21,0	1,0	_	-
17	-	-	_	-	20,5	0,5	22,5	1,5	24,0	0,5	_	-
20	-	-	-	-	25,0	0,8	26,5	0,8	28,3	0,5	-	-
25	31,0	0,5	_	-	30,0	0,8	31,5	0,8	33,2	1,0	_	-
30	35,5	0,5	39,0	1,0	-	_	-	-	-	-	-	-
35	42,0	0,5	44,5	1,2	_	-	_	_	_	-	_	-
40	48,0	0,5	50,0	1,5	-	_	-	-	-	-	-	-
45	53,0	0,5	55,5	1,7	-	-	-	-	-	_	_	-
50	57,5	0,5	60,5	1,7	-	_	-	-	-	-	60,5	0,9
55	63,5	0,5	67,5	1,5	-	-	-	-	-	_	67,5	0,7
60	68,5	0,5	73,0	1,5	-	-	-	-	-	-	73,5	0,7
65	73,5	0,5	77,5	1,5	-	-	_	_	_	-	77,5	0,7
70	80,5	0,7	84,0	1,7	-	-	-	-	-	-	84,0	0,7
75	85,0	0,7	89,0	1,7	-	-	_	_	_	-	89,0	0,7
80	90,5	0,7	96,0	1,7	-	-	-	-	-	-	96,0	0,9
85	98,5	0,7	102,0	1,7	-	-	_	_	-	-	102,0	0,9
90	102,0	0,7	109,0	1,7	-	-	_	-	_	-	108,5	1,2
95	107,0	0,7	112,0	1,7	-	-	-	-	-	-	112,5	1,2
100	113,5	0,7	118,5	2,5	_	-	_	-	_	-	118,5	1,7
105	119,0	0,7	125,0	1,7	-	-	-	-	-	-	126,0	1,4
110	124,0	0,7	132,5	1,7	-	-	-	-	-	-	132,5	1,2
120	136,0	0,7	143,0	1,7	-	-	-	-	-	-	142,5	1,2
130	149,0	0,7	156,5	1,7	-	-	-	-	-	-	155,5	1,7
140	157,5	0,7	166,0	1,7	-	-	-	_	-	-	167	1,7
150	171,5	0,7	178,5	1,7	-	-	-	-	-	-	179,5	1,9
160	181,8	0,7	190	2	-	-	-	-	-	-	190	2,0
170	191,8	0,7	-	-	-	-	-	-	-	-	205	1,7
180	205,6	0,7	-	-	-	-	-	-	-	-	218	2,0
190	215,4	0,7	-	-	-	-	-	-	-	-	228	2,0
200	229	0.7	_	_	_	_	_	_	_	_	242	2.2

Abb. 9.2: Position und Richtung der Einspritzdüse

Handhabung von Lagern

Inspektion im Betrieb

Handhabung von Lagern

- 1. Reinigung der Lager und der Anschlussteile
- 2. Überprüfung der Maßgenauigkeit der Anschlussteile
- 3. Lagermontage
- 4. Kontrolle nach der Montage

1. Lagermontage

Montage

Die Art und Weise der Montage hat einen entscheidenden Einfluss auf die Genauigkeit, Lebensdauer und Leistungsfähigkeit von Lagern. Wir empfehlen Konstrukteuren und Ingenieuren, die Verfahren zur Handhabung von Wälzlagern genau zu prüfen und entsprechende Standards im Hinblick auf die folgenden Punkte festzulegen:

- (1) Reinigen der Lager und der Anschlussteile
- (2) Prüfen der Abmessungen der Anschlussteile
- (3) Montageverfahren
- (4) Kontrolle nach der Montage

Vorsichtsmaßnahmen für die sachgemäße Handhabung von Wälzlagern

Hochgenauigkeitslager sind hochpräzise gefertigte, hochwertige Maschinenteile, die entsprechend sorgsam zu behandeln sind. Die hohe Leistungsfähigkeit und Präzision solcher Wälzlager lässt sich nicht in vollem Umfang nutzen, wenn sie nicht sachgemäß gehandhabt werden. Die wichtigsten Vorsichtsmaßnahmen sind die folgenden:

- Wälzlager und Umgebung sauber halten

Jeder Fremdpartikel, auch wenn es mit bloßem Auge nicht erkennbar ist, ist schädlich für ein Lager. Achten Sie darauf, dass weder Schmutz noch andere Fremdkörper in das Lager gelangen, indem Sie für eine saubere Arbeitsumgebung sorgen.

- Wälzlager sorgsam handhaben

Vermeiden Sie jegliche Stoßbelastungen während der Handhabung. Stoßbelastungen können Kratzer am Lager oder Eindrücke verursachen, die zum Lagerausfall führen können. Zu starke Stöße können eine Brinellierung oder Risse zur Folge haben. Selbst kleinste Schäden können zu unerwünschten Laufgeräuschen führen und sollten verhindert werden.

- Die richtigen Werkzeuge verwenden

Verwenden Sie beim Umgang mit Wälzlagern stets die richtige Ausrüstung und vermeiden Sie es, Allzweckwerkzeuge zu benutzen.

- Korrosion vorbeugen

Werden Wälzlager mit bloßen Händen gehandhabt, kann es durch Schweiß oder Verunreinigungen der Haut zu einer Korrosion der Lageroberflächen kommen. Tragen Sie nach aller Möglichkeit Handschuhe. Treffen Sie Maßnahmen, um ein Rosten der Lager durch korrosive Gase zu vermeiden.

Lagerungsmethode

- Obwohl die Lager mit einem Korrosionsschutzmittel behandelt und anschließend umwickelt und verpackt werden, ist es unmöglich, jeglichen Kontakt der Lager mit der Umgebungsluft zu vermeiden. Bewahren Sie Wälzlager daher an einem trockenen Ort auf und verhindern Sie, dass sie Feuchtigkeit/Luftfeuchtigkeit ausgesetzt werden.
- Wälzlager sollten in der Originalverpackung an einem sauberen, trockenen und gut belüfteten Ort gelagert werden, der zugleich Schutz vor direkter Sonneneinstrahlung bietet. Bewahren Sie Wälz-lager in einem Schrank oder Regal mindestens 30 cm über dem Boden auf.
- Wenn Sie Wälzlager im Rahmen einer Abnahmekontrolle auspacken, treffen Sie Maßnahmen, um Korrosion und Verunreinigung vorzubeugen. Nach der Kontrolle befolgen Sie bitte obige Empfehlungen zur sachgemäßen Lagerung.

1. Reinigung der Lager und der Anschlussteile

Wälzlager sollten erst unmittelbar vor ihrem Einbau ausgepackt werden. Im Auslieferungszustand sind Lager mit einem Korrosionsschutzmittel versehen, um sie vor Staub zu schützen und der Entstehung von Rost auf dem Transportweg vorzubeugen. Im Allgemeinen sollten Wälzlager für Hochgeschwindigkeitsanwendungen mit sauberem filtriertem Lösemittel gereinigt werden, um das Korrosionsschutzmittel zu entfernen. Das gilt insbesondere für Lager, die mit Fett befüllt werden müssen: Auf den Laufbahnen verbleibendes Korrosionsschutzmittel kann dazu führen, dass das Fett am Korrosionsschutz abgleitet und sich nicht mit der Metalloberfläche verbindet. Nachdem die Wälzlager mit filtriertem Lösemittel gereinigt wurden, sollten sie geschützt werden, um Korrosion vorzubeugen. Eine genaue Beschreibung des Reinigungsprozesses finden Sie auf den Seiten 248-249. Einige Produkte, beispielsweise vorgeschmierte oder abgedichtete Wälzlager, müssen nicht gereinigt werden. Wischen Sie bei solchen Produkten das Korrosionsschutzmittel stattdessen mithilfe eines sauberen Tuchs von den äußeren Oberflächen ab, bevor sie das Lager einbauen. Wellen und Gehäuse sollten gereinigt und die Passflächen (Wälzlagersitze, Zwischenringsitze) auf und Risse und Grate geprüft werden.

2. Überprüfung der Maßgenauigkeit der Anschlussteile

Inspektion von Welle und Gehäuse

- Die Abmessungen der Wellen und Gehäusebohrungen sollten überprüft werden, um sicherzustellen, dass die erforderliche Passung von Lagerbohrung und Außendurchmesser erzielt wird. Angaben zu empfohlenen Passungen auf Wellen und in Gehäusen finden Sie auf den Seiten 234–236.
- Messungen sollten in einem temperaturgeregelten Raum durchgeführt werden (dies gilt auch für die Montage). Führen Sie Messungen mithilfe von Mikrometern wie z.B. mit einem Innenfeinmessgerät oder einer Zylinderlehre durch, wenn die Teile eine konstante und stabile Temperatur angenommen haben. Messen Sie immer an mehreren Stellen und achten Sie darauf, dass es keine signifikanten Unterschiede bei den Messwerten gibt. Empfohlene Genauigkeitswerte für Wellen und Gehäuse sind auf Seite 237 aufgeführt.
- Für Zwischenringe usw., die auf einer Spindel angeordnet werden sollen, empfehlen wir eine Parallelitätsabweichung von 0,003 mm oder weniger (0,004 mm oder weniger bei Bohrungsdurchmessern von über 300 mm). Ist die Parallelitätsabweichung der Zwischenringe größer als die hier empfohlene kommt es zu einem Kippen der Wälzlager und in dessen Folge zu Ungenauigkeiten und Lagergeräuschen.
- Um die Radialluft von Zylinderrollenlagern mit kegeligen Bohrungen einzustellen, ermitteln Sie die einzelnen Abmessungen (bei Fettschmierung bevor das Wälzlager mit Fett befüllt wird) und bringen Sie entsprechende Zwischenringe an. Erläuterungen zum Messen und Einstellen der Lagerluft finden sich auf Seite 251.

3. Vorgang der Lagermontage

Bei Fettschmierung befüllen Sie die Lager mit Fett, bevor Sie sie montieren. Bei Öl-Luft- oder Ölnebelschmierung reinigen und entfetten Sie die Lager, bevor Sie sie einbauen. Der Vorgang der Lagermontage unterscheidet sich je nach den erforderlichen Passungen für Innen- und Außenring. Bei einem Werkzeugmaschinenlager dreht sich in erster Linie der Innenring. Daher werden Wälzlager mit zylindrischer Bohrung in der Regel vor dem Montieren erwärmt, um den Innenring zu weiten (Schrumpfpassung). Wälzlager mit kegeliger Bohrung können direkt auf eine konische Welle montiert werden.

Außenringe werden üblicherweise mit etwas Spiel montiert. Zur Erleichterung der Montage kann das Gehäuse erwärmt werden. In Fällen, in denen Außenringe mit Festsitz montiert werden müssen, besteht die Möglichkeit, eine Presspassung herzustellen; dies lässt sich mit einer Gehäuseerwärmung kombinieren.

4. Kontrolle nach der Montage

Prüfen Sie nach der Lagermontage den Wellenschlag und die Höhe der Vorspannung. Beschreibungen der einzelnen Verfahren finden Sie ab Seite 265 bzw. 266.

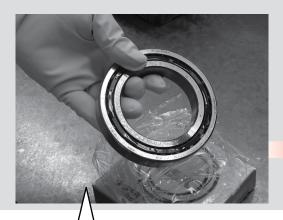
Führen Sie im Anschluss daran eine Kontrolle im Betrieb durch und überprüfen Sie beispielsweise, ob die Welle einwandfrei gewuchtet ist und ob der Einlaufvorgang eingehalten wird.

Es gibt zwei Arten einer Wellenunwucht: die "statische Unwucht" und die "dynamische Unwucht". Erläuterungen finden Sie auf Seite 268.

Ob eine statische Unwucht der Welle vorliegt, lässt sich überprüfen, indem die Welle horizontal auf eine Unterlage mit glatter Oberfläche gelegt wird; bei ungleichmäßiger Massenverteilung dreht sich die Welle durch ihr Eigengewicht und kommt mit dem schwereren Teil nach unten zeigend zum Liegen. Eine statische Unwucht lässt sich durch Anbringen eines Ausgleichsgewichts an der vorgegebenen Stelle am Rotor abschwächen.

Um die dynamische Unwucht zu überprüfen, muss die Welle in eine Drehung versetzt werden. Mit einem speziellen Messgerät lässt sich die dynamische Unwucht messen. Sie lässt sich abschwächen, indem das Gewicht sowohl am vorderen als auch am hinteren Ende der Welle angepasst wird

Es ist sehr wichtig, den Einlaufvorgang einzuhalten, insbesondere bei fettgeschmierten Spindeln. Bei diesem Verfahren wird das Fett gleichmäßig innerhalb des freien Raums im Lagerinneren verteilt. Überschüssiges Fett wird herausgedrückt. Dieser Vorgang wird auf Seite 270 erklärt. Typische Unregelmäßigkeiten beim Betrieb der Spindel sowie entsprechende Abhilfemaßnahmen sind auf Seite 277 aufgeführt.


1. Lagermontage

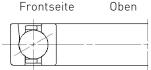
1. Reinigung der Lager und der Anschlussteile

1.1 Reinigung mit Petroleum

Dieser Abschnitt enthält Informationen zum Reinigungsverfahren und zur sachgemäßen Handhabung von Wälzlagern während des Reinigens sowie zu Reinigungsvorrichtungen.

Nehmen Sie das Wälzlager aus seiner Verpackung.

2 Gießen Sie Reinigungsöl auf das Wälzlager, um es vom Korrosionsschutzmittel zu befreien; drehen Sie das Lager währenddessen nicht.


Wälzlager vorsichtig handhaben

Es ist wichtig, dass Sie das Schrägkugellager richtig halten: Achten Sie beim Halten des Innenrings darauf, dass die Rückseite des Lagers nach oben zeigt. Achten Sie beim Halten des Außenrings darauf, dass die Frontseite des Lagers nach oben zeigt.

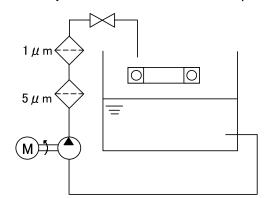
Beim Halten des Innenrings

Rückseite	Oben
Ţ	

Beim Halten des Außenrings

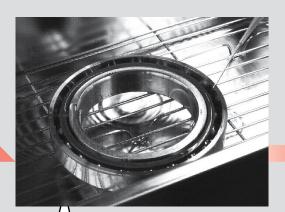
Unten

Unten

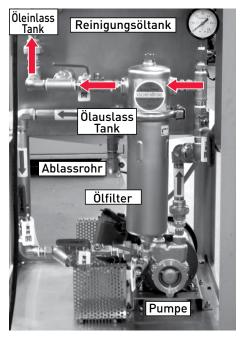

Reinigungsvorrichtung und Reinigungsöl

Verwenden Sie zum Filtrieren der Reinigungsflüssigkeit stets ein Filtriersystem mit Umwälzfunktion.

Eine Pumpe sorgt dafür, dass das Reinigungsöl im Reinigungsöltank umgewälzt wird. Das Ölüberlaufrohr ist mit einem Ölfilter ausgestattet, der in regelmäßigen Intervallen ausgetauscht werden muss, damit er nicht verstopft.


Die zweistufige Filtrierung sorgt dafür, dass größere und kleinere Partikel effektiv entfernt werden. Außerdem verlängert sie die Lebensdauer der Filter. Ersetzen Sie das Reinigungsöl regelmäßig.

Filtriersystem mit Umwälzfunktion (Beispiel)



3 Drehen Sie das Wälzlager und lassen Sie das Reinigungsöl zwischen Innen- und Außenring hindurchfließen, sodass das Korrosionsschutzmittel aus dem Lagerinneren herausgespült wird. Stellen Sie sicher, dass das Wälzlager nach dem Reinigen reibungslos läuft.

4 Entfetten Sie das Wälzlager, indem Sie es mit sauberem organischem Lösemittel spülen.

Reinigungsverfahren ist abgeschlossen

Anmerkung:

Dies ist eine beispielhafte Darstellung eines Filtriersystems mit einem Ölfilter.

Vorsichtig entfetten

- (1) Einmal zum Entfetten verwendetes organisches Lösemittel nicht wiederverwenden.
- (2) Drehen Sie das Wälzlager nicht während des Kontakts mit dem Entfettungsmittel sowie danach nicht mehr, da es anderenfalls zu Schäden an den Laufbahnen und Kugeln kommen kann.
- (3) Verwenden Sie keine Druckluft, da in der Umgebungsluft enthaltene Partikel in das Lagerinnere eindringen könnten.
- (4) Bei Fettschmierung befüllen Sie das Lager nach dem Entfetten mit Fett. Benetzen Sie das Lager alternativ mit Schmieröl, das zuvor mit Lösemittel zum Entfetten verdünnt wurde (Ölbeschichtungsverfahren).

Vorsicht beim Handhaben von Petroleum und organischen Lösemitteln

Seien Sie sich im Umgang mit Petroleum und organischen Lösemitteln der von diesen Stoffen ausgehenden Brandgefahr und ihrer Toxizität bewusst. Treffen Sie stets geeignete Maßnahmen gemäß geltenden gesetzlichen und sonstigen Sicherheitsvorschriften und Regelungen, um Unfällen vorzubeugen. Beispiele: Erden Sie die Reinigungsvorrichtungen, um der Entstehung von Funken durch statische Elektrizität vorzubeugen; sorgen Sie für eine angemessene Belüftung.

In diesem Abschnitt wird nur das Reinigungsverfahren als solches beschrieben. Beachten Sie daher bitte, dass NSK keine Haftung für Risiken im Zusammenhang mit der Handhabung von Reinigungsmitteln übernehmen kann.

1. Lagermontage

2. Überprüfung der Maßgenauigkeit der Anschlussteile

2.1 Messen und Anpassen konischer Wellen

Damit Hochgenauigkeitszylinderrollenlager die erwartete Leistung erbringen können, ist eine sachgemäße Montage auf die Welle und in das Gehäuse unerlässlich.

Wenn Lager so eingebaut werden, dass der Kegelwinkel der Lagerbohrung und der Kegelwinkel der Welle nicht zusammenpassen, kommt es zu einer ungleichmäßigen Ausdehnung des Innenrings entlang der Spindelachse. Dies beeinträchtigt die Leistungsfähigkeit des Wälzlagers im Betrieb. Bei zweireihigen Zylinderrollenlagern verstärkt sich diese nachteilige Auswirkung aufgrund der breiteren Innenringe.

Abb. 1.1 veranschaulicht, wie eine ungleichmäßige Ausdehnung des Innenrings während der Montage infolge nicht zusammenpassender Kegelwinkel zu einem Unterschied in der Radialluft zwischen den beiden Reihen führt. Die Folge ist ein großes Ungleichgewicht der Tragzahlen, was zu einer geringeren Steifigkeit führt; mit Ausrichtungsfehlern behaftete Innenringnuten ziehen eine unregelmäßige Bewegung der Rollen nach sich usw.

Selbst bei einreihigen Zylinderrollenlagern führt eine falsche Ausrichtung der Innenringnuten zu ungleichmäßigen Berührungsstellen (Laufspuren) der Rollen an Innen- und Außenring. Die Folge ist eine ungleichmäßige Rollenbewegung.

Beispiele solcher Defekte aus der Praxis werden auf Seite 274 erläutert.

 Kegelwinkel Kegelwinkelwerte von Zylinderrollenlagern mit kegeliger Bohrung finden Sie auf den Seiten 228–229.

- Überprüfen des Kegelwinkels der Welle Wir empfehlen Ihnen, den Wellenkegel mit dem Bohrungskegel des jeweiligen Wälzlagers zu messen. Führen Sie dabei die folgenden Schritte durch:
- Reinigen und entfetten Sie die kegelige Bohrung des Wälzlagers sowie den kegeligen Abschnitt der Welle. Tragen Sie anschließend sehr dünn und gleichmäßig blaues Färbemittel auf einen der Kegel auf.
- Schieben Sie den Innenring des Lagers auf die Welle.
- Drehen Sie den Innenring leicht und ziehen Sie ihn anschließend vorsichtig von der Welle, ohne ihn dabei zu drehen (Abb. 1.2).
- In den Bereichen, in denen sich beide Teile berühren, wurde das blaue Färbemittel von dem eingefärbten Teil auf das nicht eingefärbte Teil übertragen.
- Der blau eingefärbte Bereich der konischen Welle sollte mindestens 80 % der Wälzlagerbreite ausmachen.
- Wenn die Berührungszone zu klein ist, passen Sie den Kegel der Welle entsprechend an.
- Statt blauen Färbemittels eignet sich auch Bleioxid.
- Arten der Kegelberührung Eine ideale Passung ist erzielt, wenn es zu einer

gleichmäßigen Berührung zwischen dem Kegel und der gesamten Oberfläche der Wälzlagerbohrung kommt (Bestätigung mithilfe der vorstehend beschriebenen Methode). Aufgrund der Grenzen, die der Bearbeitungsgenauigkeit gesetzt sind, ist diese ideale Passung jedoch schwer zu erreichen. In der Praxis kommt es wahrscheinlich zu abweichenden Berührungen.

In Abb. 1.3 veranschaulichen die unterschiedlich starken blauen Schattierungen die Intensität der Berührung zwischen Lagerbohrung und Welle.

Eine Berührung am breiten Ende des Wellenkegels (a) bedeutet, dass die Berührung in dem Bereich am intensivsten ist, in dem der Innenring am dünnsten ist. Aus diesem Grund dehnt sich Reihe A mehr und Reihe B weniger aus. In der Folge kommt es zu einer stark ungleichmäßigen Radialluft, siehe Abb. 1.1.

Wir empfehlen eine Berührung am schmalen Ende (b) des Wellenkegels, da die stärkere Wandung des Innenrings bedeutet, dass sich Reihe B weniger wahrscheinlich ausdehnt und die Effekte eines ungleichmäßigen Kegels leichter ausgeglichen werden können.

Abb. 1.1 Ungleichmäßigkeit der Radialluft aufgrund schlechter Kegelpassung

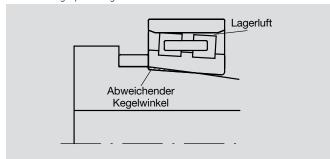


Abb. 1.2 Überprüfung des Kegelwinkels mit Färbemittel

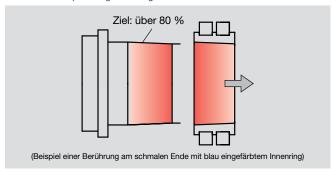
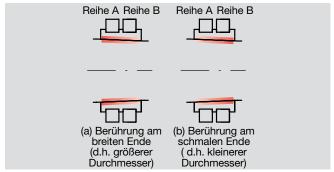



Abb. 1.3 Arten der Kegelberührung bzgl. Kegeldurchmesser

2.2 Einstellen der Radialluft von Zylinderrollenlagern

Die radiale Lagerluft (Vorspannung) von Zylinderrollenlagern wird eingestellt, indem der Innenring auf die konische Welle geschoben wird, wodurch der Innenring gedehnt wird. Dieses Verfahren lässt sich in vier Schritte unterteilen, wie nachstehend erläutert (Abb. 1.4).

Schritt 1: Innenring auf konische Welle schieben

Schritt 2: Radialluft messen

Schritt 3: Abstand zwischen Innenring und Wellenschulter messen

Schritt 4: Zwischenringbreite so anpassen, dass die angestrebte Radialluft erzielt wird

Schritt 1: Innenring auf konische Welle schieben

Nachdem Sie das Lager gereinigt und entfettet haben, schieben Sie den Innenring auf die Welle. Montieren Sie den Innenring, indem Sie ihm unter Verwendung eines Zwischenrings (Abb. 1.5) einen leichten Stoß versetzen. Ziehen Sie die Sicherungsmutter der Welle fest. Wälzlager mit Fettschmierung sind zu diesem Zeitpunkt noch nicht mit Fett befüllt.

Nähere Angaben zur Reinigung von Wälzlagern finden Sie auf den Seiten 248–249.

Schritt 2: Radialluft messen

Die Radialluft wird entweder (1) mithilfe eines speziellen Messgeräts (Hüllkreismessgerät GN) oder (2) ohne Hüllkreismessgerät GN (durch Berechnung) ermittelt. Die Beschreibungen der einzelnen Messverfahren finden Sie ab Seite 252 bzw. 254.

Schritt 3: Abstand zwischen Innenring und Wellenschulter messen

Messen Sie zum Beispiel mithilfe von Parallelendmaßen oder Fühlerlehren den Abstand L zwischen der Stirnfläche des Innenrings und der Wellenschulter (Abb. 1.6).

Führen Sie drei oder mehr Messungen entlang des Umfangs durch und bilden Sie den Mittelwert, um mögliche Ausrichtungsfehler der Welle beim Einstellen und mögliche Ungenauigkeiten umgebender Teile zu berücksichtigen.

Schritt 4: Zwischenringbreite so anpassen, dass die angestrebte Radialluft erzielt wird

Bestimmen Sie auf Grundlage des Mittelwerts aus Schritt 3 und auf Grundlage der übrigen Messwerte die Zwischenringbreite, mit der sich die angestrebte Radialluft erzielen lässt. Bearbeiten Sie den Zwischenring so, dass Sie diese Breite erzielen.

Abb. 1.4 Einstellung der Radialluft von Zylinderrollenlagern

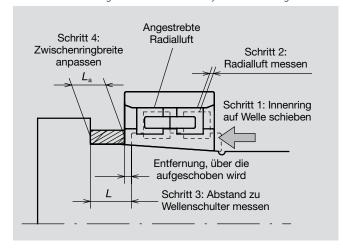


Abb. 1.5 Aufschieben des Innenrings

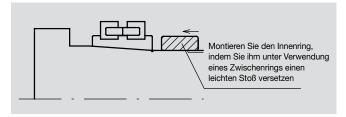
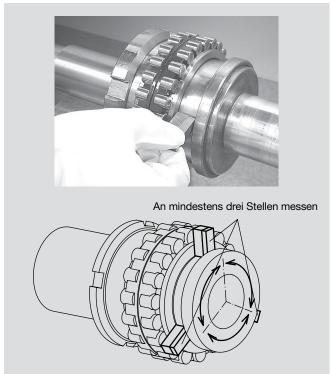



Abb. 1.6 Messen der erforderlichen Zwischenringbreite

1. Lagermontage

(1) Messen der Radialluft von Zylinderrollenlagern (mit GN-Hüllkreismessgerät)

Beim Montieren eines Zylinderrollenlagers mit kegeliger Bohrung auf eine Werkzeugmaschinenspindel ist es wichtig, die Kegel von Welle und Wälzlager korrekt zusammenzupassen und sicherzustellen, dass nach dem Einbau die gewünschte radiale Lagerluft erzielt wird. Ein GN-Hüllkreismessgerät ist ein spezielles Instrument, mit dem sich die Radialluft nach der Montage messen und überprüfen lässt. GN-Hüllkreismessgeräte lassen sich besonders effektiv einsetzen, wenn Zylinderrollenlager mit radialer Vorspannung verwendet werden.

Abb. 1.7 zeigt die Bestandteile eines GN-Hüllkreismessgeräts.

D Messuhr Rote Markierung Kurzer Zeiger Spannvorrichtung des Grundkörpers Grundkörper des Messgeräts Griff Zeigereinstellung NIPPON SEIKO

Abb. 1.7 Bestandteile eines GN-Hüllkreismessgeräts

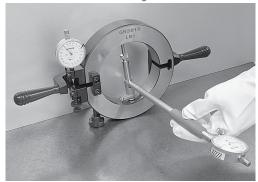
Abb. 1.8 Einstellung des Innenfeinmessgeräts auf null

Verwendung eines GN-Hüllkreismessgeräts

① Außenring in Gehäuse einführen

Empfohlene Werte für die Passung von Außenring und Gehäuse sind auf Seite 235 aufgeführt.

② Innenfeinmessgerät auf null einstellen


Stellen Sie sicher, dass die Temperaturen von Außenring (im Gehäuse), Innenring und Welle gleich sind. Messen Sie anschließend den Bohrungsdurchmesser des Außenrings mithilfe eines Innenfeinmessgeräts (Messuhr für Bohrungsdurchmesser) an ungefähr vier verschiedenen Stellen und stellen Sie das Innenfeinmessgerät unter Berücksichtigung des Mittelwerts der Messungen auf null ein (Abb. 1.8).

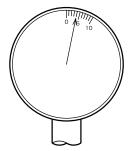
3 Bohrungsdurchmesser des GN-Hüllkreismessgeräts einstellen

Lösen Sie den Bolzen der Spannvorrichtung des Grundkörpers am GN-Hüllkreismessgerät. Setzen Sie das Innenfeinmessgerät in die Bohrung des GN-Hüllkreismessgeräts und drehen Sie die Einstellschraube, bis der Zeiger des Zylindermessgeräts null anzeigt. Die Bohrung des GN-Hüllkreismessgeräts soll so eingestellt werden, dass sie die Bohrung des Außenrings nachbildet. Messungenauigkeiten durch das Eigengewicht des GN-Hüllkreismessgeräts können vermieden werden, wenn es beim Messen aufrecht steht (Abb. 1.9).

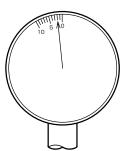
Abb. 1.9 Einstellung der Bohrung des GN-Hüllkreismessgeräts

4 GN-Hüllkreismessgerät korrigieren

Stellen Sie als Nächstes den Hauptzeiger mithilfe der Zeigereinstellung an der Messuhr auf die rote Markierung, um die Anzeige zu korrigieren, siehe Abbildung 1.10. Stellen Sie sicher, dass der kurze Zeiger der zweiten Anzeige in der Nähe des Werts "2" steht.


Die Korrektur gleicht die elastische Verformung der Rollen durch den Messdruck des Geräts aus. Der Korrekturwert ist bei jedem GN-Hüllkreismessgerät unterschiedlich; er wird pro Messgerät bestimmt und ist in der Dokumentation angegeben.

⑤ GN-Hüllkreismessgerät einstellen


Weiten Sie das GN-Hüllkreismessgerät mit der Einstellschraube auf. Setzen Sie es mittig auf die Rollen des Innenrings (Abb. 1.11) und lösen Sie die Einstellschraube, damit das GN-Hüllkreismessgerät auf die Rollen schnappt (sodass es ausschließlich durch die Elastizität des GN-Hüllkreismessgeräts zu einer berührungsbedingten Verformung der Rollen kommt).

6 Anzeige ablesen

Lesen Sie den Hauptzeiger an der Messuhr ab. Das GN-Hüllkreismessgerät (Abb. 1.12) ist geometrisch so aufgebaut, dass bei einer Abweichung gegenüber null an Messpunkt A auf der Messuhr der doppelte Wert angezeigt wird. Die tatsächliche Größe der Lagerluft bzw. Vorspannung entspricht der Hälfte des Messwerts. Beispiele:

Beispiel 1: Die Anzeige "4" (im Uhrzeigersinn) steht für eine Radialluft von +2 µm

Beispiel 2: Die Anzeige "2" (gegen den Uhrzeigersinn) steht für eine Radialluft von –1 µm

Strecke neu einstellen, über die der Innenring auf die Welle geschoben wird

Weiten Sie das GN-Hüllkreismessgerät wie in ③ auf, indem Sie die Einstellschraube drehen, bis die Messuhr Spiel anzeigt. Nehmen Sie das GN-Hüllkreismessgerät vom Innenring und ziehen Sie die Sicherungsmutter der Welle an. Messen Sie die Radialluft erneut. Wiederholen Sie diese Schritte, bis das GN-Hüllkreismessgerät den gewünschten Wert für die Lagerluft anzeigt.

® Erforderliche Zwischenringbreite messen

Messen Sie den Abstand zwischen der Stirnfläche des Innenrings und der Wellenschulter gemäß Beschreibung in Schritt 3 auf Seite 251.

Bearbeiten Sie den Zwischenring so, dass das in Schritt ® ermittelte Maß für die Breite erzielt wird.

Abb. 1.10 Korrigieren des GN-Hüllkreismessgeräts

Abb. 1.11 Einstellen des GN-Hüllkreismessgeräts

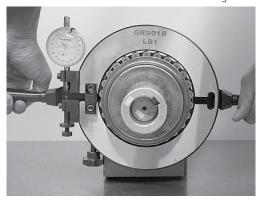
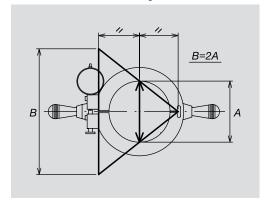



Abb. 1.12 Geometrischer Aufbau des GN-Hüllkreismessgeräts

1. Lagermontage

(2) Einstellen der Radialluft von Zylinderrollenlagern ohne GN-Hüllkreismessgerät (Berechnung)

In diesem Abschnitt wird kurz erläutert, wie die Radialluft ohne GN-Hüllkreismessgerät gemessen wird und wie die Zwischenringbreite $L_{\rm a}$ berechnet wird, die zum Erzielen des angestrebten Lagerluftwerts nach der Montage erforderlich ist. Wird kein GN-Hüllkreismessgerät verwendet, muss der Außenring gemessen werden, bevor er in das Gehäuse eingesetzt wird. Durch Einbau des Außenrings in das Gehäuse schrumpft der Durchmesser seiner Laufbahn. Das Maß dieser Schrumpfung muss beim Bestimmen der zum Einstellen der Lagerluft erforderlichen Abmessungen des Zwischenrings berücksichtigt werden.

$$L_a = L - K \left(\Delta r_m - \Delta r + \Delta r_0 \right)$$

① Berechnen Sie, ausgehend von der Messung der Gehäusebohrung und den Abmessungen des Außenrings des Wälzlagers, das Maß der Schrumpfung des Außenringlaufbahndurchmessers, das durch den Einbau des Außenrings in das Gehäuse entsteht, also $\Delta r_{\rm e}$. Wird der Außenring mit positiver Lagerluft eingebaut, ist diese Berechnung nicht erforderlich (in diesem Fall gilt $\Delta r_{\rm e} = 0$).

$$\Delta r_e = (D_h - D) \times H$$

(wenn dieser Wert positiv ist, wird der Wert $\Delta r_e = 0$ angesetzt)

Tabelle 1.1 Wandstärke des Gehäuses und Schwundfaktor H

Verhältnis Wandstärke des Gehäuses $h_0 (=D_0/D_h)$	Schwundfaktor <i>H</i>
110 %	0,32
120 %	0,47
130 %	0,56
140 %	0,61
150 %	0,65
160 %	0,68
170 %	0,70
180 %	0,71

- ② Schieben Sie den Außenring über die Rollen. Setzen Sie eine Messuhr am Außendurchmesser des Außenrings an. Ziehen Sie anschließend die Sicherungsmutter der Welle leicht an.
- ③ Bewegen Sie den Außenring von Hand nach oben und unten und messen Sie währenddessen das Radialspiel $\Delta r_{\rm m}$ mit der Messuhr.

Die Körpertemperatur kann die Temperatur des Außenrings erhöhen, wodurch es zu einem fehlerhaften Messergebnis kommen kann. Wir empfehlen Ihnen daher, Handschuhe zu tragen und die Messung schnell durchzuführen.

Abb. 1.13 Erläuterung der Variablen

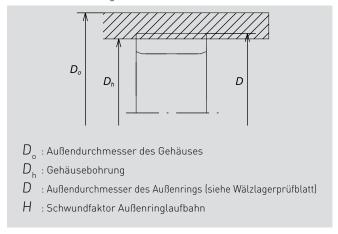
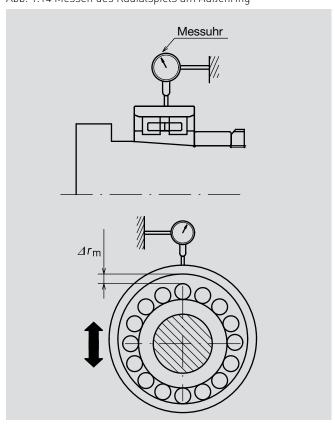



Abb. 1.14 Messen des Radialspiels am Außenring

- ⊕ Wiederholen Sie die Schritte ② und ③, bis $\Delta r_{\rm m}$ = 5 μm Hinweis: Wir haben einen Richtwert von 5 μm angesetzt, denn wenn $\Delta r_{\rm m}$ zu groß ist, kann die Verformung des Außenrings aufgrund der Messkraft zu einem falschen Messergebnis führen. Werte kleiner 5 μm sind annehmbar, beispielsweise wenn die angestrebte Radialluft Δr negativ ist. Es sollte allerdings berück-sichtigt werden, dass die Radialluft durch die in Schritt ① bestimmte Schrumpfung des Außenrings um $\Delta r_{\rm e}$ weiter verringert wird, sodass die Sicherungsmutter der Welle nicht übermäßig festgezogen werden sollte.
- Messen Sie den Abstand zwischen der Stirnfläche des Innenrings und der Wellenschulter L gemäß Beschreibung in Schritt 3 auf Seite 251.
- ® Bestimmen Sie mithilfe der nachstehenden Gleichungen die Ausdehnung Δr_i des Innenrings, die erforderlich ist, um die angestrebte Radialluft Δr zu erzielen, sowie die Strecke ΔL_i , über die der Innenring aufgeschoben werden muss, um die Ausdehnung Δr_i zu erreichen.

$$\Delta r_{i} = \Delta r_{m} + \Delta r_{e} - \Delta r$$

 $\Delta L_{i} = K \Delta r_{i}$

Tabelle 1.2 Hohlwellenverhältnis k_0 und Koeffizient K

Hohlwellenverhältnis $k_o (=d_o/d)$	Koeffizient K
0 %	14,1
10 %	14,1
20 %	14,2
30 %	14,4
40 %	14,7

oeffizient K
15,2
16,0
17,4
20,2

 ${\mathfrak D}$ Berechnen Sie die erforderliche Länge $L_{\mathfrak a}$ des Zwischenrings zum Anpassen der Lagerluft gemäß den Ergebnissen aus Schritt ${\mathfrak D}$ und ${\mathfrak D}$:

$$L_a = L - \Delta L_i$$

(Beispielberechnung)

Festlegen der nach der Montage verbleibenden Radialluft auf $\Delta r = -0.002$ mm für NN3020MBKR:

$$h_0 = D_0/D = 225/150 = 150\% \Rightarrow H = 0.65$$

Schrumpfung des Durchmessers der Außenringlaufbahn durch Einbau

Maß der Ausdehnung des Innenrings, das zum Erzielen des angestrebten Werts für die Lagerluft erforderlich ist

$$k_0 = d_0/d = 50/100 = 50\% \Rightarrow K = 15,2$$

Strecke, über die der Innenring auf die konische Welle geschoben werden muss

Breite des Zwischenrings zum Anpassen der Lagerluft

Abb. 1.15 Verformung des Außenrings durch Messkraft

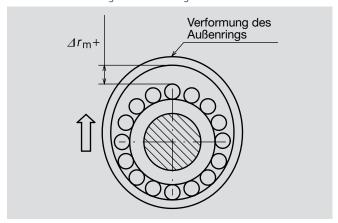
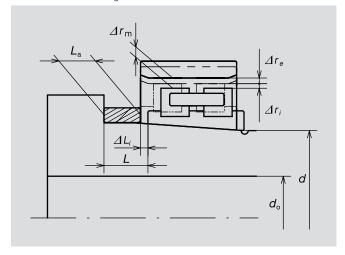



Abb. 1.16 Erläuterung der Variablen

Im Berechnungsbeispiel verwendete Werte (mm)

4 (1/0,000 1/0,000) 0 / 5	
1r _e = (149,993 - 149,998) × 0,65	Δr
= -0,003 mm	D_{c}
	D
$1r_{i} = 0.005 - 0.003 - (-0.002)$	Dł
-0.004 mm	d

$$\Delta L_i = 15,2 \times 0,004 = 0,061 \text{ mm}$$

∆r	-0,002
Δr_{m}	0,005
Do	225
D	149,998
Dh	149,993
d	100
do	50
1	20.55

$$L_a = 20,55 - 0,061 = 20,489 \text{ in (mm)}$$

1. Lagermontage

2.2 Sichern des Außenrings

Um den Außenring des Wälzlagers in axialer Richtung zu sichern, wird in der Regel ein Lagerdeckel verwendet, der mit Bolzen gesichert wird. Wenn ein Bolzen zu fest angezogen wird oder mehrere Bolzen ungleichmäßig angezogen werden, kann sich der Außenring verformen. Daher sollten die Abmessungen der umgebenden Teile sowie die Luft zwischen Lagerdeckel und Gehäuse überprüft werden, bevor die Lager in das Gehäuse eingebaut werden.

Messen Sie die Breite des Lagers sowie die Breite des Gehäuseabschnitts, in dem sich die Lagersitze befinden. Messen Sie außerdem, wie weit der Lagerdeckel hervorsteht (Vorsprung); wenn erforderlich, bearbeiten Sie den Lagerdeckel, um die Luft zwischen Lagerdeckel und Gehäuse anzupassen (Abb. 1.17). Bei einer DB-Anordnung empfehlen wir, zwischen Lagerdeckel und Stirnfläche des Gehäuses an dieser Stelle eine Luft von 0,01 bis 0,05 mm herzustellen. Dabei sollte die Lagergröße gemäß Tabelle 1.5 auf Seite 263 berücksichtigt werden. Erst danach sollten die Bolzen vollständig angezogen werden.

In Abb. 1.18 bis 1.20 sind Beispiele für Verformungen der Außenringlaufbahn dargestellt, die durch Sichern des Außenrings entstehen.

Abb. 1.18: Luft zwischen Lagerdeckel und Gehäuse; Verformung der Außenringlaufbahn bei einem kleinen Wälzlager

Abb. 1.19: Beispiel für Verformung des Außenrings eines Schrägkugellagers durch die Kraft, mit der die Bolzen des Lagerdeckels festgezogen wurden

Abb. 1.18 Beispiel für Verformung des Außenrings durch Luft zwischen Lagerdeckel und Gehäuse

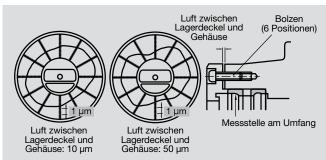


Abb. 1.19 Beispiel für Verformung des Außenrings durch Festziehen der Bolzen des Lagerdeckels

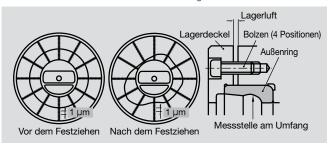


Abb. 1.20 Verformung des Außenrings eines zweireihigen Zylinderrollenlagers durch die Kraft, mit der die Bolzen des Lagerdeckels festgezogen wurden

Abb. 1.17 Einstellen des Lagerdeckels

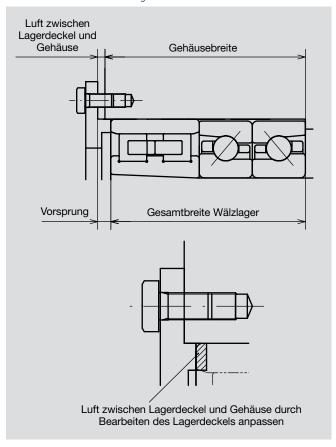
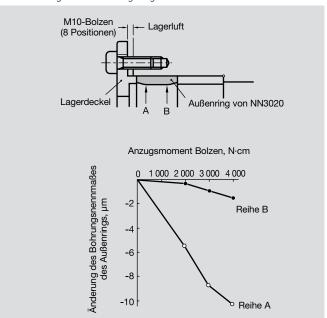



Abb. 1.20 Beispiel für Verformung des Außenrings eines zweireihigen Zylinderrollenlagers durch die Kraft, mit der die Bolzen des Lagerdeckels festgezogen wurden

Anmerkung zum Anpassen der Luft zwischen Lagerdeckel und Gehäuse bei DF-Anordnungen

Bei Lagern in einer DF-Anordnung (einschließlich DFD-, DFF-, DFT-Anordnungen usw.) verbleibt, solange die Außenringe noch nicht gesichert wurden, ein Überstand an den Außenringen. Die Gesamtbreite der Außenringe kann daher nicht direkt gemessen werden. Es gibt verschiedene Methoden, die genaue Gesamtbreite der Außenringe zu ermitteln:

- ① Messen Sie die Außenringbreite jedes Wälzlagers einzeln.
- ② Ordnen Sie die Wälzlager so an, dass keine Axialluft verbleibt: DT, DTT usw.
- ③ Messen Sie die Außenringbreite Ihrer Lageranordnung und nehmen Sie anschließend eine Korrektur um das Maß des Überstands vor.

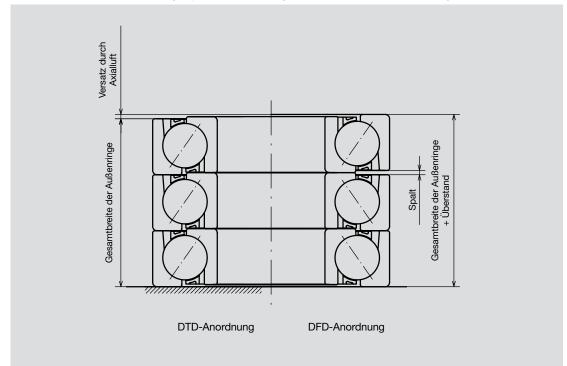


Abb. 1.21 Einfluss des Anordnungstyps auf die Messung der Gesamtbreite der Außenringe

Anmerkung zu Methode ①: Bei Lagern in Universalausführung ist die Außenringbreite jedes Lagers dem Wälzlagerprüfblatt zu entnehmen. Sie müssen sie daher nicht erneut messen.

Anmerkung zu Methode ②: Nachdem Sie die Lager für die Messung neu angeordnet haben, achten Sie bei der Montage darauf, die Reihenfolge und Ausrichtung der Lager nicht zu vertauschen.

Anmerkung zu Methode ③: Bei gepaarten Lagern ist der Überstand (f, b) auf dem Wälzlagerprüfblatt vermerkt, sodass Sie diesen Wert lediglich von dem Wert subtrahieren müssen, den Sie durch Messen der Außenringbreite Ihrer Anordnung ermittelt haben.

1. Lagermontage

3.1 Fettbefüllung

Befüllen der Lager mit Fett nach dem Reinigen

Nach Auswahl des für die jeweiligen Betriebsbedingungen geeigneten Fetts muss das Wälzlager sachgemäß damit befüllt werden. Werden Lager unsachgemäß oder mit zu viel Fett befüllt, kann die Einlaufzeit wesentlich länger ausfallen oder es kann zu einem ungewöhnlichen Temperaturanstieg kommen, dessen Folge ein Blockieren des Lagers sein kann. Beim Befüllen mit Fett ist umsichtig vorzugehen und die richtige Menge Fett zu verwenden. Die folgenden Verfahren werden empfohlen:

1. Vorabprüfung

Stellen Sie sicher, dass sich keine Fremdkörper im Wälzlager befinden. Lager für schnelllaufende Spindeln sollten vor der Fettbefüllung gereinigt und entfettet werden. Für sonstige Anwendungen ist es ratsam, das Korrosionsschutzmittel an den inneren Lageroberflächen zu entfernen, um ein Herausfließen von Fett zu verhindern, da das Fett nicht gut auf dem Korrosionsschutz haftet.

2. Fettgeber

Verwenden Sie zum präzisen Dosieren einen geeigneten Fettspender, beispielsweise eine Kunststoffspritze. Es empfiehlt sich, einen Spender mit Anzeige zu ver-wenden, damit die richtige Fettmenge eingebracht werden kann. Messen Sie alternativ das Gewicht des Lagers vor und nach dem Befüllen.

3. Fettmenge

Für Hochgenauigkeitslager empfohlene Fettmengen: Schrägkugellager für schnelllaufende Spindeln: 15–30 % des Innenraums Zylinderrollenlager für schnelllaufende Spindeln: 10–15 % des Innenraums

Die Schmiermittelgebrauchsdauer lässt sich durch Erhöhen der Fettmenge verlängern. Allerdings erhöht sich damit auch die Einlaufzeit und der Temperaturanstieg im Wälzlager fällt höher aus. Die Vor- und Nachteile müssen gegeneinander abgewogen werden und die Fettmenge muss auf die jeweiligen Betriebsbedingungen abgestimmt sein.

Wird für kleine Lager mit einem Bohrungsdurchmesser von bis zu 30 mm eine Fettmenge gewählt, die 15 % des Innenraums ausfüllt, ist die Gesamtmenge des Fetts sehr klein. In solchen Fällen empfehlen wir 20 %, um eine höhere Gebrauchsdauer zu erzielen. In Tabelle 1.3 sind empfohlene Fettmengen nach Lagerbauart aufgeführt.

- Befüllmethode für Kugellager

- (1) Befüllen Sie die Zwischenräume der Kugeln gleichmäßig. Wird ein ringgeführter Käfig verwendet, tragen Sie eine dünne Schicht Fett auf die geführte Oberfläche des Käfigs auf.
- (2) Drehen Sie das Lager von Hand, um das Fett gleichmäßig zu verteilen. Achten Sie dabei darauf, Schrägkugellager keinen Axiallasten in entgegengesetzter Richtung auszusetzen.

- Befüllmethode für Zylinderrollenlager

- (1) Tragen Sie ca. 80 % der Fettmenge gleichmäßig auf die Laufflächen der Rollen auf. Achten Sie darauf, die Käfigbohrung nicht zu stark zu befetten. Fett in der Käfigbohrung verteilt sich während der Einlaufzeit schlecht. Ein schneller Temperaturanstieg oder eine lange Einlaufzeit können die Folge sein.
- (2) Verteilen Sie das auf die Laufflächen aufgetragene Fett dünn auf die Stirnflächen der Rollen, auf die Berührungsstellen des Rollenkäfigs und entlang der Kanten der Stirnflächen jeder Käfigtasche.
- (3) Tragen Sie die verbleibenden 20 % des Fetts dünn auf die Laufbahn des montierten Außenrings auf (bei Wälzlagern vom Typ NNU auf die Laufbahn des Innenrings).

Abb. 1.22 Mit Fett befülltes Schrägkugellager

Abb. 1.23 Mit Fett befülltes Zylinderrollenlager

Tabelle 1.3 Empfohlene Fettmengen für schnelllaufende Spindellager

Maßeinheit: cm³/Wälzlager Schrägkugellager: 15 % des Innenraums Zylinderrollenlager: 10 % des Innenraums Bohrungs-BNR10 Bohrungs-BNR19 durch-BER10 TAC29F TAC20F Serie NN49 Serie Serie Serie kennzahl messer BER19 Serie 70 Serie 72 BAR10 TAC20D **NN39** NN30 TAC29D Serie NNU49 N10 (mm) Serie 79 BTR10 5 5 0,03 0,04 0,07 6 6 7 7 0,07 8 0,1 8 0,1 0,16 00 10 0.06 0,13 0,06 0,23 12 0,14 01 15 0,18 02 0,11 0,29 17 0,13 0,24 03 0,41 04 20 0,23 0,44 0,68 05 25 0,27 0,52 0,85 0,4 _ 30 0,31 0,58 06 0,69 1,2 0,6 0,4 07 35 0,48 0,98 1,7 0,78 0,8 0,6 08 40 0,75 1,2 2,1 0,92 1 0,7 09 45 0,83 1,5 2,6 1,3 1,2 1 10 3 1,1 50 0,91 1,6 1,2 1,4 <u>1,7</u> 55 1,1 2,4 3,9 1,7 2 1,5 11 <u>2,4</u> 12 60 1,2 2,6 4,8 1,8 <u>2,5</u> 2,1 1,6 1,9 1,3 2,6 2,2 1,6 13 65 5,7 2,7 14 70 2.1 3,6 6,5 2,8 <u>3,9</u> 3,2 2.4 15 75 2,3 3,6 7 2,9 <u>4,2</u> 3,5 2,5 4,7 80 8,7 3,8 3,5 16 2,4 5,1 <u>5,3</u> 3,5 5,3 4 4,9 17 85 11 3,7 <u>5,5</u> 18 90 3,6 13 5,5 6,5 4,5 <u>7,6</u> 6,6 19 95 3,6 6,8 16 5,7 4,7 8 6,6 20 100 4,9 7,2 19 <u>8,3</u> 5,4 4,9 6,1 <u>5,3</u> 4,5 6,8 21 105 5,1 9 23 <u>10</u> 5,6 9,3 5,9 7,6 4,6 9,1 22 110 12 27 5,7 11 7,5 5,2 <u>5,7</u> <u>12</u> 4,8 24 120 7,9 12 31 9,8 <u>7,6</u> <u>13</u> 8,4 6,5 13 8,1 9 12 26 130 18 34 15 9,5 19 11 8.5 18 28 140 9,9 20 42 17 44 12 9,3 20 13 150 25 22 24 30 14 53 33 55 14 23 16 67 32 160 16 34 61 26 36 20 15 29 21 170 21 34 14 42 80 33 39 84 15 38 38 180 22 51 82 46 54 116 28 23 51 36 36 38 190 27 47 50 127 30 54 37 86 51 24 200 39 40 76 105 61 80 156 44 35 69 47

83

96

158

169

198

214

299

37

52

88

95

37

40

70

75

94

99

140

157

64

68

101

107

71

76

111

157

180

283

324

89

102

157

153

42

41

77

80

220

240

260

280

44

48

52

56

[·] Zur Umrechnung in den Gewichtswert multiplizieren Sie bei den auf Seite 221 aufgeführten Fetten den oben angegebenen Wert mit 0,93 (Dichte 0,93 g/cm³).

Die empfohlenen Fettmengen für Axial-Schrägkugellager für Kugelgewindetriebe finden Sie auf Seite 148.

[·] Bei Bohrungsdurchmessern von über 280 mm wenden Sie sich an NSK.

1. Lagermontage

3.2 Montage von Wälzlagern mit zylindrischer Bohrung (1) Presspassung

Presspassungen werden tendenziell bei kleineren Lagern verwendet. Ein Montagewerkzeug wird, wie in Abb. 1.24 dargestellt, am Innenring angesetzt und das Lager wird langsam mit einer Presse auf die Welle gepresst, bis der Innenring an der Wellenschulter anliegt. Beim Herstellen einer Presspassung des Innenrings darf das Montagewerkzeug nie am Außenring angesetzt werden, weil dadurch Eindrücke oder sonstige Beschädigungen auf den Laufbahnen entstehen würden.

Es wird empfohlen, die zusammenzupassenden Teile <u>leicht</u> einzuölen, um das Einführen zu erleichtern. Verwenden Sie zur Montage von Hochgenauigkeitslagern <u>niemals</u> einen Hammer.

Bei teilbaren Lagern wie Zylinderrollenlagern oder Kegelrollenlagern lassen sich die Innen- und Außenringe als getrennte Einheiten auf die Welle und in das Gehäuse montieren. Achten Sie beim Zusammenbauen der beiden Einheiten besonders aufmerksam darauf, die Innen- und Außenringe korrekt auszurichten. Achtloses oder gewaltsames Arbeiten kann Kratzer an den Berührungsstellen der Rollkörper erzeugen.

(2) Schrumpfpassung

Zum Herstellen einer Presspassung mit großen Wälzlagern oder solchen mit einem großen Übermaß müssen hohe Kräfte aufgebracht werden. Daher wird häufig eine Schrumpfpassung verwendet. Die Innenringe der Lager werden erwärmt, um sie vor der Montage aufzuweiten. Bei dieser Methode muss keine übermäßige Kraft auf die Lager aufgebracht werden und sie lassen sich mit wenig Zeitaufwand montieren.

Die zum Herstellen einer Schrumpfpassung erforderliche Temperatur hängt von der Lagergröße und dem gewählten Übermaß ab. Um Ihnen die Auswahl der richtigen Temperatur zu erleichtern, zeigt Abb. 1.25 die Aufweitung des Innenrings bei verschiedenen Temperaturunterschieden und für unterschiedliche Lagergrößen.

Beim Herstellen einer Schrumpfpassung sind folgende Vorsichtsmaßnahmen zu ergreifen:

- 1. Erwärmen Sie Wälzlager nicht auf mehr als 120 °C.
- Erwärmen Sie die Wälzlager auf eine Temperatur, die 20 bis 30 °C höher ist als die niedrigste Temperatur, die zum Montieren ohne Übermaß erforderlich ist, da sich der Innenring während der Montage etwas abkühlt.
- 3. Nach der Montage schrumpfen die Lager sowohl in axialer als auch in radialer Richtung, während sie sich abkühlen. Daher sollte das Lager, nachdem es sich ausreichend abgekühlt hat, mithilfe des Montagewerkzeugs oder durch weiteres Festziehen der Sicherungsmutter erneut geklemmt werden. Ziel ist, jegliche Luft zwischen Wälzlager und Schulter zu beseitigen (Abb. 1.26).

Abb. 1.24 Herstellen einer Presspassung des Innenrings

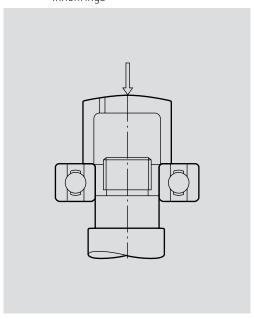


Abb. 1.25 Temperatur und Wärmeausdehnung eines Innenrings

Wälzlager-Anwärmgeräte von NSK erleichtern das Herstellen einer Schrumpfpassung. Weitere Informationen dazu finden Sie auf den Seiten 184–185.

Abb. 1.26 Zusätzliches Anpressen

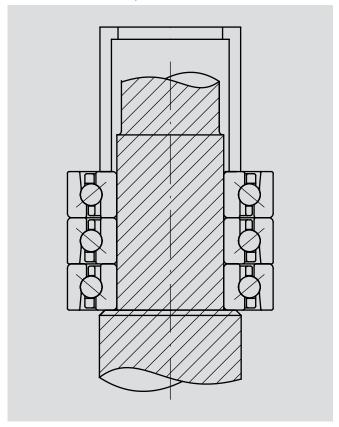
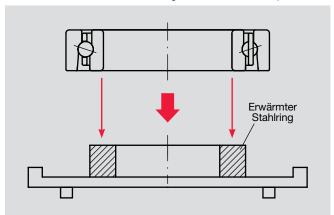



Abb. 1.27 Erwärmen des Innenrings mithilfe einer Heizplatte

1. Lagermontage

3.3 Sichern des Wälzlagers (1) Sichern des Innenrings

Der Innenring wird in der Regel durch Festziehen der Sicherungsmutter auf der mit einem Gewinde versehenen Welle gesichert, weshalb die Rechtwinkligkeit zwischen Gewinde und Stirnfläche der Sicherungsmutter sehr wichtig ist. Selbst wenn die Genauigkeit einer einzelnen Komponente gut ist, kann ein Spalt zwischen Welle und Sicherungsmutter zu einer leicht geneigten Sicherungsmutter führen, wodurch es zu einem Ausrichtungsfehler der Welle kommt. In der Folge ist das Wälzlager falsch ausgerichtet. Daher sind Anpassungen erforderlich, um eine konstante Laufgenauigkeit zu gewährleisten. Es ist wichtig, dass die Sicherungsmutter vollständig festgezogen wird, um jegliches Risiko auszuschließen, dass sie sich lockert. Angaben zu Anzugsmomenten von Sicherungsmuttern für Wellen finden Sie in Tabelle 1.5.

Um das Risiko einer Unwucht durch einen Ausrichtungsfehler der Sicherungsmutter und für Luft zwischen dem Gewinde der Welle und dem Gewinde der Sicherungsmutter zu verringern, werden häufig gestufte Hülsen verwendet, um eine Presspassung zwischen Welle und Hülsenbohrung zu erzielen. Im Vergleich zu einer Sicherungsmutter löst sich eine gestufte Hülse allerdings im Dauerbetrieb mit einer größeren Wahrscheinlichkeit, daher muss ihr einwandfreier Sitz regelmäßig überprüft werden.

Wenn ein breiter Zwischenring zwischen zwei miteinander kombinierten Wälzlagern mit fester Vorspannung verwendet wird und das Anzugsmoment der Sicherungsmutter zu hoch ist, kann sich der Zwischenring am Innenring verformen und die Vorspannung so verändern, dass sie höher ist als erwartet. Diese Verformung muss beim Bestimmen der Vorspannung berücksichtigt werden.

Wälzlager für Werkzeugmaschinenspindeln

Empfohlene Werte für die Anziehkraft finden Sie in Tabelle 1.5.

Bitte beachten Sie: Je größer das Übermaß, desto höher die Montagekraft. Erhöhen Sie daher bitte die Montagekraft der Presspassung entsprechend, um den gestiegenen Widerstand zu überwinden und auf eine vergleichbare Anzugkraft wie bei der Sicherungsmutter zu kommen.

Bei Wälzlagern für Hochgeschwindigkeitsanwendungen ist besonders umsichtig vorzugehen.

Axial-Schrägkugellager für Kugelgewindetriebe

Tabelle 1.5 enthält empfohlene Werte zum Festziehen der Sicherungsmutter bei einer Kombination in X-Anordnung (DF, DFD, DFT usw.).

Für eine Kombination in O-Anordnung (DB, DBD, DBT usw.) empfehlen wir, auf den Wert der Anziehkraft aus Tabelle 1.5 die Vorspannung aufzuschlagen, um die empfohlene Kraft zum Festziehen der Sicherungsmutter zu erhalten. Vergleichen Sie jedoch den auf diese Weise ermittelten Wert mit dem Wert für die Montagekraft K (Seite 263 unten rechts). Wenn die Montagekraft höher ist, verwenden Sie die Montagekraft und schlagen Sie eine Toleranz auf, um die Anziehkraft für die Sicherungsmutter zu erhalten.

(2) Sichern des Außenrings

Passen Sie die Luft zwischen Lagerdeckel und Gehäuse an, wie in Tabelle 1.5 angegeben, und ziehen Sie anschließend die Bolzen fest. Gehen Sie beim Anziehen der Bolzen sorgsam vor, da ungleichmäßige Anziehkräfte die Unrundheit des Außenrings erhöhen.

In Tabelle 1.4 finden Sie Referenzwerte für das Anzugsmoment je Bolzengröße.

Tabelle 1.4 Anzugsmomente für Bolzen zum Sichern des Außenrings

Nenngewindemaß	Anzugsmoment N·m
M3×0,5	1,7
M4×0,7	3,9
M5×0,8	7,9
M6×1	13,5
M8×1,25	32,8
M10×1,5	65,0
M12×1,75	114
M14×2	180
M16×2	281
M18×2,5	387
M20×2,5	549
M22×2,5	747
M24×3	949

Hinweis: Das Anzugsmoment hängt von verschiedenen Bedingungen ab, beispielsweise vom Werkstoff oder von der Oberflächenbeschaffenheit.
Die Werte in dieser Tabelle sind daher nur Richtwerte.

Tabelle 1.5 Kraft zum Festziehen der Sicherungsmutter und Luft zwischen Lagerdeckel und Gehäuse

Lager decket drid Gerladse			
Nennlagerbohrung (mm)	Anziehkraft Sicherungsmutter (N)	Anzugsmoment Sicherungs- mutter, Referenzwert (N·m)	Luft zwischen Lagerdeckel und Gehäuse (mm)
6	1 500	2	0,01~0,03
8	1 500	2	0,01~0,03
10	1 500	3	0,01~0,03
12	3 000	7	0,01~0,03
15	3 000	8	0,01~0,03
17	3 000	9	0,01~0,03
20	4 900	17	0,01~0,03
25	4 900	21	0,01~0,03
30	4 900	25	0,01~0,03
35	9 800	57	0,01~0,03
40	9 800	64	0,01~0,03
45	9 800	72	0,01~0,03
50	9 800	80	0,01~0,03
55	14 700	132	0,01~0,03
60	14 700	142	0,01~0,03
65	14 700	153	0,01~0,03
70	14 700	166	0,01~0,03
75	14 700	176	0,01~0,03
80	19 600	251	0,01~0,03
85	19 600	267	0,01~0,03
90	19 600	281	0,01~0,03
95	19 600	296	0,01~0,03
100	19 600	311	0,01~0,03
105	19 600	327	0,01~0,03
110	19 600	343	0,01~0,03
120	19 600	371	0,01~0,03
130	19 600	403	0,01~0,03
140	29 400	649	0,03~0,05
150	29 400	695	0,03~0,05
160	29 400	745	0,03~0,05
170	29 400	796	0,03~0,05
180	29 400	841	0,03~0,05
190	29 400	886	0,03~0,05
200	29 400	932	0,03~0,05
220	39 200	_	0,03~0,05
240	39 200	-	0,03~0,05
260	39 200	-	0,03~0,05
280	39 200	-	0,03~0,05
300	39 200	-	0,03~0,05

Hinweis: Bei Bohrungsdurchmessern von über 300 mm wenden Sie sich an NSK.

Gleichung zum Umrechnen des Anzugsmoments für die Sicherungsmutter

$$T = 0, 5 \cdot F \{ d_{p} \cdot \tan (p^{*} + \beta) + d_{w} \cdot \mu_{w} \} \cdot 10^{-3}$$

[N·m]

Die Werte für das Anzugsmoment der Sicherungsmutter in der Tabelle wurden mit einem Reibungskoeffizienten von 0,15 berechnet.

T : Anzugsmoment Sicherungsmutter [N⋅m]

F: Anziehkraft Sicherungsmutter [N]

d_p: Effektiver Durchmesser der Sicherungsmutter [mm]

 p^* : Reibungswinkel der Oberfläche der Sicherungsmutter p^* =tan $^{-1}\mu_{\rm S}$

 μ_{s} : Reibungskoeffizient der Oberfläche der Sicherungsmutter

 $d_{\rm w}\,$: Reibmoment, äquivalenter Durchmesser an Sitzfläche der Sicherungsmutter [mm]

 $\mu_{\rm w}\,$: Reibungskoeffizient der Sitzfläche der Sicherungsmutter

B :Voreilungswinkel der Mutter B=tan⁻¹ (Teilung/(3,142 d_n))

- Gleichung für Kraft zum Herstellen einer Presspassung (Montagekraft)

$$K = \mu \cdot p_m \cdot \pi \cdot d \cdot B [N]$$

$$P_{\rm m} = \frac{E}{2} \frac{\Delta d}{d} \frac{(1 - k^2) (1 - k_0^2)}{1 - k^2 k_0^2}$$

u : Reibungskoeffizient an Passfläche [= 0,12]

p_m: Anpressdruck [MPa]

d : Wellendurchmesser [mm]

B: Wälzlagerbreite [mm]

∆d : effektives Übermaß [mm]

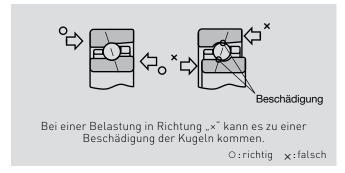
E: Elastizitätsmodul von Stahl [MPa]

k: Wandstärkenverhältnis Innenring $[k=d/D_i]$

D: : Laufbahndurchmesser Innenring [mm]

k₀: Wandstärkenverhältnis Hohlwelle(k0 = d0/d)

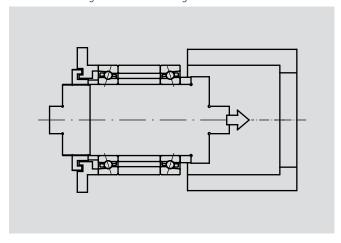
 d_{n} :Bohrungsdurchmesser Hohlwelle [mm]


1. Lagermontage

3.4 Vorsichtsmaßnahmen für die Montage von Schrägkugellagern

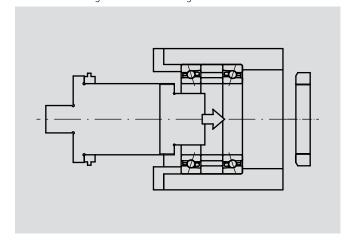
Konstruktionsbedingt kann ein Schrägkugellager axiale Belastungen ausschließlich in einer Richtung aufnehmen. Bei Montage eines Schrägkugellagers auf Welle oder in ein Gehäuse darf das Schrägkugellager daher nicht in falscher Richtung belastet werden.

Achten Sie beim Montieren von Lagersätzen besonders auf die Reihenfolge, da sie bei X- und O-Anordnungen unterschiedlich ist.


Abb. 1.28 Belastungsrichtung bei Schrägkugellagern

O-Anordnung:

- ① Pressen Sie die Lager auf die Welle.
- ② Ziehen Sie die Sicherungsmutter fest, um die Vorspannung zu erzeugen.
- ③ Führen Sie die Welle mit den Lagern in das Gehäuse ein und bringen Sie den Lagerdeckel an.

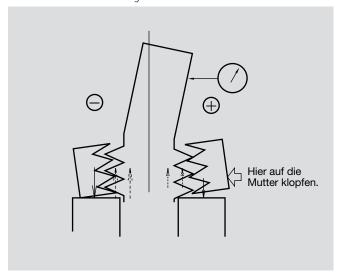

Abb. 1.29 Montage für O-Anordnung

X-Anordnung:

- ① Führen Sie die Lager in das Gehäuse ein.
- ② Sichern Sie den Lagerdeckel als Vorbereitung für das Erzeugen der Vorspannung.
- ③ Führen Sie die Welle in die Innenringe ein und ziehen Sie die Sicherungsmutter der Welle fest.

Abb. 1.30 Montage für X-Anordnung

Für die Demontage werden alle Schritte in umgekehrter Reihenfolge durchgeführt.


4. Kontrolle nach der Montage

4.1 Rundlaufgenauigkeit

Nur bei Komponenten mit der geforderten Maßhaltigkeit und sachgemäßem Einbau kann die geforderte Genauigkeit der Spindel gewährleistet werden. So kann beispielsweise ein Ausrichtungsfehler der Sicherungsmutter dazu führen, dass sich die Welle und das Lager beim Festziehen verbiegen, siehe Abb. 1.31..

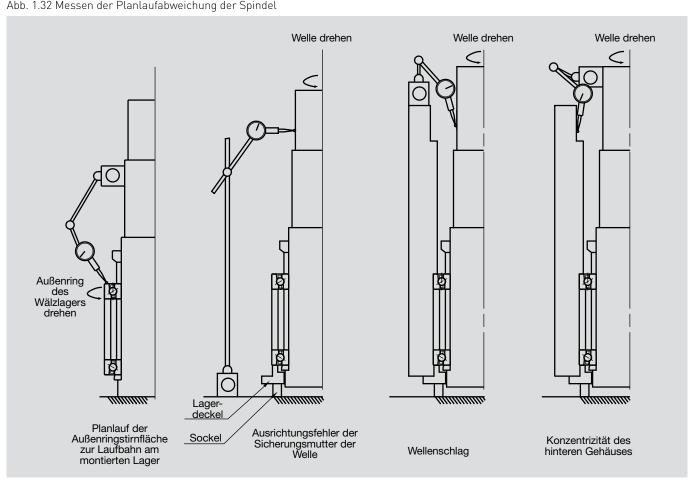

- 1: Planlauf der Außenringstirnfläche zur Laufbahn am montierten Schrägkugellager: Nehmen Sie eine Anpassung von max. 0,002 mm vor, indem Sie leicht auf die Stirnfläche des Außenrings
- 2: Ausrichtungsfehler der Sicherungsmutter der Welle: Stellen Sie sicher, dass der Ausrichtungsfehler der Wellenmutter 0,005 mm oder weniger beträgt (Abb. 1.31).
- 3: Wellenschlag: ≤0.005mm
- 4: Konzentrizität des hinteren Gehäuses: ≤0,015mm

Abb. 1.31 Korrektur der Ausrichtung von Wellensicherungsmuttern

Die vorstehend angegebenen Werte sind lediglich Beispiele. Legen Sie angestrebte Genauigkeitswerte auf Grundlage der Spindelgröße und der Anwendung fest. Wenn sich die angestrebten Genauigkeitswerte nicht erzielen lassen, zerlegen Sie die Baugruppe und überprüfen Sie die Maßhaltigkeit der Komponenten erneut.

Abb. 1.32 Messen der Planlaufabweichung der Spindel

1. Lagermontage

4.2 Überprüfung der Vorspannung nach der Lagermontage

Wird eine höhere Vorspannung erzeugt, steigt zwar die Lagersteifigkeit, allerdings nimmt auch die Wärmeentwicklung zu. Im Extremfall kann dies zum Blockieren des Lagers führen. Die Vorspannung muss daher optimal auf die jeweiligen Betriebsbedingungen abgestimmt sein und nach dem Einbau überprüft werden. Nachfolgend werden die verschiedenen Methoden zum Messen der Vorspannung vorgestellt.

Bei Zylinderrollenlagern empfiehlt es sich nach Herstellung der Vorspannung ein GN-Hüllkreismessgerät zur Überprüfung des Lagerspiels zu verwenden (siehe Seite 252).

Messen der Vorspannung

Es gibt drei Methoden, die Vorspannung von Lagern zu überprüfen, nachdem sie auf eine Spindel montiert wurden: Messung des Anlaufmoments, Messung der Verlagerung der Welle bei Belastung (Messung der axialen statischen Steifigkeit) und Messung der Eigenfrequenz. Die Merkmale der einzelnen Methoden sind in Tabelle 1.6 zusammengefasst.

Für Kegelrollenlager eignet sich die Messung des Anlaufmoments, da die axiale Steifigkeit von Kegelrollenlagern – wie auf Seite 216 gezeigt – nicht von der Höhe der Vorspannung abhängt.

Tabelle 1.6 Methoden zum Messen der Vorspannung nach Montage

	Messung des Anlaufmoments	Messung der Verlagerung bei Belastung	Messung der Eigenfrequenz
Vorteile	Für hohe Vorspannung geeignet Bei hohem Anlaufmoment ist Messfehler klein	Für leichte Vorspannung geeignet	Hohe Messgenauigkeit Hervorragende Wiederholgenauigkeit
Nachteile	Nicht für leichte Vorspannung geeignet Bei geringem Anlaufmoment große Messabweichungen	Nicht für hohe Vorspannung geeignet Erfordert möglicherweise große Vorrichtung zum Aufbringen der Vorspannung Messung kann durch Verformung der Anschlussteile beeinflusst werden	Sehr anfällig für Einflüsse durch die Struktur des Messgestells und die Spindelausrichtung

(1) Messung des Anlaufmoments

Messen Sie die anfänglich benötigte Tangentialkraft, die zum Anfahren der Spindel aus dem Stillstand erforderlich ist, mithilfe eines Zug-Druck-Kraftmessgeräts (Abb. 1.33). Das Produkt aus der benötigten Tangentialkraft F und dem Wellenradius am Messpunkt (d/2) ergibt das Anlaufmoment T.

 $T = F \cdot d/2$

Ermitteln Sie die Höhe der Vorspannung aus der Beziehung zwischen Vorspannung und Anlaufmoment (Abb. 1.34).

Die Messung des Anlaufmoments gestaltet sich einfach. Allerdings variiert die Messgenauigkeit je nach Höhe des Anlaufmoments. Da das Anlaufmoment bei den meisten schnelllaufenden Werkzeugmaschinenspindeln niedrig ist, ist dort der Messfehler höher.

Wenn die Ölfilmbildung an den Berührungsstellen der Rollkörper während der Messung instabil ist, kann es zu einem Haft-Gleit-Effekt kommen: Bei diesem Phänomen wird die Drehung zunächst nicht eingeleitet, obwohl eine Tangentialkraft aufgebracht wird; mit schrittweiser Erhöhung der Tangentialkraft setzt die Drehung plötzlich ein. In diesem Fall ist die gemessene Kraft tendenziell höher als die tatsächliche Kraft. Führen Sie daher ausreichend viele Messungen durch, um solche Ausreißer auszuschließen.

Abb. 1.33 Messung des Anlaufmoments

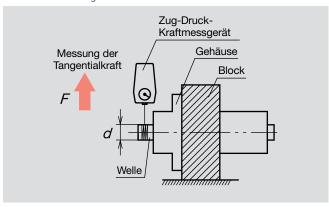
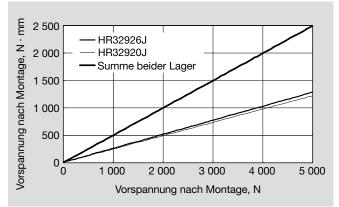



Abb. 1.34 Beziehung zwischen Anlaufmoment und Vorspannung

(2) Messung der Verlagerung bei Belastung

Beaufschlagen Sie die Welle mit einer Axiallast und messen Sie die axiale Verschiebung der Welle (Abb. 1.35). Die Vorspannung ergibt sich aus der Beziehung zwischen der axialen Verschiebung und der Vorspannung (Abb. 1.36).

Diese Methode eignet sich für Kugellager, da sie auf eine Änderung der Vorspannung mit einer großen Änderung der Steifigkeit reagieren. Die Methode ist gut geeignet für Spindeln mit einer moderaten axialen Steifigkeit, da sich die erzwungene Verlagerung leicht messen lässt. Im Gegensatz dazu kann es beim Messen von Spindeln mit hoher axialer Steifigkeit erforderlich sein, spezielle hydraulische Vorrichtungen zu verwenden, um eine ausreichend große Axiallast aufbringen zu können. Beispiel: Bei einer axialen Steifigkeit von 200 N/µm ist zum Verlagern der Spindel um 10 µm eine Axiallast von 2000 N erforderlich.

Bei einer übermäßigen Belastung kann es sowohl im Lager als auch bei den Anschlussteilen zu einer elastischen Verformung kommen; in diesem Fall ist der Messwert tendenziell niedriger als die tatsächliche Vorspannung.

(3) Messung der Eigenfrequenz

Versetzen Sie die Welle in axialer Richtung in Schwingung und messen Sie ihre Resonanzfrequenz (Abb. 1.37). Bei Schrägkugellagern liefert diese Messmethode die genauesten Ergebnisse, außerdem lässt sie sich am präzisesten wiederholen. Allerdings können die Messergebnisse durch die Struktur des Messunterlage beeinflusst werden: Änderungen an der Fixierung der Spindel und/oder ihrer Ausrichtung wirken sich auf das Messergebnis aus. Anwender sollten daher neben dieser Messmethode parallel möglichst eine weitere Methode anwenden und den Zielwert bei dessen erstem Auftreten festlegen.

 $K_a = m \left(\frac{\pi \cdot F_z}{500} \right)^2$

 K_a : Axiale Federkonstante des Lagers (N/ μ m)

 F_z : Resonanzfrequenz (Hz)

m : Masse des rotierenden Körpers

Abb. 1.35 Messung der Verlagerung bei Belastung

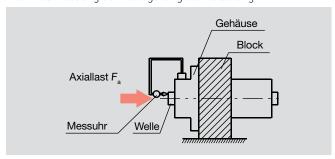


Abb. 1.36 Beziehung zwischen axialer Verschiebung und Vorspannung

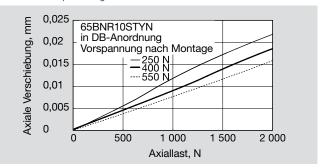


Abb. 1.37 Messung der Eigenfrequenz

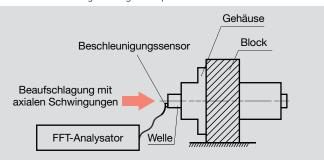
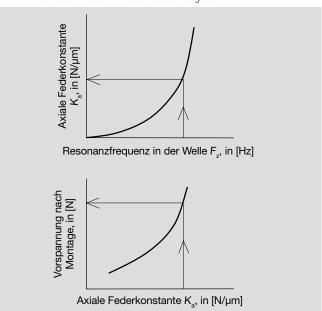



Abb. 1.38 Beziehung zwischen Resonanzfrequenz der Welle und axialer Federkonstante des Lagers

2. Inspektion im Betrieb

Vorbereitung für Betrieb

Nach Abschluss der Spindelmontage schließen Sie die Spindel an die Spannungsquelle an.

- Anschluss an Motor

Wenn Sie Keilriemenantriebe verwenden, stellen Sie die Parallelität zwischen der Riemenscheibe der Spindel und der Riemenscheibe des Motors sicher und beseitigen Sie eventuelle Ausrichtungsfehler.

Kupplungsantriebe müssen gut gewuchtet und auf Versatz und Ausrichtungsfehler geprüft sein.

Abb. 2.1 Keilriemenantrieb

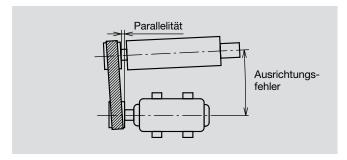
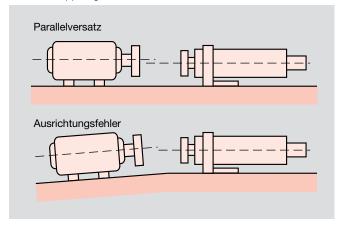



Abb. 2.2 Kupplungsantrieb

- Auswuchtung

Jede Unwucht sich drehender Teile führt aufgrund der Zentrifugalkraft zu einer exzentrischen Belastung während der Rotation. In der Folge entstehen Schwingungen und die Bearbeitungsgenauigkeit leidet ebenso wie die Lagerlebensdauer (Abb. 2.3).

Empfehlungen für die Auswuchtgüte für unterschiedliche Rotortypen sind in ISO 1940/1 aufgeführt. Tabelle 2.1 und Abb. 2.4 enthalten Auszüge aus dieser Norm. Verwenden Sie spezielle Ausrüstung zum Messen von ε (zulässige verbleibende spezifische Unwucht) bei Anwendung der Werte aus Tabelle 2.1.

Abb. 2.3 Lagerbelastung durch Unwucht

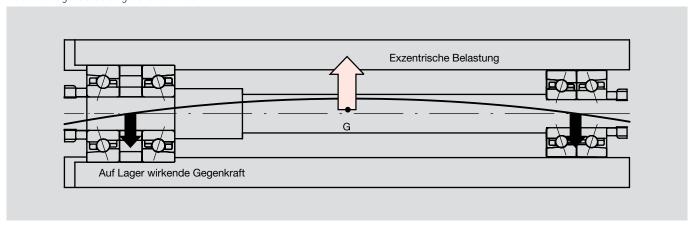
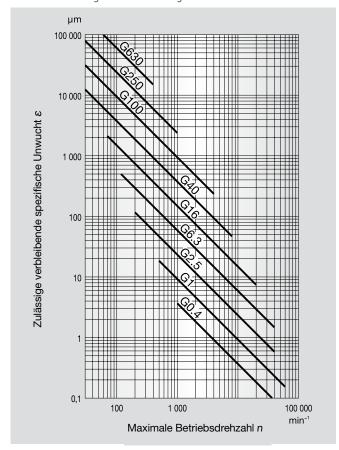



Tabelle 2.1 Auswuchtgüte und Beispiele für Rotortyp

Auswuchtgüte	Beispiel für Rotortyp	
G0.4	Präzisionsschleifmaschine	
G1.0	Spindeln für Schleifmaschinen, kleine Motoren mit besonderen Anforderunger	
G2.5	Werkzeugmaschinenspindeln, mittlere und große Motoren mit besonderen Anforderungen	
G6.3	Komponenten von Werkzeugmaschinen und allgemeinen Maschinen	

Abb. 2.4 Zulässige verbleibende spezifische Unwucht auf Grundlage der Auswuchtgüte G

Inspektion im Betrieb

Führen Sie nach Abschluss der Montage einen Probelauf durch, um zu prüfen, ob das Wälzlager korrekt montiert wurde. Kleine Vorrichtungen können ggf. von Hand betrieben werden, um sicherzustellen, dass sie sich reibungslos drehen lassen. Zu überprüfen sind unter anderem die Bauteile auf Verschmutzung, Oberflächenbeschädigungen oder Eindrücke; ungleichmäßiges Drehmoment durch unsachgemäße Montage oder eine unsachgemäß bearbeitete Montagefläche; zu hohes Drehmoment durch mangelhafte Lagerluft, Montagefehler oder Dichtungs-

reibung. Wenn es keine Auffälligkeiten gibt, kann mit dem Einlaufen begonnen werden.

Da sich große Vorrichtungen nicht von Hand drehen lassen, kann elektrisch angefahren werden und nach ein paar Umdrehungen kann die Spannungsversorgung sofort wieder ausgeschaltet werden, sodass die Spindel auslaufen kann. Prüfen Sie auf Schwingungen, Geräuschentwicklung und sonstige Auffälligkeiten, um auf eine Berührung der sich drehenden Teile schließen zu können.

Beginnen Sie langsam und ohne Belastung mit dem Einlaufvorgang und erhöhen Sie die Drehzahl nach und nach, bis die maximale Drehzahl erreicht ist (Seite 270–271). Prüfen Sie während des Probelaufs auf Geräuschentwicklung, einen übermäßigen Anstieg der Lagertemperatur, Schmierstoffaustritt, verfärbten Schmierstoff usw. Bei Unregelmäßigkeiten unterbrechen Sie den Probelauf sofort und kontrollieren Sie die Maschine. Zerlegen Sie die Lager wenn nötig, um sie zu untersuchen.

Auch wenn die Temperatur an der Lageraußenfläche grundsätzlich ein Hinweis auf die Lagertemperatur ist, ist es besser, direkt die Außenringtemperatur über die Ölbohrungen zu messen.

Die Lagertemperatur sollte stetig steigen und innerhalb von ein bis zwei Stunden nach Beginn des Betriebs auf einem stabilen Niveau sein. Wenn im Lager Probleme auftreten oder es unsachgemäß eingebaut wurde, kann die Lagertemperatur schnell ansteigen und ungewöhnlich hoch werden. Dies geht möglicherweise auf eine übergroße Schmiermittelmenge, unzureichende Lagerluft, fehlerhafte Montage oder übermäßige Reibung der Dichtungen zurück. In Hochgeschwindigkeitsanwendungen kann die Wahl der falschen Lagerbauart und der falschen Schmiermethode zu einem ungewöhnlichen Temperaturanstieg führen.

Das Laufgeräusch des Lagers kann mit einem Geräuschprüfer oder anderen Instrumenten überprüft werden. Ein lautes metallisches oder ein anderes unregelmäßiges Geräusch weist auf ein unnormales Verhalten hin. Zu den möglichen Ursachen zählen eine falsche Schmierung, eine unzureichende Genauigkeit von Welle und Gehäuse, Beschädigungen am Lager und in das Lager eingedrungene Verunreinigungen.

Mögliche Ursachen und Abhilfemaßnahmen bei Unregelmäßigkeiten sind auf Seite 277 aufgeführt.

3. Einlaufvorgang

Einlaufen

Wird die Betriebsdrehzahl nach der Lagermontage plötzlich erhöht, kann es aufgrund unzureichender Schmierung zu Beschädigungen des Lagers oder Schmiermittelverschleiß kommen.

Ein ordnungsgemäßes Einlaufen mit schrittweiser Erhöhung der Betriebsdrehzahl ist unerlässlich. Dies gilt insbesondere für fettgeschmierte Lager, bei denen sich das Fett gleichmäßig verteilen muss. Der Einlaufvorgang sollte bei Raumtemperatur (15 °C bis 25 °C) durchgeführt werden. Dabei ist die Lagertemperatur zu überwachen.

Als maximale Betriebstemperatur des Lagers sollte ein Wert von etwa 60 °C (50 °C an der Außenseite des Spindelgehäuses) angestrebt werden. Dieser Wert darf höchstens um 5 °C überschritten werden. Steigt die Temperatur über diesen Wert hinaus, unterbrechen Sie den Einlaufvorgang vorübergehend oder verringern Sie die Drehzahl, damit die Temperatur sinkt.

Manche Spindelbaugruppen enthalten sowohl Zylinderrollenlager als auch Schrägkugellager. Da es im Vergleich
zu Kugellagern tendenziell länger dauert, Zylinderrollenlager auf eine stabile Temperatur zu bringen, muss die
schrittweise Erhöhung der Drehzahl auf die Zylinderrollenlager abgestimmt werden.

Hinweis

In Spindelbaugruppen mit Ölnebel- oder Öl-Luft-Schmierung besteht bei erster Inbetriebnahme oder nach einem längeren Betriebsstillstand die Gefahr eines plötzlichen Temperaturanstiegs. Überschüssiges Öl, das sich in den Ölleitungen des Schmiersystems angesammelt hat, kann plötzlich das Lagerinnere fluten, wodurch es zu einer Temperaturspitze kommt. Auch hier empfiehlt sich ein Einlaufen der Lagerungen, das allerdings wesentlich kürzer als bei Fettschmierung durchgeführt werden kann.

(1) Einlaufen durch Dauerlauf

Beim Einlaufen durch Dauerlauf wird die Betriebsdrehzahl, beginnend beim unteren Drehzahlbereich, schrittweise erhöht. Unterteilen Sie die maximale Betriebsdrehzahl gleichmäßig in mehrere Stufen und erhöhen Sie die Drehzahl schrittweise:

- 1. Beginnen Sie mit einer ausreichend niedrigen Betriebsdrehzahl.
- 2. Überwachen Sie den Temperaturanstieg.
- 3. Wenn sich die Temperatur stabilisiert hat, erhöhen Sie die Drehzahl auf die nächsthöhere Stufe.
- 4. Wiederholen Sie die Schritte 2 und 3, bis die maximale Betriebsdrehzahl erreicht ist.

Die maximale Betriebsdrehzahl wird in der Regel in zehn Stufen unterteilt, um die angestrebte Drehzahl für jede Stufe zu bestimmen. Warten Sie zwischen 30 Minuten und zwei Stunden, bis sich die Temperatur stabilisiert hat, und erhöhen Sie die Drehzahl erst dann auf die nächste Stufe. Abb. 3.2 zeigt Temperaturverläufe, die Ihnen dabei helfen zu entscheiden, ob die Drehzahl jeweils erhöht werden darf oder nicht. Bestimmen Sie die angestrebten Drehzahlen, die sich optimal für Ihre Anwendung eignen; überwachen Sie währenddessen die tatsächliche Temperatur Ihrer Spindel.

Dieser Vorgang ist zwar etwas zeitintensiv, hilft Maschinenbedienern jedoch dabei, potenzielle Spindeldefekte zu erkennen und somit kostspielige Beschädigungen der Wälzlager zu verhindern.

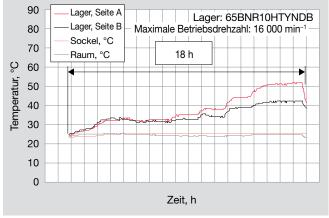
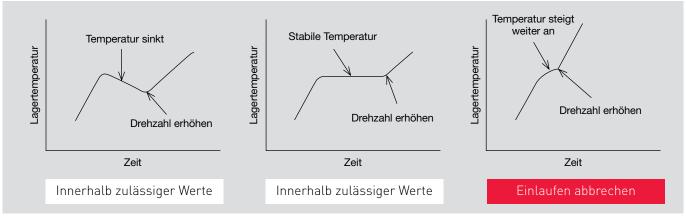



Abb. 3.2 Änderung der Lagertemperatur beim Einlaufen

Erhöhen Sie die Betriebsdrehzahl, wenn der Temperaturanstieg innerhalb der zulässigen Werte liegt.

(2) Einlaufen im Start-Stopp-Betrieb

Betreiben Sie die Spindel zunächst 15 Minuten lang ununterbrochen mit einer Drehzahl von etwa 500 min⁻¹ (100 min⁻¹ bei größeren Maschinen), damit sich das Schmiermittel verteilen kann. Unterteilen Sie die maximale Betriebsdrehzahl in acht bis zehn Stufen, um die angestrebte Drehzahl für jede Stufe zu bestimmen.

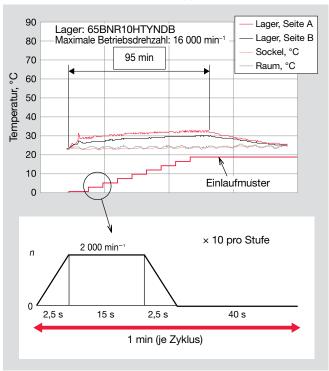

- 1. Jede Stufe wird in zehn Zyklen unterteilt, die jeweils etwa eine Minute dauern.
- 2. Erhöhen Sie die Drehzahl der Spindel schnell auf die angestrebte Drehzahl der jeweiligen Stufe, verlangsamen Sie dann wieder auf null und lassen Sie die Spindel für 40 Sekunden ruhen.
- 3. Wiederholen Sie diesen Zyklus ca. zehnmal.
- 4. Arbeiten Sie sich durch die verschiedenen Stufen und halten Sie sich dabei an die oben beschriebenen Verfahren, bis die maximale Betriebsdrehzahl erreicht ist.

Abb. 3.3 zeigt die Temperaturen während eines Einlaufens im Start-Stopp-Betrieb mit einer zugrunde gelegten maximalen Betriebsdrehzahl von 16 000 min⁻¹, acht Drehzahlstufen und zehn Zyklen je Stufe. Wir empfehlen, nachdem die maximale Betriebsdrehzahl erreicht ist, die Spindel etwa eine Stunde lang kontinuierlich mit dieser Drehzahl zu betreiben.

Der Drehzahlanstieg führt zu einer plötzlichen Schmiermittelzufuhr in das Lagerinnere, wodurch es zu einem starken Temperaturanstieg kommt. Während des Einlaufens im Start-Stopp-Betrieb wird die Spindel immer wieder angehalten, damit sich die Temperatur stabilisieren kann. Diese Vorgehensweise spart Zeit im Vergleich zum Einlaufen im Dauerlauf.

Die Zahl der angestrebten Drehzahlstufen und die Zahl der je Drehzahlstufe durchzuführenden Zyklen variieren je nach Spindelkonstruktion und Anordnung. Bitte ermitteln Sie die entsprechenden Werte an der jeweiligen Maschine.

Abb. 3.3 Verlauf der Zyklen und Änderung der Lagertemperatur beim Einlaufen im Start-Stopp-Betrieb

Diagnose von Lagerausfällen

1. Lagerausfälle und Abhilfemaßnahmen

Instandhaltung, Wartung und Reparatur

Um die Leistungsfähigkeit eines Lager möglichst lange zu erhalten, sind regelmäßige Überprüfungen und ordnungsgemäße Instandhaltung erforderlich. So lassen sich viele Lagerprobleme von vornherein vermeiden und die Anwendungen mit größerer Zuverlässigkeit und Produktivität bei geringeren Gesamtkosten betreiben. NSK empfiehlt regelmäßige Instandhaltung der Lager nach einem festgelegten Verfahren. Zu dieser Instandhaltung gehören die Überwachung der Betriebsbedingungen, die Nachschmierung oder der Austausch des Schmierstoffs und regelmäßige Inspektionen.

Während des Betriebs sollten regelmäßig das Laufgeräusch der Lager, Schwingungen, Temperatur und Schmierzustand überprüft werden. Bei Auffälligkeiten muss anhand von Tabelle 1.2 (Seite 277) zunächst die Ursache festgestellt werden, dann sind die erforderlichen Korrekturmaßnahmen zu ergreifen.

Falls notwendig, muss das betreffende Lager ausgebaut, zerlegt und genau untersucht werden.

Lagerausfall und Gegenmaßnahmen

Wenn Wälzlager fachgerecht eingebaut und betrieben werden, laufen sie im Allgemeinen länger als die rechnerische Ermüdungslebensdauer.

Oft jedoch fallen sie durch andere Umstände, die einfach zu vermeiden wären, vorzeitig aus. Dies hat nichts mit der Ermüdung des Wälzlagerwerkstoffs zu tun. Diese vorzeitigen Ausfälle gehen auf Fehler beim Einbau, bei der Handhabung oder Schmierung, das Eindringen von Verunreinigungen oder Fremdteilchen oder zu starke Wärmeentwicklung zurück. Verschürfungen an den Borden beispielsweise entstehen bei der Verwendung des falschen Schmierstoffs, durch ein ungeeignetes Schmiersystem, das Eindringen von Verschmutzung, Einbaufehler, übermäßige Wellendurchbiegung oder das Zusammenspiel mehrerer dieser Faktoren. Bei manchen Frühausfällen lässt sich die Ursache nur schwer bestimmen. Wenn alle Umstände zum Zeitpunkt des Ausfalls und vorher bekannt sind, z.B. die Anwendung und die Betriebs- und Umgebungsbedingungen, kann man durch Untersuchung des Ausfalls und seiner möglichen Ursachen vergleichbaren Ausfällen in der Zukunft vorbeugen. Tabelle 1.1 führt die häufigsten Ausfallarten, ihre wahrscheinlichen Ursachen und mögliche Abhilfemaßnahmen auf.

Tabelle 1.1 Ursachen und Gegenmaßnahmen bei Lagerausfällen

Ausfallart	belle 1.1 Ursachen und Gegenmaßnahmen bei Lagerausfällen Ausfallart Schaden Foto Wahrscheinliche Ursachen Gegenmaßnah			Gegenmaßnahmen
	Ausbrüche an einer Laufbahnseite im Radiallager		übermäßige Axialbelastung (mangelnde Loslagerfunktion)	lose Passung am Außenring von Loslagern ermöglicht Wärmedehnung der Welle
	Spur von Ausbrüchen im Radial- kugellager verläuft schräg zur Laufbahn. Ausbrüche bei Rollenlagern an der Kante der Laufbahn und Rollen-Mantelflächen.		Einbaufehler, Durchbiegung der Welle, falsche Toleranzen für Welle und Gehäuse	Lager sorgfältig einbauen und zentrieren; Lager mit großer Luft wählen, Welle und Gehäuseschulter genau ausrichten
Ausbrüche und Grübchen- bildung	Ausbrüche in der Laufbahn im Wälzkörperabstand		starke Stoßbelastung beim Einbau, Rostbildung bei längerem Stillstand des Lagers, Schürfmarken bei Zylinderrollenlagern	Lager sorgfältig einbauen; bei längeren Betriebsunterbrechungen Korrosionsschutzmittel auftragen
	vorzeitiger Ausfall durch Grübchenbildung in Laufbahn und Wälzkörper		zu geringe Lagerluft, übermäßige Belastung, unsachgemäße Schmierung, Rost usw.	richtige Passung, Lagerluft und Schmierung wählen
	vorzeitiger Ausfall durch Grübchenbildung in Lagersätzen		übermäßige Vorspannung	Vorspannung richtig einstellen
An- schmierungen	Aufreißungen oder Anschmierungen an Laufbahnen und Wälzkörper		mangelhafte Schmierung beim Anlaufen, Fett von zu steifer Konsistenz und hohe Beschleunigung beim Anlaufen	weicheres Fett verwenden, schnelle Beschleunigungen vermeiden

Ausfallart	Schaden	Foto	Wahrscheinliche Ursachen	Gegenmaßnahmen
An- schmierungen Rollenstirnflächen und Führungsbord			unzureichende Schmierung, Einbau- fehler oder hohe Axiallast	passenden Schmierstoff wählen, Einbauverfahren ändern
	Risse im Innen- oder Außenring		übermäßige Stoßbelastung, zu großes Übermaß in der Passung, unzureichende Zylindrizität, fehlerhafte Kegeligkeit der Hülse, großer Einstichradius, Entstehung von Wärmerissen und Fortschreiten von Ausbröckelungen	Belastungsbedingungen überprüfen, Passung von Lager und Hülse ändern. Der Einstichradius muss kleiner als die Kantenkürzung des Lagers sein.
Risse und Brüche	Bruch von Wälzkörper Gebrochener Bord	*	fortgeschrittener Lagerschaden, Stoßbelastung des Bords beim Einbau oder Fallenlassen des Lagers	mehr Vorsicht und Sorgfalt bei Handhabung und Einbau
	Käfigbruch		übermäßige Belastung des Käfigs aufgrund von Einbaufehlern und unsachgemäßer Schmierung	sorgfältiger Einbau der Lager, Schmierverfahren und Schmierstoff überprüfen
Eindrücke	Eindrücke auf den Laufbahnen im Wälzkörperabstand		Stoßbelastung beim Einbau oder übermäßige Belastung bei stillstehendem Lager	mehr Sorgfalt beim Einbau
Ellidi ücke	Eindrücke auf den Laufbahnen und Wälzkörpern		von Fremdkörpern wie Metallspäne oder Staub	Gehäuse reinigen, bessere Dichtungen einsetzen, sauberen Schmierstoff verwenden
	Stillstandsmarkierungen ähnlich Riffelbildung		Schwingungen bei stillstehendem Lager beim Versand/Transport oder bei Schwenkbewegung mit kleiner Amplitude	Welle und Gehäuse beim Transport sichern; Lagerung mit Öl schmieren; Schwingungen durch Aufbringen einer Vorspannung verringern
Übermäßiger	Reibkorrosion, Passungsrost, lokal begrenzter Verschleiß an Sitzflächen, rotbrauner staubartiger Abrieb		leichter Verschleiß der Sitzflächen	stärkeres Übermaß wählen, Öl aufbringen
Verschleiß	Verschleiß an Laufbahn, Wälzkörpern, Bord und Käfig		Eindringen von Fremdstoffen, unzureichende Schmierung und Rost	bessere Dichtungen einsetzen, Gehäuse reinigen, sauberen Schmierstoff verwenden
	Gleitverschleiß, Riefen auf der Sitzfläche	ntale land	unzureichende Überdeckung, ungenügend befestigte Hülse	größere Überdeckung wählen, Hülse ausreichend befestigen
Blockieren	Verfärbung und Aufschmelzen der Laufbahnen, Wälzkörper und Borde		unzureichende Lagerluft, ungenügende Schmierung oder unsachgemäßer Einbau	Lagerluft und Passung prüfen, Lager mit der richtigen Menge des richtigen Schmierstoffs befüllen, besseres Einbauverfahren wählen, Anschlussteile optimieren
Korrosion und Rost	Rost und Korrosion auf Sitzflächen und im Lagerinneren	PC -114	Kondenswasserbildung oder Reibkorrosion; Eindringen eines korrodierenden Stoffes (insbesondere Lackdämpfe)	Lagerungsbedingungen überprüfen: Lager nicht hohen Temperaturen und Feuchtigkeit aussetzen. Bei längeren Betriebsunterbrechungen Rostschutzmittel auftragen. Vorsicht bei der Auswahl von Lack und Schmierfett.

 \bullet Wenn Wälzlager Symptome dieser Art aufweisen, wenden Sie sich bitte an NSK.

1. Lagerausfälle und Abhilfemaßnahmen

Laufspuren und aufgebrachte Lasten

Wenn sich das Wälzlager dreht, berühren die Laufbahnen von Innen- und Außenring die Wälzkörper. Dadurch entstehen Verschleißspuren an Wälzkörpern und Laufbahnen. Diese Laufspuren geben Aufschluss über die Belastungsbedingungen und sollten nach dem Zerlegen eines Wälzlagers sorgsam untersucht werden.

Sind die Laufspuren klar definiert, lässt sich bestimmen, ob das Lager Radial-, Axial- oder Momentenbelastungen ausgesetzt wurde oder ob eine außergewöhnliche Ungleichmäßigkeit in der Gehäusesteifigkeit vorlag. Laufspuren können auf schwerwiegende Montagefehler, unerwartete Belastungen oder sonstige Ursachen für Lagerschäden schließen lassen.

Abb. 1.1 zeigt Laufspuren, die in Rillenkugellagern unter verschiedenen Belastungsbedingungen entstanden sind. Muster (a) zeigt die gängigste Laufspur, die entsteht, wenn sich der Innenring unter ausschließlich radialer Belastung

dreht. Die Muster (e) bis (h) veranschaulichen widrige Bedingungen, die in der Regel eine verkürzte Standzeit nach sich ziehen.

Abb. 1.2 zeigt auf ähnliche Weise Laufspuren bei Zylinderrollenlagern. Die Spuren am Außenring von Muster (i) weisen auf eine ordnungsgemäß aufgebrachte Radiallast bei sich drehendem Innenring hin. Die Laufspuren sind durch diagonal versetzte Schattierungen gezeichnet. Daraus lassen sich Belastungen ableiten, die schräg eingeleitet wurden. Dies deutet auf einen Ausrichtungsfehler zwischen Innen- und Außenring oder eine Wellendurch-biegung hin. Die Muster (k) und (l) veranschaulichen Lauf-spuren an Außenringen von zweireihigen Zylinderrollen-lagern mit sich drehenden Innenringen. Das Muster (k) ist das Ergebnis gleichmäßig auf beide Reihen aufgebrachter Radiallasten; Muster (l) weist auf eine falsche Kombination aus Lagerkegel und Wellenkegelwinkel hin, die zu ungleichmäßigen Vorspannungen der beiden Reihen geführt hat.

Abb.1.1. Übliche Laufspuren in Kugellagern

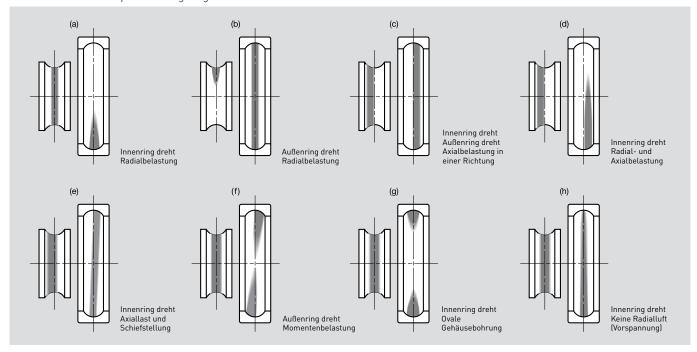
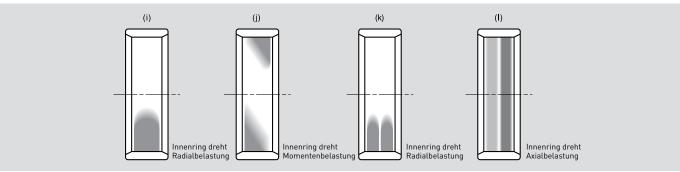
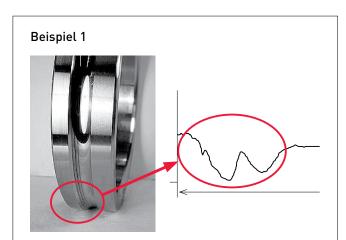


Abb. 1.2. Übliche Laufspuren in Rollenlagern




Tabelle 1.2 Ursachen und Gegenmaßnahmen bei Unregelmäßigkeiten im Betrieb

Unregelmäßigkeiten		Mögliche Ursachen	Gegenmaßnahmen	
	Hohes metallisches Geräusch (1)	Übermäßige Belastung	Passung verbessern, interne Lagerluft überprüfen, Vorspannung anpassen, Position der Gehäuseschulter korrigieren usw.	
		Fehlerhafte Montage	Bearbeitungsgenauigkeit von Welle und Gehäuse, Montagegenauigkeit und Montagemethode verbessern	
		Unzureichende Schmiermittelmenge oder ungeeignetes Schmiermittel	Schmiermittel auffüllen, geeignetes Schmiermittel verwenden	
		Berührung sich drehender Teile	Die Berührungszone der Labyrinthdichtung ändern usw.	
Geräusch		Eindrücke, Korrosion oder Kratzer auf Laufbahnen infolge von Verunreinigung	Lager austauschen, Anschlussteile reinigen, Dichtungen verbessern, sauberes Schmiermittel verwenden	
	Regelmäßiges Geräusch	Brinellwirkung	Lager austauschen, Lager vorsichtig handhaben	
		Abblätterung auf Laufbahn	Lager austauschen	
	Unregel- mäßiges Geräusch	Übermäßige Lagerluft	Passung und Lagerluft überprüfen, Vorspannung korrigieren	
		Eindringen von Verunreinigungen	Evtl. Lager austauschen; Anschlussteile reinigen, Dichtungen verbessern, sauberes Schmiermittel verwenden	
		Kratzer oder Abblätterung an Kugeln	Lager austauschen	
		Zu große Schmiermittelmenge	Schmiermittelmenge verringern	
Übermäßiger Temperaturanstieg		Unzureichende Schmiermittelmenge oder ungeeignetes Schmiermittel	Schmiermittel auffüllen, geeignetes Schmiermittel verwenden	
		Übermäßige Belastung	Passung verbessern, Lagerluft überprüfen, Vorspannung anpassen, Position der Gehäuseschulter korrigieren usw.	
	Fehlerhafte Montage		Bearbeitungsgenauigkeit von Welle und Gehäuse, Montagegenauigkeit und Montagemethode verbessern	
		Kriechen auf montierter Oberfläche, übermäßige Dichtungsreibung	Lager austauschen, Passung überprüfen, Welle und Gehäuse verbessern, andere Dichtungsart verwenden	
Schwingung (Flattern der Welle)		Brinellwirkung	Lager austauschen, Lager vorsichtig handhaben	
		Abblätterung	Lager austauschen	
		Fehlerhafte Montage	Rechtwinkligkeit der Wellenschulter, der Gehäuseschulter und der Stirnflächen der Zwischenringe korrigieren	
	Eindringen von Verunreinigungen		Lager austauschen, Anschlussteile reinigen, Dichtungen verbessern usw.	
Schmiermittelaustritt oder -verfärbung		Zu große Schmiermittelmenge, Eindringen von Verunreinigungen, Eindringen von Abrieb	Schmiermittelmenge optimieren, evtl. Schmiermittel austauschen oder anderes Schmiermittel wählen, evtl. Lager austauschen, Gehäuse reinigen usw.	

^[1] Bei Verwendung von mittleren bis großen Zylinderrollenlagern und Kugellagern mit Fettschmierung im Winter oder in kalten Umgebungen können Quietschgeräusche auftreten. Mit solchen Geräuschen geht in der Regel kein Temperaturanstieg einher und sie wirken sich nicht nachteilig auf die Wälzermüdungslebensdauer oder die Schmiermittelgebrauchsdauer aus. Die Lager sind voll funktionsfähig und können weiterhin verwendet werden. Wenn Sie Bedenken haben, dass ein quietschendes Geräusch größere Probleme nach sich ziehen könnte, wenden Sie sich gern an NSK.

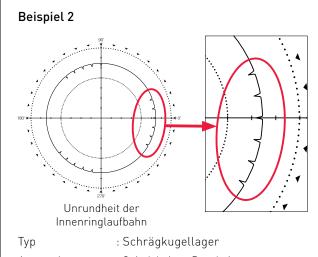
1. Lagerausfälle und Abhilfemaßnahmen

Nachstehend sind einige Beispiele für Lagerschäden im Detail aufgeführt.

: Schrägkugellager Тур

: Spindel eines Bearbeitungszentrums Anwendung

Schmierung : Fett


Symptom : Ungewöhnliche Geräusche

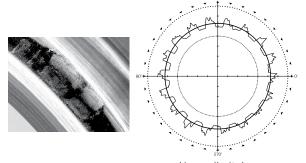
Wahrscheinliche : Unnormaler Verschleiß infolge zu

Ursache

großer Vorspannung

Gegenmaßnahme : Vorspannung anpassen

Anwendung : Spindel eines Bearbeitungszentrums


Schmierung : Fett

Symptom : Ungewöhnliche Geräusche Wahrscheinliche : Eindrücke durch Brinellwirkung

Ursache infolge einer Stoßbelastung

Gegenmaßnahme: Betriebsbedingungen überprüfen

Beispiel 3

Unrundheit der Außenringlaufbahn

Тур

: Schrägkugellager für Kugelgewindetrieb

Anwendung

: Vorschubspindel in Werkzeugmaschine

Schmierung

Symptom

: Ungewöhnliche Geräusche

Wahrscheinliche Ursache

: Passungsrost infolge kleinster Schwingungen

Gegenmaßnahmen: Auf Kugellager mit Keramikkugeln umrüsten, Hublänge

überprüfen, Hub für Neuanordnung von Schmierfett und Kugeln hinzufügen (Dummy-

• Wenn Wälzlager Symptome dieser Art aufweisen, wenden Sie sich bitte an NSK.

Beispiel 4

Außenringlaufbahn

Innenringlaufbahn

: Zweireihiges Zylinderrollenlager Тур Anwendung : Spindel einer Drehmaschine

: Fett Schmierung

Symptom : Blockieren

Ursache

Wahrscheinliche : Falscher Kegelwinkel der Welle, der zu einer übermäßigen Belas-

tung einer Reihe und in der Folge zu einem Abriss des Ölfilms

führte

Gegenmaßnahme : Kegelwinkel der Welle anpassen

Tabelle 1.2 Übersicht der häufigsten Lagerschäden

		Ursache													
			nd- ung	L um	_ager ngebu	- ing	Schm	ierung	Ве	lastu	ng	Dreh	nzahl		
Art des Schadens	Ort Position	Lagerung Transport	Montage	Welle, Gehäuse	Dichtung, Wasser, Verschmutzung	Temperatur	Schmierstoff	Art der Schmierung	Überbelastung + Stoßbelastung	Momentenbelastung	Zu geringe Belastung	Hohe Drehzahlen und Beschleunigungen	Ozillation, Vibrationen, statische Belastung	Lagerauswahl	Bemerkung
01. Abblätterungen der Oberfläche	Laufbahn, Wälzkörper		0	0	0		0	0	0	0				0	
02. Aufrauung der	Laufbahn, Wälzkörper				0		0	0			0	0			
Oberfläche	Lageraußenflächen (Lauf-Stützrolle)			O*	0		0	0							* Laufflächen mattiert
03. Riefen	Rollenstirnflächen, Bordstirnflächen		0	0	0		0	0	0	0		0			
us. Rieien	Käfigführungsflächen, Käfigtaschen		0		0		0	0							
04. Anschmierungen	Laufbahn, Wälzkörper				0		0	0			0	0			
05. Brüche	Borde, Wälzkörper	0	0	0					0	0					
06. Risse	Lagerringe, Wälzkörper		0	0		0			0	0					
00. 1133C	Bordstirnfläche, Rollenstirnflächen, Käfigführungsflächen (Wärmerisse)			0				0	0	0					
07. Käfigschaden	Verformung, Bruch		0	0					0	0					
or. Kangsenaden	Verschleiß		0		0		0	0	0	0		0			
08. Eindrücke von	Laufbahn, Wälzkörper (feinste Eindrücke)				0			0							
Fremdkörper	Laufbahn (im Abstand der Wälzkörper)	0	0						0				0		
09. Pitting	Laufbahn, Wälzkörper				0		0	0							
10. Verschleiß	Laufbahn, Wälzkörper, Bordfläche, Wälzkörperstirnfläche		0		0		0	0							
11. Reibkorrosion	Laufbahn, Wälzkörper	0	0	0			0	0	0			0	0		
TT. Neibkott Oslott	Lagerbohrung und Mantel- und Stirnflächen		0	0					0						
12. Stillstandsmar- kierung	Laufbahn, Wälzkörper	0					0	0					0		
13. Gleiten, Kriechen	Passflächen		0	0		0	O*	O*	0			0			* bei Spielpassung
14. Freßspuren	Laufbahn, Wälzkörper, Käfig		0	0	0		0	0	0	0		0		0	
15. Stromdurchgang	Laufbahn, Wälzkörper		O*	O*											* Stromdurchgang durch das Lager
16. Korrosion	Laufbahn, Wälzkörper, Käfig	0	0		0	0	0	0							
17. Montage- beschädigung	Laufbahn, Wälzkörper		0	0											
18. Verfärbung	Laufbahn, Wälzkörper, Käfig					0	0	0							

Bemerkung: Diese Tabelle ist nicht vollständig. Sie zeigt die Lage und Ursachen der häufigsten Schäden

2. Untersuchung mittels Geräusch- und Frequenzanalyse

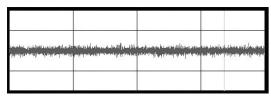
Einteilung von Geräuschen und Schwingungen

Im Betrieb von Wälzlagern entstehen Schwingungen und Geräusche. Die Klangfarbe und die Amplitude dieser Geräusche und Schwingungen hängt u.a. von der Art des Wälzlagers, den Einbau- und Betriebsbedingungen ab. Das Geräusch und die Schwingung eines Wälzlagers lässt sich unter den folgenden vier Hauptkategorien zusammenfassen, von denen sich jede wiederum in mehrere Unterkategorien einteilen lässt, wie in nachfolgender Tabelle 2.1 dargestellt. Die Grenzen zwischen den einzelnen Gruppen sind jedoch nicht streng abgeteilt. Obwohl manche Arten von Geräuschen oder Schwingungen zu den Wälzlagern gehören, kann die Lautstärke am Herstellungsprozess liegen, während andere Arten von Geräuschen oder Schwingungen auf den Herstellungsprozess zurückgehen

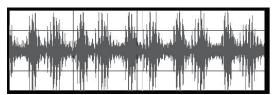
und auch unter normalen Bedingungen nicht ganz vermieden werden können.

Durch das Aufzeichnen der Geräusche und Schwingungen einer laufenden Maschine und ihrer Auswertung lassen sich Rückschlüsse auf ihre Ursache ziehen. Wie die Abbildungen auf der nachfolgenden Seite zeigen, weist ein Wälzlager ohne Schäden eine stabile Wellenform auf. Dagegen zeigt ein Wälzlager mit z.B. einem Kratzer eine Wellenform mit breiten Amplituden, die ein Zeichen für weite Geräusche in regelmäßigen Abständen sind. NSK stellt den Bearingmonitor NB-4 her, ein Vibrationsmessgerät, der Schäden in einer laufenden Maschine erkennen kann. Zusammen mit dem NB-4 und Aufzeichnungsgeräten wie einem PC lassen sich darüber hinaus Rückschlüsse auf die Ursachen dieser Schäden ziehen.

Tabelle 2.1 Einteilung von Geräuschen und Schwingungen in einem Wälzlager


		Geräusche	Vib	orationen	Merkmale
	La	ufgeräusch	Eigenfrequer	nz Lagerringe	Kontinuierliches Geräusch, unvermeidliches Grundgeräusch, das alle Wälzlager erzeugen
	Kl	ickgeräusch	Eigenfreque und Käfig	nz Lagerringe	Regelmäßiges Geräusch in bestimmten Zeitabständen häufig bei großen Lagern und horizontale Welle, Radialbelastung und niedrige Drehzahl
Strukturell	Qı	uietschendes Geräusch	Eigenfrequer	nz Lagerringe	Unterbrochen oder kontinuierlich, zumeist große Zylinderrollenlager, Radialbelastung, Fettschmierung bei konkreter Geschwindigkeit
Stru	nsch	"CK"-Geräusch	Eigenfreque	nz Käfig	Regelmäßiges Geräusch in bestimmten Zeitabständen, wird von allen Lagertypen erzeugt
	Käfiggeräusch	"CG"-Geräusch	Eigenfreque	nz Käfig	Unterbrochen oder kontinuierlich, Schmierung mit besonderem Fett
	Käfig	Klopfgeräusch	Eigenfreque	nz Käfig	In bestimmten Zeitabständen, aber etwas unregelmäßig bei Radialbelastung und beim Anlauf
		_	Schwingung durch Wälzk	bei Überrollung örper	Kontinuierlich, alle Lagertypen bei Radialbelastung
gur			Schwingungen	Innenring	Kontinuierliches Geräusch
Herstellung	We	elligkeitsgeräusch	hervorgerufen	Außenring	
Her			durch Welligkeit	Wälzkörper	Dauergeräusch mit möglichen kurzzeitigen Unterbrechungen (Kugellager)
- Bi			Schwingungen	Innenring	
abun	Ra	attergeräusch	verursacht	Außenring	Regelmäßiges Geräusch in bestimmten Abständen
Handhabung			durch Schäden	Wälzkörper	Regelmäßiges Geräusch mit möglichen kurzzeitigen Unterbrechungen (Kugellager)
坣		räusch durch rschmutzung	Schwingung (Verschmutzu	durch ng erzeugt	Unregelmäßig
	Ge	eräusch der Dichtung		ngsschwingung	Kontaktdichtung
ige	Ge	räusch des Schmierstoffes		_	Unregelmäßig
Sonstige				f_{r}	Kontinuierlich
0,		_	Auslaufen	f_c	Kontinuierlich
			, astadien	f_r - $2f_c$	Kontinuierlich

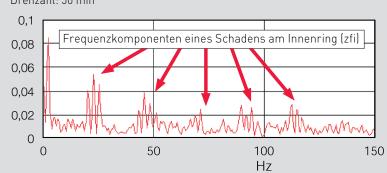
n: Positive ganze Zahl (1, 2, 3...)


Z: Anzahl an Wälzkörpern

 $f_{
m RIN}$: Ring Eigenfrequenz des radialen Biegemodus, Hz

^{🥋:} Eigenfrequenz der Drehschwingung bei Trägheit des Außenring-Federsystems, Hz

Frequenzkurve eines normalen Wälzlagers



Frequenzkurve eines Wälzlagers mit Schäden auf der Laufbahn

Frequenzanalyse eines Wälzlagers mit beschädigter Innenringlaufbahn

Bohrungsdurchmesser: 100 mm; Aufzeichnungs- und Analysemethode: Analyse der Hüllkurve der mit einem Mikrofon aufgezeichneten Geräusche einer Testmaschine.

Drehzahl: 50 min⁻¹

Erzeugte Fr	equenz (Frequenzanaly	se)		
FFT des Orig	ginalsignals	FFT nach	Quelle	Gegenmaßnahmen
Radiale (Winkel-) Richtung	Axiale Richtung	Hüllkurve (Grundnr.)		
$f_{ extit{RiN}}$, $f_{ extit{ML}}$	f_{AiN} , f_{AM}	_	Selektive Wellenresonanz (Rollreibung)	Steifigkeit der Umbauteile verbessern, richtiges radiales Spiel, hochviskoses Schmiermittel, hochwertige Lager
$f_{ extit{ iny RiN}}, f_{ extit{ iny ML}}$ Eigenfrequer	f _{Ain} ,f _{AM} nz des Käfigs	Zf_c	Stoßen von Wälzkörpern gegen Innenring oder Käfig	Radialspiel reduzieren, Lager vorspannen, hochviskoses Öl verwenden
[≈f _{R2N} , f _{R3N}]	_	?	Eigenvibration durch Gleitreibung an der Rollfäche	Radialspiel reduzieren, Lager vorspannen, das Fett wechseln, durch anderes Lager austauschen
Eigenfrequer	nz des Käfigs	f_{c}	Kontakt von Wälzkörpern gegen Wälzkörper oder Ringe	Vorspannen, hochviskoses Schmiermittel verwenden, Einbaufehler reduzieren
Eigenfrequer	nz des Käfigs	?	Eigenvibration durch Reibung an der Käfigführungsfläche	Fettmarke wechseln, durch anderen Käfig austauschen
Eigenfrequer	nz des Käfigs	Zf_c	Kontakt des Käfigs gegen Wälzkörper, verursacht durch Walkwiderstand	Radialspiel reduzieren, Lager vorspannen, Schmiermittel mit geringer Viskosität verwenden
Zf_c	_	_	Verschiebung des Innenrings durch Wälzkörperdurchgang	Radialspiel reduzieren, vorspannen
$nZf_i \pm f_r (nZ \pm 1 \text{ Spitzen})$	$nZf_i(nZ \text{ Spitzen})$	_	Welligkeit Innenringlaufbahn, unregel- mäßigkeit Außendurchmesser Welle	Hochwertige Lager, Wellengenauigkeit verbessern
$nZf_c(nZ \pm 1 \text{ Spitzen})$	$nZf_{c}(nZ \text{ Spitzen})$	_	Welligkeit Außenringlaufbahn, unregelmäßige Gehäusebohrung	Hochwertige Lager, Genauigkeit Gehäusebohrung verbessern
$2nf_b \pm f_c (2n \text{ Spitzen})$	$2nf_{b}$ (2n Spitzen)	_	Welligkeit Wälzkörper	Hochwertige Lager
		Zf_i	Kerben, Beulen, Rost, Abblätterung an Innenringlaufbahn	Lageraustausch und sorgfältige Handhabung der Lager
$f_{ m RIN}$, $f_{ m MI}$	f_{AiN} , f_{AM}	Zf_c	Kerben, Beulen, Rost, Abblätterung an Innenringlaufbahn	Lageraustausch und sorgfältige Handhabung der Lager
		2f _b	Kerben, Beulen, Rost, Abblätterung an Wälzkörpern	Lageraustausch und sorgfältige Handhabung der Lager
$f_{ m RIN}, f_{ m MI}$	f_{AiN} , f_{AM}	Unregelmäßig	Eindringen von Schmutz und Verunreinigungen	Waschen, Dichtung verbessern
KugelnNatürliche I	Dichtungsfrequenz	$[f_r]$	Eigenvibration durch Reibung im Dichtungskontaktbereich	Die Dichtung austauschen, das Fett wechseln
?	?	Unregelmäßig	Schmierstoff wird von den Wälzkörpern überrollt bzw. gewalkt	Das Fett wechseln
f_r	_	_	Unregelmäßiger Innenringquerschnitt	Hochwertige Lager verwenden
f_{c}			Unterschiedliche Kugelsortierungen im Lager	Hochwertige Lager verwenden
f_r -2 f_c	_	_	Nicht-lineare Schwingung durch Abweichung der Steifigkeit aufgrund von verschiedenen Kugelsortierungen	Hochwertige Lager verwenden

Rotationsfrequenz des Innenrings, Hz Orbitale Drehungsfrequenz der Wälzkörper, Hz Ring Eigenfrequenz des axialen Biegemodus, Hz

 $f_{\rm AM}$: Eigenfrequenz bei axialer Vibration der Masse des Außenring-Federsystems, Hz f_i : $f_i = f_r - f_c$, Hz f_b : Rotationsfrequenz des Wälzkörpers um seine Mitte, Hz

Toleranzen für die Wellendurchmesser	284-285
Toleranzen für die Gehäusebohrung	286-287
Werte von Standardtoleranzen für IT-Toleranzgrade	288-289
Umrechnungstabellen für Werte gemäß SI-System	
(Internationales Einheitensystem)	290
Physikalische und mechanische Eigenschaften	
der Wälzlagerwerkstoffe	291-292
Formular für Anfrage einer Lageruntersuchung	293
Formular zum Anfordern von Lagerspezifikationen	294

Kapitel 8

Toleranzen für die Wellendurchmesser

Durchmes	serbereich													
über	bis	d6	е6	f6	g5	g6	h5	h6	h7	h8	h9	h10	js5	js6
3	6	- 30 - 38	- 20 - 28	- 10 - 18	- 4 - 9	- 4 - 12	0 - 5	0 - 8	0 - 12	0 - 18	0 - 30	0 - 48	± 2,5	± 4
6	10	- 40 - 49	- 25 - 34	- 13 - 22	- 5 - 11	- 5 - 14	0 - 6	0 - 9	0 - 15	0 - 22	0 - 36	0 - 58	± 3	± 4,5
10	18	- 50 - 61	- 32 - 43	- 16 - 27	- 6 - 14	- 6 - 17	0 - 8	0 -11	0 - 18	0 - 27	0 - 43	0 - 70	± 4	± 5,5
18	30	- 65 - 78	- 40 - 53	- 20 - 33	- 7 - 16	- 7 - 20	0 - 9	0 -13	0 - 21	0 - 33	0 - 52	0 - 84	± 4,5	± 6,5
30	50	- 80 - 96	- 50 - 66	- 25 - 41	- 9 - 20	- 9 - 25	0 -11	0 -16	0 - 25	0 - 39	0 - 62	0 -100	± 5,5	± 8
50	80	-100 -119	- 60 - 79	- 30 - 49	- 10 - 23	- 10 - 29	0 -13	0 -19	0 - 30	0 - 46	0 - 74	0 -120	± 6,5	± 9,5
80	120	-120 -142	- 72 - 94	- 36 - 58	- 12 - 27	- 12 - 34	0 -15	0 -22	0 - 35	0 - 54	0 - 87	0 -140	± 7,5	±11
120	180	-145 -170	- 85 -110	- 43 - 68	- 14 - 32	- 14 - 39	0 -18	0 -25	0 - 40	0 - 63	0 -100	0 -160	± 9	±12,5
180	250	-170 -199	-100 -129	- 50 - 79	- 15 - 35	- 15 - 44	0 -20	0 -29	0 - 46	0 - 72	0 -115	0 -185	±10	±14,5
250	315	-190 -222	-110 -142	- 56 - 88	- 17 - 40	- 17 - 49	0 -23	0 -32	0 - 52	0 - 81	0 -130	0 -210	±11,5	±16
315	400	-210 -246	-125 -161	- 62 - 98	- 18 - 43	- 18 - 54	0 -25	0 -36	0 - 57	0 - 89	0 -140	0 -230	±12,5	±18
400	500	-230 -270	-135 -175	- 68 -108	- 20 - 47	- 20 - 60	0 -27	0 -40	0 - 63	0 - 97	0 -155	0 -250	±13,5	±20
500	630	-260 -304	-145 -189	- 76 -120	_	- 22 - 66	_	0 -44	0 - 70	0 -110	0 -175	0 -280	_	±22
630	800	-290 -340	-160 -210	- 80 -130	_	- 24 - 74	_	0 -50	0 - 80	0 -125	0 -200	0 -320	_	±25
800	1 000	-320 -376	-170 -226	- 86 -142	_	- 26 - 82	_	0 -56	0 - 90	0 -140	0 -230	0 -360	_	±28
1 000	1 250	-350 -416	-195 -261	- 98 -164	_	- 28 - 94	_	0 -66	0 -105	0 -165	0 -260	0 -420	_	±33
1 250	1 600	-390 -468	-220 -298	-110 -188	_	- 30 -108	_	0 -78	0 -125	0 -195	0 -310	0 -500	_	±39
1 600	2 000	-430 -522	-240 -332	-120 -212	_	- 32 -124	_	0 -92	0 -150	0 -230	0 -370	0 -600	_	±46

Maßeinheit: µm

iiiiieit: µiii	Mane												
serbereich m) bis		г7	r6	р6	n6	m6	m5	k7	k6	k5	j7	j6	j5
6	3	+ 27	+ 23	+ 20	+ 16	+ 12	+ 9	+ 13	+ 9	+ 6	- 8	- 6	- 3
10	6	+ 15	+ 15 + 28	+ 12 + 24	+ 8 + 19	+ 4	+ 4	+ 1 + 16	+ 1 +10	+ 1 + 7	- 4 +10	- 2 + 7	<u>- 2</u> + 4
18	10	+ 19	+ 19 + 34	+ 15 + 29	+ 10 + 23	+ 6	+ 6 +15	+ 1 + 19	+ 1 + 12	+ 1 + 9	- 5 +12	- 2 + 8	- 2 + 5
		+ 23 + 49	+ 23 + 41	+ 18 + 35	+ 12 + 28	+ 7	+ 7 +17	+ 1 + 23	+ 1 + 15	+ 1	- 6 +13	- 3 + 9	- 3 + 5
30	18	+ 28 + 59	+ 28 + 50	+ 22 + 42	+ 15 + 33	+ 8 + 25	+ 8 +20	+ 2 + 27	+ 2	+ 2 +13	- 8 +15	- 4 +11	<u>- 4</u> + 6
50	30	+ 34	+ 34	+ 26	+ 17	+ 9	+ 9	+ 2	+ 2	+ 2	-10	- 5	5
65	50	+ 41	+ 41	+ 51	+ 39	+ 30	+24	+ 32	+21	+15	+18	+12	+ 6
80	65	+ 73 + 43	+ 62 + 43	+ 32	+ 20	+ 11	+11	+ 2	+ 2	+ 2	-12	- 7	- 7
100	80	+ 86 + 51	+ 73 + 51	+ 59	+ 45	+ 35	+28	+ 38	+25	+18	+20	+13	+ 6
120	100	+ 89 + 54	+ 76 + 54	+ 37	+ 23	+ 13	+13	+ 3	+ 3	+ 3	-15	- 9	- 9
140	120	+103 + 63	+ 88 + 63										
160	140	+105 + 65	+ 90 + 65	+ 68 + 43	+ 52 + 27	+ 40 + 15	+33 +15	+ 43 + 3	+28 + 3	+21 + 3	+22 -18	+14 -11	+ 7 -11
180	160	+108	+ 93	+ 43	+ 27	+ 13	+13	+ 3	+ 3	+ 3	-10	-11	-11
200	180	+ 68	+ 68 +106										
225	200	+ 77	+ 77	+ 79	+ 60	+ 46	+37	+ 50	+33	+24	+25	+16	+ 7
		+ 80	+ 80	+ 50	+ 31	+ 17	+17	+ 4	+ 4	+ 4	-21	-13	-13
250	225	+ 84 +146	+ 84 +126										
280	250	+ 94	+ 94	+ 88 + 56	+ 66 + 34	+ 52 + 20	+43 +20	+ 56 + 4	+36 + 4	+27 + 4	±26	±16	+ 7 -16
315	280	+ 98	+ 98	+ 30	+ 54	+ 20	+20	T 4	т 4	T 4			
355	315	+165 +108	+144 +108	+ 98	+ 73	+ 57	+46	+ 61	+40	+29	+29	±18	+ 7
400	355	+171 +114	+150 +114	+ 62	+ 37	+ 21	+21	+ 4	+ 4	+ 4	-28	110	-18
450	400	+189 +126	+166 +126	+108	+ 80	+ 63	+50	+ 68	+45	+32	+31	20	+ 7
500	450	+195 +132	+172 +132	+ 68	+ 40	+ 23	+23	+ 5	+ 5	+ 5	-32	±20	-20
560	500	+220 +150	+194 +150	+122	+ 88	+ 70		+ 70	+44				
630	560	+225	+199	+ 78	+ 44	+ 26	_	0	0	_	_	_	_
710	630	+155	+155										
800	710	+175 +265	+175 +235	+138 + 88	+100 + 50	+ 80 + 30	_	+ 80 0	+50 0	_	_	_	_
		+185	+185 +266										
900	800	+210 +310	+210 +276	+156 +100	+112 + 56	+ 90 + 34	_	+ 90 0	+56 0	_	_	_	_
1 000	900	+220	+220										
1 120	1 000	+250	+250	+186	+132	+106	_	+105	+66	_	_	_	_
1 250	1 120	+365 +260	+326	+120	+ 66	+ 40		0	0				
1 400	1 250	+425 +300	+378 +300	+218	+156	+126	_	+125	+78	_	_		
1 600	1 400	+455 +330	+408 +330	+140	+ 78	+ 48	_	0	0		_	_	_
1 800	1 600	+520 +370	+462 +370	+262	+184	+150		+150	+92				
2 000	1 800	+550	+492	+170	+ 92	+ 58	_	0	0	_	_	_	_
		+400	+400										

Toleranzen für die Gehäusebohrung

Durchmes (m	serbereich m)												
über	bis	- E6	F6	F7	G6	G7	H6	H7	Н8	Ј6	J7	JS6	JS7
10	18	+ 43 + 32	+ 27 + 16	+ 34 + 16	+ 17 + 6	+ 24 + 6	+ 11	+ 18	+ 27	+ 6 - 5	+ 10 - 8	± 5,5	± 9
18	30	+ 53 + 40	+ 33 + 20	+ 41 + 20	+ 20 + 7	+ 28 + 7	+ 13	+ 21	+ 33	+ 8 - 5	+ 12 - 9	± 6,5	± 10,5
30	50	+ 66 + 50	+ 41 + 25	+ 50 + 25	+ 25 + 9	+ 34 + 9	+ 16	+ 25	+ 39	+ 10 - 6	+ 14 - 11	± 8	± 12,5
50	80	+ 79 + 60	+ 49 + 30	+ 60 + 30	+ 29 + 10	+ 40 + 10	+ 19	+ 30	+ 46	+13 - 6	+ 18 - 12	± 9,5	± 15
80	120	+ 94 + 72	+ 58 + 36	+ 71 + 36	+ 34 + 12	+ 47 + 12	+ 22	+ 35	+ 54	+ 16 - 6	+ 22 - 13	±11	± 17,5
120 150	150 180	+110 + 85	+ 68 + 43	+ 83 + 43	+ 39 + 14	+ 54 + 14	+ 25	+ 40 0	+ 63	+ 18 - 7	+ 26 - 14	± 12,5	± 20
180	250	+129 +100	+ 79 + 50	+ 96 + 50	+ 44 + 15	+ 61 + 15	+ 29	+ 46	+ 72	+22 - 7	+30 -16	± 14,5	± 23
250	315	+142 +110	+ 88 + 56	+108 + 56	+ 49 + 17	+ 69 + 17	+ 32	+ 52	+ 81	+25 - 7	+ 36 - 16	± 16	± 26
315	400	+161 +125	+ 98 + 62	+119 + 62	+ 54 + 18	+ 75 + 18	+ 36	+ 57	+ 89	+29 - 7	+39 -18	± 18	± 28,5
400	500	+175 +135	+108 + 68	+131 + 68	+ 60 + 20	+ 83 + 20	+ 40	+ 63	+ 97	+33 - 7	+43 -20	± 20	± 31,5
500	630	+189 +145	+120 + 76	+146 + 76	+ 66 + 22	+ 92 + 22	+ 44	+ 70	+ 110	_	_	± 22	± 35
630	800	+210 +160	+130 + 80	+160 + 80	+ 74 + 24	+104 + 24	+ 50	+ 80	+ 125	_	_	± 25	± 40
800	1 000	+226 +170	+142 + 86	+176 + 86	+ 82 + 26	+116 + 26	+ 56	+ 90	+ 140	_	_	± 28	± 45
1 000	1 250	+261 +195	+164 + 98	+203 + 98	+ 94 + 28	+133 + 28	+ 66	+ 105	+ 165	_	_	± 33	± 52,5
1 250	1 600	+298 +220	+188 +110	+235 +110	+108 + 30	+155 + 30	+ 78	+ 125	+ 195	_	_	± 39	± 62,5
1 600	2 000	+332 +240	+212 +120	+270 +120	+124 + 32	+182 + 32	+ 92	+ 150	+ 230	_	_	± 46	± 75
2 000	2 500	+370 +260	+240 +130	+305 +130	+144 + 34	+209 + 34	+ 110	+ 175	+ 280	_	_	± 55	± 87,5

Maßeinheit: µm

											Durchmes	serbereich
K5	K6	K7	M5	M6	M7	N5	N6	N7	P6	P7	über	
+ 2 - 6	+ 2 - 9	+ 6 - 12	- 4 -12	- 4 - 15	0 - 18	- 9 -17	- 9 - 20	- 5 - 23	- 15 - 26	- 11 - 29	10	18
+ 1 - 8	+ 2 - 11	+ 6 - 15	- 5 -14	- 4 - 17	0 - 21	-12 -21	- 11 - 24	- 7 - 28	- 18 - 31	- 14 - 35	18	30
+ 2 - 9	+ 3 - 13	+ 7 - 18	- 5 -16	- 4 - 20	0 - 25	-13 -24	- 12 - 28	- 8 - 33	- 21 - 37	- 17 - 42	30	50
+ 3 -10	+ 4 - 15	+ 9 - 21	- 6 -19	- 5 - 24	0 - 30	-15 -28	- 14 - 33	- 9 - 39	- 26 - 45	- 21 - 51	50	80
+ 2 -13	+ 4 - 18	+ 10 - 25	- 8 -23	- 6 - 28	0 - 35	-18 -33	- 16 - 38	- 10 - 45	- 30 - 52	- 24 - 59	80	120
+ 3 -15	+ 4 - 21	+ 12 - 28	- 9 -27	- 8 - 33	0 - 40	-21 -39	- 20 - 45	- 12 - 52	- 36 - 61	- 28 - 68	120	180
+ 2 -18	+ 5 - 24	+ 13 - 33	-11 -31	- 8 - 37	0 - 46	-25 -45	- 22 - 51	- 14 - 60	- 41 - 70	- 33 - 79	180	250
+ 3 -20	+ 5 - 27	+ 16 - 36	-13 -36	- 9 - 41	0 - 52	-27 -50	- 25 - 57	- 14 - 66	- 47 - 79	- 36 - 88	250	315
+ 3 -22	+ 7 - 29	+ 17 - 40	-14 -39	- 10 - 46	0 - 57	-30 -55	- 26 - 62	- 16 - 73	- 51 - 87	- 41 - 98	315	400
+ 2 -25	+ 8 - 32	+ 18 - 45	-16 -43	- 10 - 50	0 - 63	-33 -60	- 27 - 67	- 17 - 80	- 55 - 95	- 45 -108	400	500
_	0 - 44	0 - 70	I	- 26 - 70	- 26 - 96	_	- 44 - 88	- 44 -114	- 78 -122	- 78 -148	500	630
_	0 - 50	0 - 80	-	- 30 - 80	- 30 -110	_	- 50 -100	- 50 -130	- 88 -138	- 88 -168	630	800
_	0 - 56	0 - 90	ı	- 34 - 90	- 34 -124	_	- 56 -112	- 56 -146	-100 -156	-100 -190	800	1 000
_	0 - 66	0 - 105	_	- 40 -106	- 40 -145	_	- 66 -132	- 66 -171	-120 -186	-120 -225	1 000	1 250
_	0 - 78	0 - 125	_	- 48 -126	- 48 -173	_	- 78 -156	- 78 -203	-140 -218	-140 -265	1 250	1 600
_	0 - 92	0 - 150	_	- 58 -150	- 58 -208	_	- 92 -184	- 92 -242	-170 -262	-170 -320	1 600	2 000
_	0 - 110	0 – 175	_	- 68 -178	- 68 -243	_	-110 -220	-110 -285	- 195 - 305	-195 -370	2 000	2 500

ISO-Toleranzreihen

	01					Toleranzgrad	e			
Nennma	ßbereich	IT1	IT2	IT3	IT4	IT5	IT6	IT7	IT8	IT9
über	bis				То	leranzwerte (μ	ım)			
-	3	0,8	1,2	2	3	4	6	10	14	25
3	6	1	1,5	2,5	4	5	8	12	18	30
6	10	1	1,5	2,5	4	6	9	15	22	36
10	18	1,2	2	3	5	8	11	18	27	43
18	30	1,5	2,5	4	6	9	13	21	33	52
30	50	1,5	2,5	4	7	11	16	25	39	62
50	80	2	3	5	8	13	19	30	46	74
80	120	2,5	4	6	10	15	22	35	54	87
120	180	3,5	5	8	12	18	25	40	63	100
180	250	4,5	7	10	14	20	29	46	72	115
250	315	6	8	12	16	23	32	52	81	130
315	400	7	9	13	18	25	36	57	89	140
400	500	8	10	15	20	27	40	63	97	155
500	630	9	11	16	22	32	44	70	110	175
630	800	10	13	18	25	36	50	80	125	200
800	1 000	11	15	21	28	40	56	90	140	230
1 000	1 250	13	18	24	33	47	66	105	165	260
1 250	1 600	15	21	29	39	55	78	125	195	310
1 600	2 000	18	25	35	46	65	92	150	230	370
2 000	2 500	22	30	41	55	78	110	175	280	440
2 500	3 150	26	36	50	68	96	135	210	330	540

Anmerkungen 1. Die Toleranzgrade IT 14 bis IT 16 sollten nicht für den Nennmaßbereich 1 mm oder kleiner verwendet werden.

^{2.} Die Werte der Toleranzgrade IT1 bis IT5 für den Nennmaßbereich über 500 mm sind der Vollständigkeit halber angeführt.

- Nennmaßbereich		Toleranzgrade											
alibereich	- Nennma	IT18	IT17	IT16	IT15	IT14	IT13	IT12	IT11	IT10			
bis	über			mm)	ranzenwerte (ı	Tole							
3	-	1,40	1,00	0,60	0,40	0,25	0,14	0,10	60	40			
6	3	1,80	1,20	0,75	0,48	0,30	0,18	0,12	75	48			
10	6	2,20	1,50	0,90	0,58	0,36	0,22	0,15	90	58			
18	10	2,70	1,80	1,10	0,70	0,43	0,27	0,18	110	70			
30	18	3,30	2,10	1,30	0,84	0,52	0,33	0,21	130	84			
50	30	3,90	2,50	1,60	1,00	0,62	0,39	0,25	160	100			
80	50	4,60	3,00	1,90	1,20	0,74	0,46	0,30	190	120			
120	80	5,40	3,50	2,20	1,40	0,87	0,54	0,35	220	140			
180	120	6,30	4,00	2,50	1,60	1,00	0,63	0,40	250	160			
250	180	7,20	4,60	2,90	1,85	1,15	0,72	0,46	290	185			
315	250	8,10	5,20	3,20	2,10	1,30	0,81	0,52	320	210			
400	315	8,90	5,70	3,60	2,30	1,40	0,89	0,57	360	230			
500	400	9,70	6,30	4,00	2,50	1,55	0,97	0,63	400	250			
630	500	11,00	7,00	4,40	2,80	1,75	1,10	0,70	440	280			
800	630	12,50	8,00	5,00	3,20	2,00	1,25	0,80	500	320			
1 000	800	14,00	9,00	5,60	3,60	2,30	1,40	0,90	560	360			
1 250	1 000	16,50	10,50	6,60	4,20	2,60	1,65	1,05	660	420			
1 600	1 250	19,50	12,50	7,80	5,00	3,10	1,95	1,25	780	500			
2 000	1 600	23,00	15,00	9,20	6,00	3,70	2,30	1,50	920	600			
2 500	2 000	28,00	17,50	11,00	7,00	4,40	2,80	1,75	1 100	700			
3 150	2 500	33,00	21,00	13,50	8,60	5,40	3,30	2,10	1 350	860			

Umrechnungstabellen für Werte gemäß SI-System (Internationales Einheitensystem)

Die in den markierten Feldern durch ein Sternchen (*) gekennzeichneten Werte sind SI-Einheiten.

Vergleich von SI-, CGS- und englischen technischen Einheiten (metrisches Gravitationssystem)

(111011130110.	5 014	vitation	JJyJ	cerrij						
Einheiten Einhei- tensystem		Masse	Zeit	Temperatur	Beschleu- nigung	Kraft	Spannung	Druck	Energie	Leistung
SI	m	kg	S	K, °C	m/s²	N	Pa	Pa	J	W
CGS-System	cm	g	S	°C	Gal	dyn	dyn/cm²	dyn/cm²	erg	erg/s
Technische Einheiten	m	kgf•s²/m	S	°C	m/s²	kgf	kgf/m²	kgf/m²	kgf∙m	kgf•m/s

Im SI-System verwendete Vorsetzzeichen

Vielfache	Vorsetz- zeichen	Symbol	Vielfache	Vorsetz- zeichen	Symbol
1018	Exa	Ε	10-1	Dezi	d
1015	Peta	Р	10-2	Zenti	С
1012	Tera	Τ	10-3	Milli	m
109	Giga	G	10-6	Mikro	μ
106	Mega	М	10-9	Nano	n
103	Kilo	k	10-12	Piko	р
102	Hekto	h	10-15	Femto	f
10	Deka	da	1∩-18	Atto	а

	*N	dyn	kgf
aft	1	1 × 10 ⁵	1.01972 × 10 ⁻¹
Ϋ́	1 × 10-5	1	1.01972 × 10-6
	9,80665	9,80665 × 10 ⁵	1

	*Pa	*MPa oder N/mm²	kgf/mm²	kgf/cm²
ng	1	1 × 10-6	1,01972 × 10-7	1,01972 × 10-5
Spannung	1 × 10 ⁶	1	1,01972 × 10 ⁻¹	1,01972 × 10
pal	9,80665 × 10 ⁶	9,80665	1	1 × 10 ²
S	9,80665 × 10 ⁴	9,80665 × 10 ⁻²	1 × 10-2	1

	*Pa	bar	kgf/cm²	atm	mmH₂0	mmHg oder Torr
	1	1 × 10-5	1,01972 × 10-5	9,86923 × 10-6	1,01972 × 10-1	7,50062 × 10 ⁻³
_	1 × 10 ⁵	1	1,01972	9,86923 × 10 ⁻¹	1,01972 × 10 ⁴	7,50062 × 10 ²
uc K	9,80665 × 10 ⁴	9,80665 × 10 ⁻¹	1	9,67841 × 10 ⁻¹	1 × 10 ⁴	7,35559 × 10 ²
Dru	1,01325 × 10⁵	1,01325	1,03323	1	1,03323 × 10 ⁴	7,60000 × 10 ²
	9,80665	9,80665 × 10⁻⁵	1×10-4	9,67841 × 10 ⁻⁵	1	7,35559 × 10 ⁻²
	1,33322 × 10 ²	1,33322 × 10 ⁻³	1,35951 × 10 ⁻³	1,31579 × 10-³	1,35951 × 10	1

Anmerkung: 1 Pa = 1 N/m²

<u>.</u>	*Pa·s	cР	Р
sit	1	1 × 10 ³	1 × 10
Viskosität	1 × 10-3	1	1 × 10-2
<u> </u>	1 × 10 ⁻¹	1×10^{2}	1
A	-l	2 1 . / 1 D 1	N . / 2 1 . D . 1 D

Anmerkung: 1 Pa = 1 dyn·s/cm² = 1 g/cm·s, 1 Pa·s = 1 N·s/m², 1 cP = 1 mPa·s

ale ale	*W/(m•K)	kcal _{ıт} /(h·m·°C)
Wärmelei	1	8,59845 × 10 ⁻¹
fähigkeit	1,16300	1

t	*m²/s	cSt	St
atisc sitä	1	1×10 ⁶	1×10 ⁴
eme	1×10-6	1	1×10-2
Kinematische Viskosität	1×10-4	1×10 ²	1

Anmerkung: 1 St = 10m ² /S. 1 CSt =	Anmerkung: $1 \text{ St} = 1 \text{ cm}^2/\text{s}$, $1 \text{ cSt} = 1 \text{mm}^2/\text{s}$,	
--	--	--

- Js-	*W/(m²•K)	kcal _{ıт} /(h•m²•°C)
Wärme übergang koeffizie	1 1,16300	8,59845 × 10 ⁻¹ 1

*J	kW∙h	kgf•m	kcal _{ıт}
1	2,77778 × 10-7	1,01972 × 10-1	2,38846 × 10-4
3,600 × 10 ⁶	1	3,67098 × 10 ⁵	8,5985 × 10 ²
9,80665	2,272407 × 10 ⁻⁶	1	2,34228 × 10 ⁻³
4,18680 × 10 ³	1,16300 × 10-³	4,26935 × 10 ²	1
	9,80665	1 2,77778 × 10-7 3,600 × 10 ⁶ 1 9,80665 2,272407 × 10-6	1 2,77778 × 10-7 1,01972 × 10-1 3,600 × 106 1 3,67098 × 10 ⁵ 9,80665 2,272407 × 10-6 1

Anmerkung: 1 J = 1 W·s, 1 W·h = 3600 W·s 1 cal_{IT} = 4.186 8J

Ē	*W	kgf•m/s	PS	kcal _{ıı} /h
stron	1	1,01972 × 10-1	1,35962 × 10-3	8,59845 × 10 ⁻¹
mes	9,80665	1	1,33333 × 10 ⁻²	8,43220
Wärm	7,355 × 10 ²	7,5 × 10	1	6,32415 × 10 ²
Š	1,16300	1,18593 × 10 ⁻¹	1,58124 × 10 ⁻³	1

Anmerkung: 1 W = 1J/s, PS : Metric horsepower

Physikalische und mechanische Eigenschaften der Wälzlagerwerkstoffe

Anwendung	Werkstoffbezeichnung	Wärmebehandlung	Dichte g/cm³	Spezi- fische Wärme- kapazität KJ/ (kg·K)	Wärmeleit- fähigkeit W/(m·K)	Elektri- scher Wider- stands- beiwert μΩ•cm	Linearer Wärme- ausdehnungs koeffizient (0°–100°C) ×10 ⁻⁶ /°C	Elastizitäts- modul HPa	Streck- grenze MPa	Zug- festigkeit MPa	Bruch- dehnung %	Härte HB
	Chromwälzlagerstahl mit hohem Kohlenstoffgehalt Nr. 2 SUJ2	Härten, Anlassen	7,83		46	22	12,5		1 370	1 570 -1 960	Max. 0.5	650 -740
		Weichglühen	7,86	0,47			11,9		420	647	27	180
	Chromstahl SCr420	Härten, Anlassen bei niedriger Temperatur			48	21	12,8	208 000	882	1 225	15	370
	Nickel-Chrom- Molybdän-Stahl SAE4320 (SNCM420)	Härten, Anlassen bei niedriger Temperatur	7,83		44	20	11,7		902	1 009	16	**293 -375
Lager	Nickel-Chrom- Molybdän-Stahl SNCM815	Härten, Anlassen bei niedriger Temperatur	7,89		40	35	-		-	Min. *1 080	Min. *12	*311 -375
	Martensitischer rostfreier Stahl SUS440C	Härten, Anlassen bei niedriger Temperatur	7,68	0,46	24	60	10,1	200 000	1 860	1 960	=	**580
	Kaltgewalztes Stahlblech SPCC	Glühen	7,86	0,47	59	15	11,6	206 000	-	Min. *275	Min. *32	-
	Kohlenstoffstahl für Maschinenkonstruktion S25C	Glühen		0,48	50	17	11,8		323	431	33	120
	Hochfestes Messing CAC301 (HB _s C1)		8,5	0,38	123	6,2	19,1	103 000	_	Min. *431	Min. *20	_

Anmerkungen *Standardwert nach JIS oder Referenzwert

^{**}Die Härte wird normalerweise als Rockwell C angegeben. Wegen der besseren Vergleichbarkeit wird sie hier in Brinell umgerechnet.

Bezugswert: Die Proportionalitätsgrenzen von SUJ2 und SCr420 sind 833 MPa (85 kgf/mm²) bzw. 440 MPa (45 kgf/mm²).

Physikalische und mechanische Eigenschaften der Wälzlagerwerkstoffe

Anwendung	Werkstoffbezeichnung	Wärmebehandlung (°C)	Dichte g/cm³	Spezifische Wärme- kapazität KJ/ (kg K)	Wärmeleit- fähigkeit W/(m K)	Elektrischer Widerstands- beiwert μΩ•cm	Linearer Wärme- ausdehnungs koeffizient (0°-100°C) ×10 ⁻⁶ /°C	Elastizitäts- modul MPa	Streck- grenze MPa	Zug- festigkeit MPa	Bruch- dehnung %	Härte HB
	Kohlenstoffstahl für Maschinenkonstruktion S45C	Härten, Anlassen 650°C				18	12,8	207 000	440	735	25	217
	Chromstahl SCr430	Härten, schnelles Abkühlen 520 bis 620 °C		7,83	47	22	12,5		Min. *637	Min. *784	Min. *18	*229 -293
	Chromstahl SCr440	Härten, schnelles Abkühlen 520 bis 620 °C	7,83		45	23	12,3	208 000	Min. *784	Min. *930	Min. *13	*269 -331
Welle	Chrom-Molybdän-Stahl SCM420	Härten, Luftabkühlung 150 bis 200°C		0,47	48	21	12,8		-	Min. *930	Min. *14	*262 -352
	Nickel-Chrom-Molybdän-Stahl SNCM439	Härten, Anlassen 650°C			38	30	11,3	207 000	920	1 030	18	320
	Kohlenstoffarmer Gussstahl SC46	Normalglühen	-	-	-	-	-	206 000	294	520	27	143
	Martensitischer rostfreier Stahl SUS420J2	Ölabkühlung 1 038 °C, Luftabkühlung 400 °C	7,75	0,46	22	55		200 000	1 440	1 650	10	400
	Grauguss FC200	Guss	7,3	0,50	43	-	10,4	98 000	-	Min. *200	-	Max. *217
	Gusseisen mit Kugelgraphit FCD400	Guss	7,0	0,48	20	-	11,7	76 000	Min. *250	Min. *400	Min. *12	Max. *201
Gehäuse	Reines Aluminium A1100	Glühen	2,69	0,90	222	3,0	23,7	70 600	34	78	35	-
	Aluminiumlegierung für Sandguss AC4C	Guss	2,68	0,88	151	4,2	21,5	72 000	88	167	7	-
	Aluminiumlegierung für Druckguss ADC10	Guss	2,74	0,96	96	7,5	22,0	71 000	167	323	4	-
	Austenitischer rostfreier Stahl SUS304	Glühen	8,03	0,50	15	72	15,7– 16,8	193 000	245	588	60	150

Anmerkung *Standardwert nach JIS oder Referenzwert.

Formular für Anfrage einer Lageruntersuchung

Bitte füllen Sie das nachstehende Formular aus und senden Sie es an Ihre nächstgelegene NSK Vertriebsniederlassung, wenn Sie ein Wälzlager untersuchen lassen möchten.

	Name des Unternehi	mens: Referenznummer früherer NSK Berichte:					
	Anhänge:	Prinzipzeichnung im Anhang: 🔲 Ja 💮 Nein Weitere Anhänge: 🗀 Ja 🕞 Nein					
●Symptome	Beobachtete Symptome: Unnormale Geräusche Festfressen Blockieren Übermäßiger Temperaturanstieg Schwingung						
		Riss in bearbeiteter Fläche Mangelhafte Maßhaltigkeit Eindringen von Kühlmittel Sonstige					
	Wälzlagerzustand:	Festgefressen					
•Anwendungs- bedingungen	Unnormale Geräusche:	he: Synchron zu Drehung Nicht synchron zu Drehung Kontinuierlich Nicht kontinuierlich Bei niedrigen Drehzahlen					
	Ausfall bei:	\square Routinemäßigem Betrieb \square Innerbetrieblicher Prüfung \square Einlaufen \square Auswertung von Weiterentwicklung \square Sonstigem (
	Dauer Lager in Betrieb	o: Monate, Stunden Tatsächliche Benutzungsdauer: Monate (Jahre Tage)					
	Nähere Angaben zu Betriebsbedingunge	□Vollschichtbetrieb □Betrieb in Schicht(en) pro Tag					
	Maschinentyp:	☐Bearbeitungszentrum ☐Drehbank ☐Schleifmaschine ☐ Sonstige () ☐Bearbeitungsmaschine ☐Testmaschin					
	Lagerstelle:	□Spindel □Stützlager für Kugelgewindetrieb □Automatischer Werkzeugwechsler □Motor □Sonstige (
	Modell-Nr.:						
	Spindelausrichtung:	□Vertikal □Horizontal □Schwenkbar					
	Antriebstyp:	☐ Integrierte Motorspindel ☐ Riemenantrieb ☐ Direktantrieb ☐ Zahnradantrieb ☐ Sonstiger (
	Maximale Drehzahl:	min ⁻¹ Drehzahl im Betrieb: min ⁻¹ Reguläre Drehzahl: min ⁻¹					
	Schmierung:	☐Fett ☐Öl-Luft ☐Ölnebel ☐Umlaufschmierung ☐Sonstige ()					
	☐MTE ☐MTS ☐NBU 15 ☐NBU 8 EP ☐Alvania S2 ☐Viscosity (cSt)						
	Kühlmittel:	Marken- □ Ja name: □ Nein Für Schneidöl festgelegte Temperatur °C Auf Raumtemperatur abgestimmt: +°l					
		Temperaturregelung: Ölkühleinheit (OCU) Regelung an OCU-Auslass Regelung an OCU-Einlass					
		oiel: Schrägkugellager 🖉 Zylinderrollenlager 🔲 🔲 , 🤲 mit Zwischenringen 🖉 🚞 📎 mit Feder WWN 🚫)					
	Spindelvorderseite (Werkz und unten ist	eug/Futter) – für senkrechte Spindeln bitte angeben, wo oben Spindelrückseite					
	(Bitte Serien-Nr. des Wa Ausrichtung des Lager,	ilzlagers angeben, ebenso Einbauposition und z. B. ob Reihe A zum Futter oder zur Rückseite zeigt)					
●Wälzlager	Lager an Stirnseite (Festlager)	Serien-Nr.: Lager an Stirnseite [Festlager] Serien-Nr.:					
	Lagernummer:	Lagernummer:					
	Lagerluft/Vorspannung nac	h Montage; Wert der Anpassung mithilfe von Zwischenringen: Lagerluft/Vorspannung nach Montage; Wert der Anpassung mithilfe von Zwischenringen: Lagerluft/Vorspannung nach Montage; Wert der Anpassung mithilfe von Zwischenringen:					
	Mantelkühlung:	Ja □Nein Hülse: □Ja □Nein Mantelkühlung: □Ja □Nein Hülse: □Ja □Nein					
	3	Zwischenringmm 2. Zwischenringmm Zwischenringmm 3. Zwischenringmm 2. Zwischenringmm 2. Zwischenringmm 3. Zwischenringmm					
	Wellenbohrung:	mm Außendurchmesser Gehäuse: mm Wellenbohrung: mm Außendurchmesser Gehäuse: mm					
	Temperatur Innenrin	g:°C Temperatur Außenring:°C Temperatur Innenring:°C Temperatur Außenring:°C					
	Wellenpassung: Gehäusepassung: Wellenpassung: Gehäusepassung:						
Anmerkung	en, vermutete Ursac	hen, sonstige Beobachtungen:					

Formular zum Anfordern von Lagerspezifikationen

Bitte füllen Sie das nachstehende Formular aus und senden Sie es an Ihre nächstgelegene NSK Vertriebsniederlassung, wenn Sie detaillierte Angaben zur Lagerausführung anfordern möchten.

	Name des Unternehmens:						
	Grund Ihrer Anforderung detaillierter Angaben:						
	(Beispiel: um die Steifigkeit einer Spindel zu erhöhen, um bislang auftretende Wälzlagerschäden zu verhindern usw.)						
	Anhänge:						
Detaillierte Angaben:	Maschinentyp: ☐ Bearbeitungszentrum ☐ Drehbank ☐ Schleifmaschine ☐ Sonstige Modell-Nr.:						
	Ausrichtung:						
	Antriebstyp 🔲 Integrierte Motorspindel 🔲 Riemenantrieb 🔲 Direktantrieb 🖂	Zahnradantrieb					
	Maximale Drehzahl: min ⁻¹ Ausspannkraft:	. N					
	Schmierung:						
	[Wenn Sie derzeit Wälzlager verwenden, geben Sie bitte die Lagernummern an] Lager an Stirnseite Lager an Rückseite						
	Wellenwerkstoff: Gehäusewerkstoff: Lager an Stirnseite (Festlager)						
	Kombinierte Breite:mm Genauigkeitsklasse:(z. B. EL, 800 N, CC9) Kombinierte Breite:mm Gena	Bohrungsdurchmesser: mm Außendurchmesser: mm Kombinierte Breite: mm Genauigkeitsklasse: (z. B. EL, 800 N, CC9)					
	Lagerluft/Vorspannung: Lagerluft/Vorspannung:						
	Mantelkühlung: □ Ja □ Nein Hülse: □ Ja □ Nein Mantelkühlung: □ Ja □ Nein Zwischenringbreite: 1. Zwischenring mm Zwischenringbreite: 1. Zwischenring						
	3. Zwischenringmm 3. Zwischenringmm						
	Wellenbohrung:mm Außendurchmesser Gehäuse:mm Wellenbohrung:mm Außendu						
	Temperatur Innenring:°C Temperatur Außenring:°C Temperatur Innenring:°C T						
	Wellenpassung: Wellenpassung:						
	Gehäusepassung: Gehäusepassung:						
z für Ang		er länger, 2. Axiale Steifigkeit nach					

NSK Vertriebsniederlassungen - Europa, Mittlerer Osten und Afrika

Deutschland, Benelux, Österreich, Schweiz, Skandinavien

NSK Deutschland GmbH Harkortstraße 15 40880 Ratingen Tel. +49 (0) 2102 4810 Fax +49 (0) 2102 4812290 info-de@nsk.com

Frankreich

NSK France S.A.S. Quartier de l'Europe 2, rue Georges Guynemer 78283 Guyancourt Cedex Tel. +33 (0) 1 30573939 Fax +33 (0) 1 30570001 info-fr@nsk.com

Großbritannien

NSK UK LTD.

Northern Road, Newark,

Nottinghamshire NG24 2JF
Tel. +44 (0) 1636 605123
Fax +44 (0) 1636 643276
info-uk@nsk.com

Italien

NSK Italia S.p.A. Via Garibaldi, 215 20024 Garbagnate Milanese (MI) Tel. +39 02 995 191 Fax +39 02 990 25 778 info-it@nsk.com

Mittlerer Osten

NSK Bearings Gulf Trading Co. JAFZA View 19, Floor 24 Office 2/3 Jebel Ali Downtown, PO Box 262163 Dubai, UAE Tel. +971 (0) 4 804 8205 Fax +971 (0) 4 884 7227 info-me@nsk.com

Polen & CEE

NSK Polska Sp. z o.o. Warsaw Branch Ul. Migdałowa 4/73 02-796 Warszawa Tel. +48 22 645 15 25 Fax +48 22 645 15 29 info-pl@nsk.com

Spanien

NSK Spain, S.A. C/ Tarragona, 161 Cuerpo Bajo 2ª Planta, 08014 Barcelona Tel. +34 932 89 27 63 Fax +34 934 33 57 76 info-es@nsk.com

Südafrika

NSK South Africa (Pty) Ltd. 25 Galaxy Avenue Linbro Business Park Sandton 2146 Tel. +27 (011) 458 3600 Fax +27 (011) 458 3608 nsk-sa@nsk.com

Türkei

NSK Rulmanları Orta Doğu Tic. Ltd. Şti. Cevizli Mah. D-100 Güney Yan Yol Kuriş Kule İş Merkezi No:2 Kat:4 Kartal - Istanbul Tel. +90 216 5000 675 Fax +90 216 5000 676 turkey@nsk.com

Bitte besuchen Sie auch unsere Website: www.nskeurope.de NSK weltweit: www.nsk.com

Alle Angaben wurden sorgfältig überprüft. Sämtliche Haftungsansprüche gegen uns sind ausgeschlossen, insbesondere auch für materielle oder immaterielle Schäden, auch soweit sie auf einer unmittelbaren oder mittelbaren Verwendung der Angaben und Hinweise gestützt werden. © Copyright NSK 2009. Nachdruck – auch auszugsweise – nur mit Genehmigung von NSK. Ref: SPB/C/D/07.23

