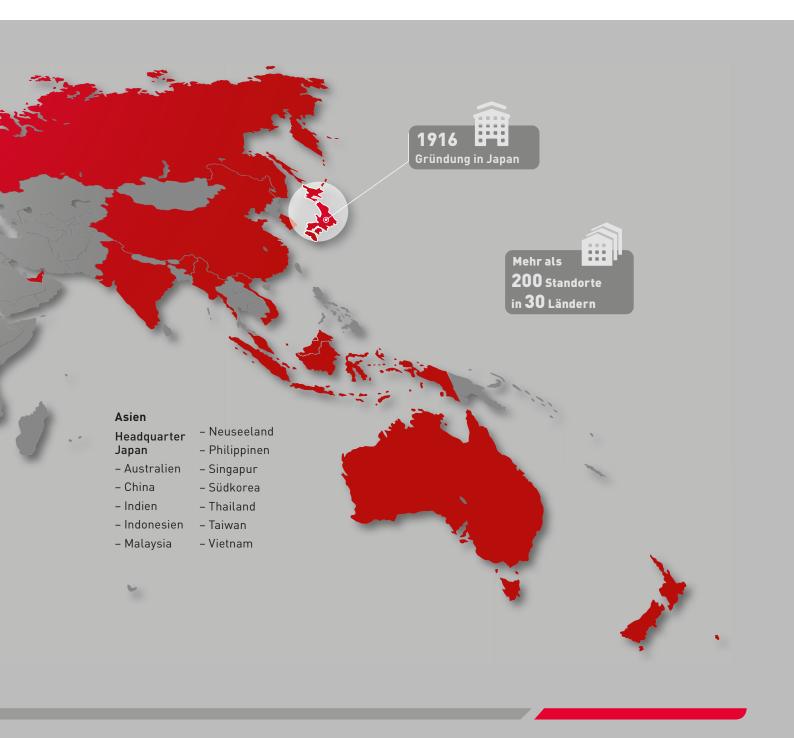


Sektorbroschüre Lösungen für die Lebens- mittel- und Getränkeindustrie	07 09
Success Stories	25
Präsentationen Self-Lube® Gehäuselager Lösungen für die Lebens- mittel- und Getränkeindustrie	75 77 93
Produktkatalog Gehäuselagereinheiten	127 129
Produktkatalog Molded-Oil Lager	369 371

UNSER WICHTIGSTES PRODUKT: DIE ZUFRIEDENHEIT UNSERER KUNDEN

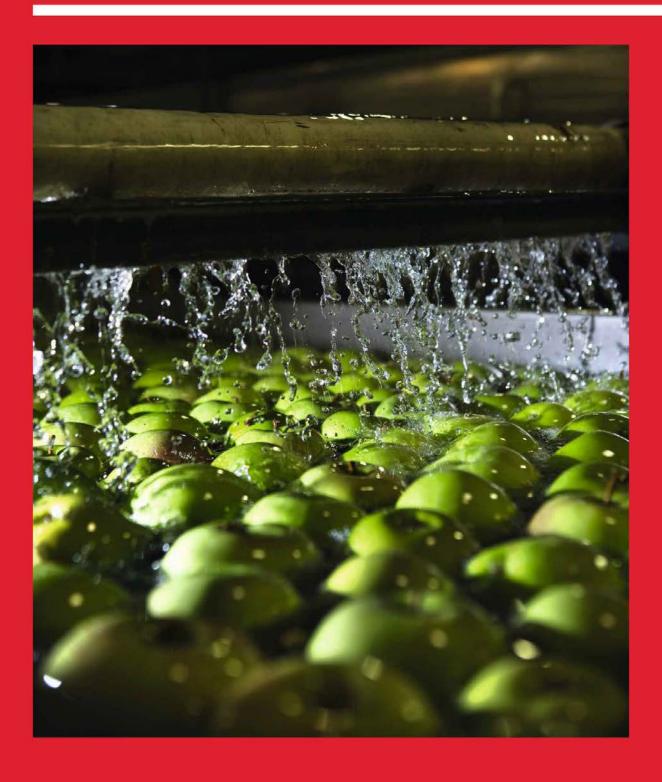
Bei Wälzlagern, lineartechnischen Komponenten sowie Lenksystemen gehören wir weltweit zu den führenden Herstellern. Ein Grund dafür ist, dass unsere Produkte in anspruchsvollen Umgebungen und selbst unter widrigsten Umständen zuverlässig und energieeffizient arbeiten. Um das zu gewährleisten, forschen wir in Kerntechnologien wie Werkstofftechnik und Tribologie, optimieren stetig die Qualität in jeder Prozessphase und entwickeln unsere Produkte für den Einsatz in verschiedenen Branchen



stetig weiter. Dabei treibt uns eines an: Wir möchten Sie dabei unterstützen, die Zuverlässigkeit Ihrer Fahrzeuge und Anlagen zu erhöhen. Mit ausgezeichneten Produkten, aber vor allem mit exzellenten Serviceleistungen. Unsere erfahrenen Ingenieure haben ein tiefes Systemverständnis – gemeinsam mit Ihnen optimieren sie Produkte und Verfahren, entwickeln Lösungen für die Zukunft. Ihre Wettbewerbsfähigkeit nachhaltig sicherzustellen, ist ein Ziel, für das wir uns täglich einsetzen.

02:3 Wess

Sektorbroschüre


"Lösungen für die Lebensmittel- und Getränkeindustrie"

LÖSUNGEN FÜR DIE LEBENSMITTEL-UND GETRÄNKEINDUSTRIE

Lebensmittel- und Getränkeindustrie

Als einer der weltweit größten Wälzlagerhersteller bietet NSK speziell für die Lebensmittel- und Getränkeindustrie ein breites Spektrum an Wälzlagern. Diese zeichnen sich unter anderem durch rostfreie Materialien, eine abgedichtete Konstruktion mit lebenslanger Schmierung und lebensmittelechte Schmierstoffe aus.

Dauerhafter Hochgeschwindigkeitsbetrieb, höchste Hygienestandards und Betriebsbedingungen, bei denen Hitze, Kälte und Feuchtigkeit die Regel sind, erfordern Wälzlager, auf die Sie sich verlassen können. Nur so lassen sich die extremen Bedingungen meistern und Sie können kosteneffizient produzieren. NSK Wälzlager für die Lebensmittel- und Getränkeindustrie sind robust, werden aus korrosionsbeständigem Edelstahl gefertigt und sind auf Lebensdauer geschmiert.

Für einen einwandfreien Betrieb sollten die Lager perfekt auf die jeweiligen Maschinen und Produktionsprozesse abgestimmt sein. Neben dem umfangreichen, speziell für die Lebensmittel- und Getränkeindustrie entwickelten Produktangebot spielt auch unser technisches Know-how eine entscheidende Rolle. Es ermöglicht uns, mit Ihnen gemeinsam potenzielle Schwachstellen im Produktionsprozess zu analysieren, die Leistungsfähigkeit zu messen und zu überwachen und bei Bedarf alternative Produkte vorzuschlagen. In den NSK Forschungslabors arbeiten unsere Experten kontinuierlich an der Verbesserung unserer Produkte und Schmierstoffe.

Wie lässt sich trotz hoher Temperaturen, Wasser und Chemikalien eine hervorragende Leistung der Wälzlager garantieren? Wie kann eine Verunreinigung von Lebensmitteln sicher und zuverlässig verhindert werden? Welche Maßnahmen sind für einen wartungsfreien Betrieb erforderlich? Auf all diese Fragen geben wir Ihnen gern die Antwort. Denn in allem, was wir Tag für Tag tun, geht es um eines: Total Quality.

Neben langen Betriebszeiten sind Hygiene, Gesundheit und Sicherheit die wichtigsten Faktoren in der Lebensmittel- und Getränkeindustrie. Das bedeutet, dass die Dichtscheiben an den Wälzlagern und Rollen des Riementriebs bei der Hochdruckreinigung nicht verformt werden dürfen. Die Wälzlager und ihre Käfige müssen korrosionsbeständig sein und es darf kein Schmierstoff austreten.

In dieser Broschüre finden Sie die wichtigsten Produkte für diesen Industriezweig. Außerdem präsentieren wir Ihnen eine Auswahl von Produkten für besondere Umgebungen. Auf den folgenden Seiten stellen wir Ihnen einen typischen Prozess in der Lebensmittel- und Getränkeindustrie vor.

Anforderungen an Lebensmittelverarbeitungslinien

Rohstoffverarbeitung

Produkteigenschaften:

- · Wasserbeständig
- Staubdicht
- · Einfache Wartung

NSK Produkte:

- · Wälzlager aus Edelstahl
- · Molded-Oil-Lager
- · Linearführungen (mit K1)*

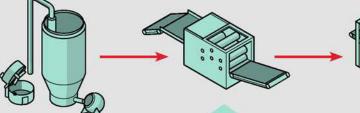
Sekundärprozess (Formen)

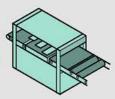
Produkteigenschaften:

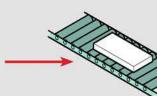
- Wasserbeständig
- Staubdicht
- · Geringe Partikelemissionen**
- · Einfache Wartung

NSK Produkte:

- · Gehäuselager
- · Molded-Oil-Lager
- · Wälzlager aus Edelstahl
- · Linearführungen (mit K1)*
- · Kugelgewindetriebe (mit K1)*
- · Reinraumfett (LG2/LGU)







Primärprozess (Schneiden, Mischen)

Produkteigenschaften:

- Wasserbeständig
- Staubdicht
- · Einfache Wartung

Förderprozess Produkteigenschaften:

Wasserbeständig

- · Geringe Partikelemissionen**
- · Einfache Wartung

NSK Produkte:

- · Gehäuselager
- · Wälzlager aus Edelstahl
- · Linearführungen (mit K1)*

** Partikelemissionen: siehe S. 17

NSK Produkte:

- · Gehäuselager
- · Molded-Oil-Lager
- · Wälzlager aus Edelstahl
- · Linearführungen (mit K1)*
- · Kugelgewindetriebe (mit K1)*

· Kugelgewindetriebe (mit K1)*

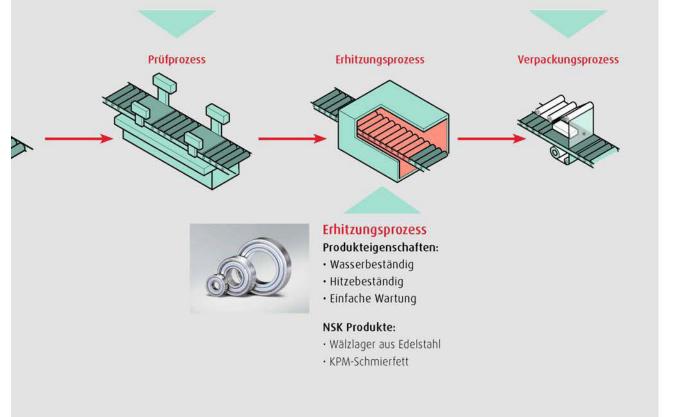
Prüfprozess

Produkteigenschaften:

- Wasserbeständig
- Einfache Wartung
- · Hohe Präzision

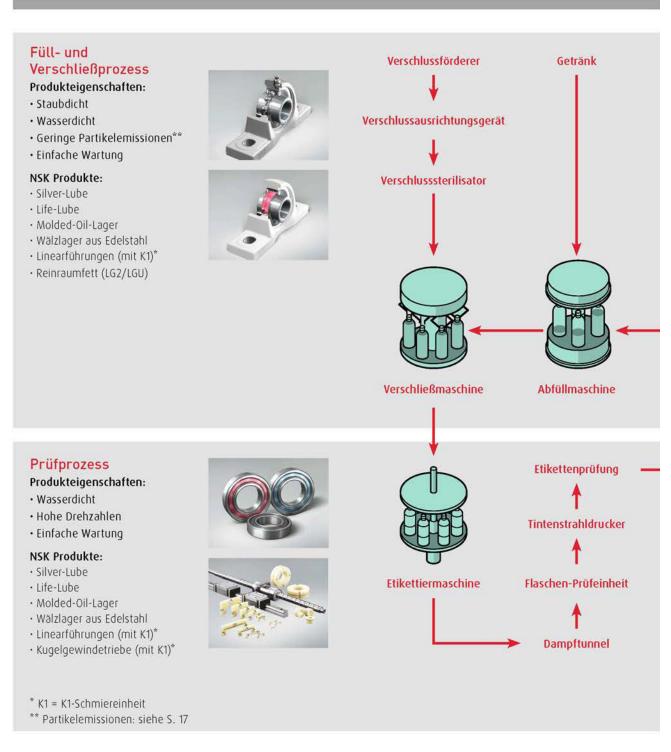
NSK Produkte:

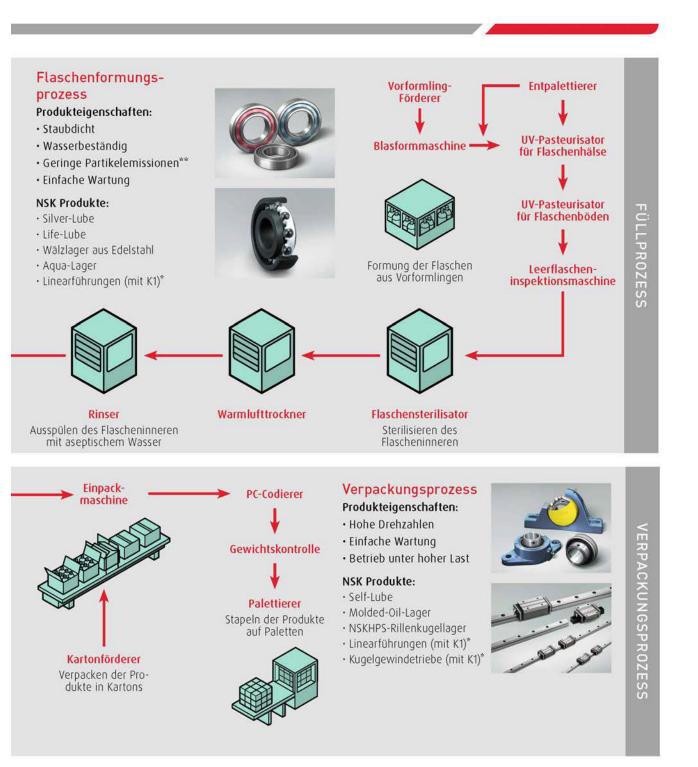
- · Gehäuselager
- · Wälzlager aus Edelstahl
- · Molded-Oil-Lager
- · Linearführungen (mit K1)*
- · Kugelgewindetriebe (mit K1)*


Verpackungsprozess

Produkteigenschaften:

- · Geringe Partikelemissionen**
- · Einfache Wartung
- · Hohe Drehzahlen


NSK Produkte:


- Gehäuselager
- · Molded-Oil-Lager
- · Wälzlager aus Edelstahl
- · Linearführungen (mit K1)*
- · Kugelgewindetriebe (mit K1)*
- · Reinraumfett (LG2/LGU)

LEBENSMITTEL- UND GETRÄNKEINDUSTRIE 7

Anforderungen an Getränkeverarbeitungslinien

LEBENSMITTEL- UND GETRÄNKEINDUSTRIE 9

Wichtigste Produkte für die Lebensmittelund Getränkeindustrie

Gehäuselager

- · Verschiedene Ausführungen von Guss- und Stahlblechgehäusen
- Lagereinsätze drei Befestigungsanordnungen und zwei Innenringbreiten
- Drei Dichtungsvarianten Standard, Dreifachlippendichtung und Standard mit Schleuderscheibe
- Formschlüssige Stahlendkappe für Einheiten mit Wellen bis 60 mm verfügbar
- · Alle Graugussgehäuse nachschmierbar

Einsätze mit Dreifachlippendichtung

- · Einsätze sind mit Standardprodukten austauschbar
- · Längere Lebensdauer dank optimaler Dichtleistung
- · Größere Schmierintervalle
- Geeignet f
 ür Bereiche mit starker Staub- oder Wasserverunreiniqung

Einreihige NSKHPS-Rillenkugellager

- · Geeignet für den Einsatz unter Radiallasten
- · Aufnahme moderater Axiallasten in beiden Richtungen
- · Niedriges Reibmoment
- Geeignet für Anwendungen mit hohen Drehzahlen, bei denen die Leistungsverluste nur gering sein dürfen
- · NSKHPS Hochleistungslager von NSK

Life-Lube

- Verbindet die Korrosionsbeständigkeit der Silver-Lube-Gehäuse mit den Abdicht- und Schmiereigenschaften der Molded-Oil-Lager
- Geeignet f
 ür nasse Umgebungen
- Geeignet f
 ür Bereiche, in denen Kontakt mit Prozessfl
 üssigkeiten und Chemikalien unvermeidbar ist

Silver-Lube

- · Lagerringe, Käfig, Kugeln, Dichtungskern, Gewindestifte, Schmiernippel und Locheinlagen aus hochwertigem Edelstahl
- · Dichtungen aus Nitrilkautschuk und Schleuderscheiben aus Edelstahl
- · Gehäuse aus thermoplastischem Polyesterharz; Endabdeckungen aus Kunststoff erhältlich
- · Ab Werk mit lebensmittelgeeignetem Fett USDA H1 befüllt
- · In vier verschiedenen Gehäuseausführungen erhältlich

Molded-Oil-Lager

- · Hervorragende Leistung in wasser- und staubbelasteten Umgebungen
- · Umweltfreundlich
- · Niedriges Reibmoment

Wälzlager aus Edelstahl

- · Edelstahl ES1
- · Höhere Korrosionsbeständigkeit als herkömmlicher Stahl
- · In offener Ausführung, mit Deckscheiben oder mit schleifenden Dichtungen verfügbar
- · Geeignet für nasse und feuchte Umgebungen
- · Fettschmierung

Linearführungen:

- · Hervorragende Laufeigenschaften - reibungsoptimiert, · Minimale Abweichungen leichtgängig und präzise
- · Höchste Tragzahlen und beste Steifigkeitswerte

Kugelgewindetriebe:

- · Große Produktpalette
- des Laufdrehmoments
- · Hohe Zuverlässigkeit und Genauigkeit

K1-Schmiereinheit

- · Lange wartungsfreie Nutzung
- · Verfügbar in Übereinstimmung mit FDA-Vorgaben
- · Effektive Abdichtungsfunktion
- · Für alle Linearführungen geeignet

LEBENSMITTEL- UND GETRÄNKEINDUSTRIE 11

Produkte für besondere Umgebungen

Aqua-Lager

- Korrosionsbeständig in wasser-, alkali- und säurehaltigen Umgebungen
- Spezieller selbstschmierender Fluorkunststoff für Innenringe, Außenringe und Käfige

Korrosionsbeständigkeit durch Nickelbeschichtung

- · Nickelbeschichtung der Innen- und Außenringe
- · Geeignet für alkalische und leicht säurehaltige Umgebungen
- · Geeignet für Anwendungen mit Wasserspülung

Korrosionsbeständige Wälzlager mit Chrombeschichtung

- Extrem hohe Korrosionsbeständigkeit durch Chrombeschichtung
- · Geeignet für den Dauerbetrieb unter Wasser

Dichtungstechnologie

NSK bietet unterschiedliche Dichtungs-/Deckscheibenausführungen und -materialien an, die jeweils speziell für die Anforderungen Ihrer Anwendung entwickelt wurden. Zu unserer Produktpalette gehören Dichtungen mit unterschiedlicher Beständigkeit gegenüber Verunreinigungen und unterschiedlichen Widerstandskennlinien, darunter unsere schleifenden DU-Dichtungen, die reibungsarmen DW-Dichtungen und die nicht schleifenden V-Dichtungen.

Dichtungen und Deckscheiben im Vergleich					
	Staubdicht	Wasserdicht	Drehmoment	Drehzahleignung	Schutz vor Schmier- mittelaustritt
DU/DDU*	Ausgezeichnet	Ausgezeichnet	Normal	Normal	Ausgezeichnet
DW/DDW*	Ausgezeichnet	Normal	Niedrig	Gut	Ausgezeichnet
v/w°	Gut	Ungeeignet	Sehr niedrig	Hoch	Gut
1/11*	Normal	Ungeeignet	Sehr niedrig	Hoch	Normal

^{*} Beidseitige Abdichtungen/Deckscheiben

Molded-Oil Technologie

Die Schmierung macht den Unterschied: Der patentierte Molded-Oil-Schmierstoff von NSK wurde speziell für Situationen entwickelt, die ein hohes Maß an Hygiene erfordern, wie zum Beispiel in der Lebensmittel- und Getränkeindustrie. Eine spezielle Substanz sorgt dafür, dass der Molded-Oil-Schmierstoff nach und nach freigesetzt wird. Auf diese Weise wird das Wälzlager für lange Zeit mit der erforderlichen Menge Schmierstoff versorgt. Gleichzeitig ist das Risiko von Ölaustritt sehr gering, sodass sich die Wälzlager durch eine hervorragende Laufruhe auszeichnen. Optional können Schmierstoffe mit USDA-H1-(L21-)Zulassung verwendet werden.

Eigenschaften von Molded-Oil-Lagern

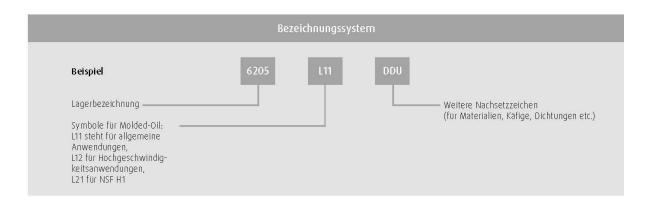
› Hervorragende Leistung in wasser- und staubbelasteten Umgebungen

Die Lager sind so konzipiert, dass Flüssigkeiten wie Wasser (welches das Schmieröl auswaschen kann) und Staub nicht eindringen können. In wasser- und staubbelasteten Umgebungen können die abgedichteten Ausführungen eingesetzt werden.**

Umweltfreundlich

Bei diesen Wälzlagern wird Ölaustritt weitgehend vermieden, da sie mit kleinsten Ölmengen geschmiert werden können, welche aus dem Molded-Oil Schmierstoff austreten.

Niedriges Reibmoment


Durch die Molded-Oil-Füllung und eine Spezialbehandlung der Laufbahnen wird die Drehbewegung der Wälzkörper leichtgängig.

Optimale Zusammensetzung und Pressformverfahren ermöglichen die Verwendung der Molded-Oil-Lager in Hochgeschwindigkeitsanwendungen

Die Optimierung der Zusammensetzung und das Pressformverfahren von Molded-Oil erhöhen die Festigkeit und ermöglichen so die Verwendung von Molded-Oil-Lagern in Hochgeschwindigkeitsanwendungen.

Anwendungen

- Lebensmittelindustrie
- Walzwerke/Stahlwerke
- Papierherstellung
- › Flüssigkristallanzeigen- und Halbleiterherstellung
- Landmaschinen
- Reinigungsmaschinen und -linien
- Fördergeräte

^{*} Wasser und Staub beschleunigen Lagerschäden drastisch. Für einen stabilen Betrieb empfehlen wir daher, Dichtungen zu verwenden, um das Eindringen von Wasser und Staub ins Lagerinnere zu verhindern.

Modellnummern				
Lagerbauarten	Anmerkungen			
	Für allgemeine Anwendungen	6205L11DDU	Δ.	
Rillenkugellager		6001L11-H-20DDU	Wälzlager aus Edelstahl	
	•	Für Betrieb bei hohen Drehzahlen	6205L12DDU	-

Dank der Molded-Oil Technologie konnte ein Lebensmittelhersteller mehr als 50.000 € jährlich einsparen

Bei einem britischen Lebensmittelhersteller hatten die Standard-Rillenkugellager einer siebenspurigen Förderanlage für die Lebensmittelverarbeitung nur eine Lebensdauer von vier Monaten.

Fakten

- · Förderanlage für Lebensmittel
- Vorzeitiger Ausfall der Standardlager aufgrund regelmäßiger Reinigungszyklen mit aggressiven Lösungsmitteln
- 84 Lager in der Anlage, die dreimal jährlich ausgetauscht wurden – 252 Lager pro Jahr
- Wartungsaufwand von 24 Stunden pro Ausfall (zwei Techniker, die jeweils zwölf Stunden benötigten)
- · Produktionsausfallzeit: 14 Stunden je Ausfall
- Austausch der Standardlager durch Molded-Oil-Rillenkugellager, dadurch Verlängerung der Lagerlebensdauer von vier auf zwölf Monate

Analyse der Kosteneinsparungen				
Vorher	Kosten p.a.	NSK Lösung	Kosten p.a.	
Austausch der Rillenkugellager dreimal pro Jahr	684€	Austausch der rostfreien Molded-Oil- Rillenkugellager einmal pro Jahr	4.253 €	
Arbeitskosten	3.218 €	Arbeitskosten	1.073 €	
Entgangener potenzieller Gewinn	53.627 €	Entgangener potenzieller Gewinn	0 €	
Gesamtkosten	57.529 €		5.326 €	

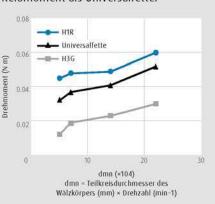
Schmierfette für Lebensmittelverarbeitungsmaschinen

Mit EXCELLA GREEN FOOD GRADE GREASE H3G hat NSK das weltweit erste zu 100 % aus Lebensmitteln gewonnene Schmierfett entwickelt und an die Anforderungen von Wälzlagern für Lebensmittelverarbeitungsmaschinen angepasst. H3G-Schmierfett verfügt über die NSF-Klassifikation H3. Es zeichnet sich in Umgebungen, in denen die Anwendung Wasser ausgesetzt ist, durch ein niedriges Reibmoment, hervorragende Wasserbeständigkeit und geringen Fettaustritt aus. H3G-Schmierfett ist für Temperaturen von bis zu 90 °C geeignet, H1R-Fett für bis zu 120 °C und H1B-Fett für bis zu 200 °C. Die Schmierfette H1R und H1B sind nach den islamischen Halal- und den jüdischen Koscher-Anforderungen zertifiziert.

NSF-Schmierstoffkategorien für Lebensmittelverarbeitungsmaschinen

Hoch

Sicherheit H3: Schmierstoffe, die für den Kontakt mit Lebensmitteln geeignet sind.



H1: Schmierstoffe, die dort verwendet werden, wo es zu einem zufälligen Kontakt mit Lebensmitteln kommen kann.

H2: Schmierstoffe, die dort verwendet werden, wo der Kontakt mit Lebensmitteln ausgeschlossen ist.

NSF (National Sanitation Foundation) International: eine in den USA ansässige, unabhängige Zertifizierungsstelle, die im Bereich der öffentlichen Gesundheit und Sicherheit international anerkannt ist.

H3G-Schmierfett hat ein niedrigeres Reibmoment als Universalfette.

Hitzebeständiges Schmierfett (KPM)

- · Hitzebeständigkeit: verwendbar bis zu 200 °C.
- · Lebensdauer: etwa fünfmal länger als im Handel erhältliche Fluorschmierfette.

Beständigkeit

KPM hat eine sehr lange Lebensdauer - etwa fünfmal länger als handelsübliche Schmierfette auf Fluorbasis.

Prüflager: 6305 Drehzahl: 10.000 min-1

Axiallast: 1.500 N

Temperatur des Außenrings: 200 °C In Normalatmosphäre

Alle hier genannten Fette sind keine NSK Standardfette. Für weitere Informationen wenden Sie sich bitte an NSK.

16

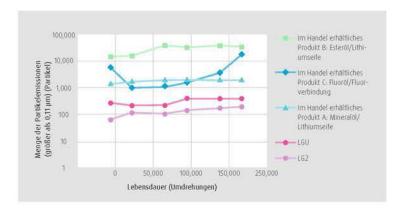
Reinraumfett (LG2/LGU)

- Geringe Partikelemissionen: weniger als bei anderen handelsüblichen Fluorschmierfetten.
- · Lebensdauer: mehr als zehnmal länger als andere handelsübliche Fluorschmierfette.

Stopp 450 450 400 350 200 150 100 50 0 162 Fluorschmierfett Y Fluorschmierfett K

Lebensdauer in der Atmosphäre

In Normalatmosphäre ist die Lebensdauer von LG2- und LGU-Schmierfetten länger.


Prüflager: 608

Drehzahl: 1.000 min-1

Drehrichtung: vorwärts/rückwärts

Axiallast: 196 N In Normalatmosphäre

Temperatur: Normaltemperatur

Partikelemissionen in der Atmosphäre

In Normalatmosphäre sind die Partikelemissionen von LG2- und LGU-Schmierfetten geringer.

Prüflager: 695VV Drehzahl: 3.600 min-1

Tabelle der Schmierfette

Bezeichnung	Betriebstemperaturbereich, °C	Merkmale	Kinematische Viskosität des Grundöls (40 °C), mm2/s	Konsistenz
H3G	0 bis 90	Für Lebensmittelverarbeitungsmaschinen (NSF-Kategorie H3)	14.8	255
H1R	0 bis 120	Für Lebensmittelverarbeitungsmaschinen (NSF-Kategorie H1)	150	280
H1B	0 bis-200	Für Lebensmittelverarbeitungsmaschinen (NSF-Kategorie H1)	415	280
NS HI-Lube	-40 bis +130	Universalfett	26	250
LG2	-20 bis +70	Reinraumfett	32	199
LGU	-40 bis +120	Universal-Reinraumfett	96	201
KPM	-20 bis +230	Hochtemperaturbeständiges Fett	420	290

LEBENSMITTEL- UND GETRÄNKEINDUSTRIE 17

Success Stories

Süßwaren-Waschprozess

Umlenkrolle Tauchbecken-Förderbands

Rührwerke

Milchverarbeitungsanlage

Baby-Spinat-Erntemaschine

Schäkelrolle für den Ausblutungsbereich

Förderband

Gäranlage

Fleischschneidemaschine

Trommelwaschmaschine

Cellophaniermaschine für Flaschen

Förderband-Umlenktrommel

Futtermittel Förderband

Mecatherm-Teigmischmaschine

Bestückungseinheit

Riemenspanner

Karottenwaschmaschine

Schneidelinie

Förderanlage für Lebensmittelproduktion

Förderanlage für Milchflaschen

Kartoffelwaschmaschine

Industrie: Lebensmittel und Getränke

Anwendung: Herstellung von Aluminiumdosen

Kosteneinsparungen: 240.000 Euro

Einleitung

Bei dem weltweit größten Hersteller von Getränkedosen kam es regelmäßig zu unerwarteten Produktionsausfällen aufgrund vorzeitigen Versagens der Lager, die an den Spritzköpfen der Innenbeschichtungsmaschinen montiert waren. Diese Ausfälle führten zu erheblichen Produktionsstörungen und hohen Ausfallkosten. NSK führte eine umfassende Untersuchung der Anwendung durch und überprüfte dabei auch das Schmierfett. Dabei wurde festgestellt, dass die Lager blockierten, weil der für den Prozess erforderliche Hochdruckluftstrom das Fett aus den Lagern presste. NSK schlug vor, berührungslose VV-Dichtungen und eine Lagergeometrie zu verwenden, die einen guten Schmierfettrückhalt und eine weitaus längere Lebensdauer garantierten.

Fakten

- Hochleistungsproduktionslinie für Getränkedosen
- Häufige Probleme mit den Spindellagern für die Spritzköpfe
- Erhebliche Ausfallkosten durch blockierte Lager
- Analyse von Schmierfetts und Lager zeigte, dass es durch unzureichende Abdichtung zu Schmierfettaustritt kam
- Die Maschinenausführung machte es erforderlich, dass Luft durch die Lager strömte
- NSK schlug VV-Dichtungen und Rillenkugellager mit Lagerluft C3 vor
- Diese Ausführung bieten sowohl guten Schmierfettrückhalt, sind aber auch für durchströmende Luft ausgelegt
- Betriebsdauer der Lager wurde von 7 auf 110 Tage verlängert
- Durch die erhöhte Produktionseffizienz ließen sich umfangreiche Kosteneinsparungen erzielen

- Die Untersuchung der ausgefallenen Lager ergab, dass Schmierfettmangel die Ursache war
- Bei einer Analyse der Anwendung zeigte sich, dass der für das Verfahren erforderliche Hochdruckluftstrom auch durch die Lager strömte und die vorhandene Abdichtung (ZZ-Deckscheiben) das Fett nicht zurückhalten konnte
- NSK schlug einen Test mit NSK Rillenkugellagern mit berührungsloser VV-Dichtung und Lagerluft C3 vor

T Alu-Getränkedosen

- Dies erwies sich als erfolgreich, denn die VV-Dichtung zeichnet sich durch einen hervorragenden Schmierfettrückhalt aus
- Im Rahmen der vorbeugenden Wartung zeigte sich, dass sich die Lagerlaufzeit von 7 Tagen auf über 110 Tage verlängert hatte. Der Kunde profitierte von höherer Produktivität und geringeren Wartungskosten, sodass sich die Kosteneinsparungen auf insgesamt 240.000 € beliefen.

Produkteigenschaften

- Lagerluft C3
- VV-Dichtungen
- Diese innovative Bauart garantiert eine effektive Abdichtung ohne eine Erhöhung des Drehmoments oder der Betriebstemperatur
- Die berührungslose Ausführung der Dichtlippe reduziert den Widerstand innerhalb des Lagers – ein bedeutender Vorteil bei Anwendungen, bei denen Leistungsverluste kritisch sind
- - Längere Lagerlebensdauer dank optimaler Dichtleistung
- Hervorragender Schmiermittelrückhalt und effektive Fettverteilung für kontinuierliche Leistung
- Klasse "E" (Geräuschpegel): reduzierter Geräuschpegel für elektrische Anwendungen
- Extrem leistungsfähig in verschmutzter Umgebung
- Lagerausführung mit niedrigem Reibmoment

Rillenkugellager mit VV-Dichtung

Analyse der Kosteneinsparungen

Vorher		Kosten p.a.	NSK Lösung	Kosten p.a.
	Kosteneinsparung durch verlängerte Lebensdauer	€150.000		
B	Kosteneinsparung durch geringere Ausfallzeiten und Produktionsverluste	€90.000		
Gesan	ntkosten	Vorher		€240.000

Industrie: Lebensmittel und Getränke

Anwendung: Baby-Spinat-Erntemaschine

Kosteneinsparungen: 63.300 Euro

Einleitung

Ein lebensmittelverarbeitender Betrieb erntet Baby-Spinat-Produkte und versorgt damit führende Supermärkte. In der Baby-Spinat-Erntemaschine des Unternehmens waren verschiedene kostengünstige Gehäuselager zum Abstützen von Wellen unterschiedlicher Durchmesser verbaut. Während der Erntesaison kam es häufig zu Lagerausfällen der Maschine durch Eintritt von Schmutz und Wasser. Bei Ausfällen wurde die Maschine für die Dauer der Reparatur angehalten, was zu Produktionsverlusten und in einigen Fällen zu verdorbenen Ernten führte. Experten von NSK wurden gebeten, die Anwendungs- und Betriebsbedingungen zu untersuchen. Zur Lösung des Problems des Schmutz- und Wassereintritts empfahlen sie den Austausch der Gehäuselager durch Silver-Lube®-Lagereinheiten mit verbesserter Dreifachlippendichtung und Wälzlagern aus Edelstahl. In der Erntesaison nach dem Austausch kam es nur noch zu zwei Ausfällen, wodurch die Produktivität gesteigert und eine erhebliche Reduzierung der Kosten infolge von Produktionsausfällen erzielt werden konnte.

Fakten

- Baby-Spinat-Erntemaschine
- Verwendung kostengünstiger Wälzlager
- Frühzeitige Lagerausfälle durch Eintritt von Wasser und Schmutz
- NSK Lösung: Silver-Lube®-Wälzlager aus Edelstahl mit Dreifachlippendichtung
- Enorme Reduzierung der Lagerausfälle
- Kosteneinsparungen bei Wälzlagern und Wartungsarbeiten, dadurch Produktivitätssteigerung

↑ Baby-Spinat-Erntemaschine

- NSK überprüfte die Wälzlageranwendung und die Betriebsbedingungen und stellte fest, dass Wasser- und Schmutzeintritt für die frühzeitigen Ausfälle verantwortlich war
- Die NSK Lösung war der Einbau eines Silver-Lube®-Gehäuses mit dreifach abgedichteten Wälzlagern aus Edelstahl
- Die Wälzlager wurden für die neue Saison verbaut

- Nach dem Austausch kam es in der gesamten Saison nur zu zwei lagerbedingten Ausfällen
- Erhebliche Einsparungen bei den Wartungskosten
- Deutliche Produktivitätssteigerung

Produkteigenschaften

- Lagerringe, Käfig, Kugeln, Dichtungskern, Gewindestifte, Schmiernippel und Locheinlagen aus hochwertigem rostfreiem Stahl
- Dichtungen aus Nitrilkautschuk und Schleuderscheiben aus Edelstahl
- Gehäuse aus thermoplastischem Polyesterharz; Endabdeckungen aus Kunststoff erhältlich
- Ab Werk mit lebensmittelgeeignetem Fett USDA H1 für großen Temperaturbereich befüllt
- Silver-Lube® ist in vier verschiedenen Gehäuseausführungen erhältlich
- Widerstandsfähig gegenüber Reinigungsmitteln und Chemikalien, somit auch korrosionsbeständig und kein Abblättern von Lack
- Lange Lebensdauer, geringe Betriebskosten
- Hohe Beständigkeit gegen regelmäßiges Reinigen und chemische Beanspruchungen dank effektiver und effizienter Dichtungsanordnung
- Nachschmierung für lange Lebensdauer und reibungslosen Betrieb möglich, dadurch minimierter Wartungsaufwand und maximierte Produktivität
- Registrierung gemäß NSF, Temperaturbereich –20 °C bis

T Silver-Lube®-Wälzlagereinheiten

Analyse der Kosteneinsparungen

Vorher		Kosten p.a.	NSK Lösung	Kosten p.a.
	Produktionsausfallkosten	€ 126.600	Produktionsausfallkosten	€ 63.300
Gesam	ntkosten	€ 126.600)	€ 63.300

Industrie: Lebensmittel und Getränke

Anwendung: Trommelwaschmaschine

Kosteneinsparungen: 56.600 Euro

Einleitung

Bei einem Hersteller von Trommelwaschmaschinen für die Verarbeitung von Gemüse kam es zu Problemen. Bei jeder Umdrehung der Waschtrommel wurden die Wälzlager einmal in Wasser getaucht. Aufgrund von Auswaschungseffekten und Korrosion mussten die Wälzlager alle 3 Monate ersetzt werden. Dies führte zu hohen Kosten. Die Ingenieure von NSK untersuchten das Problem und schlugen den Einsatz von Self-Lube®-Lagereinsätzen mit Dreifachlippendichtung vor. Aufgrund dieser Verbesserung konnte die Lagerlebensdauer auf über 7 Monate und somit deutlich verlängert werden.

Fakten

- Trommelwaschmaschine zum Reinigen von Gemüse
- Auswaschungseffekte und Korrosion
- Lageraustausch alle 3 Monate
- NSK Lösung: Einsätze mit Dreifachlippendichtung
- Verlängerung der Lebensdauer von 3 Monaten auf über 7 Monate
- Wesentlich seltenerer Austausch von Lagereinsätzen, deutliche Verringerung der Wartungskosten

Trommelwaschmaschine

- Ingenieure von NSK untersuchten das Problem und schlugen als Lösung die Verwendung von Lagereinsätzen mit besserer Dichtfunktion vor
- Die Wälzlager wurden durch spezielle Lagereinsätze mit Dreifachlippendichtung ersetzt
- Lagereinsätze mit Dreifachlippendichtung eignen sich perfekt für Anwendungen, in denen Lagereinsätze einer Verunreinigung durch Wasser ausgesetzt sind
- Der Kunde profitierte von einer h\u00f6heren Lagerlebensdauer und verringerten Wartungskosten

Produkteigenschaften

- Dreifachlippendichtung aus Nitrilkautschuk
- Erhältlich sowohl mit Gewindestiften als auch mit Spannexzenter
- Erhältlich in zahlreichen Größen, auch in Zollabmessungen
- Lagereinsätze sind mit Standardprodukten austauschbar
- Längere Lagerlebensdauer durch bessere Dichtleistung
- Größere Nachschmierintervalle, dadurch erhebliche Einsparung von Wartungskosten und gesteigerte Produktivität der Maschinen
- Einfacher Einbau; gebrauchsfertiger Ersatz für bestehende Lagereinheiten
- Montage auf der Welle mittels Gewindestift mit Innensechskant und balligem Stiftende, dadurch besserer Schutz vor Lockerung

Self-Lube ® -Lagereinsätze mit Dreifachlippendichtung

Analyse der Kosteneinsparungen

Vorher		Kosten p.a.	NSK Lösung	Kosten p.a.
	Kosten für Austausch von Lagereinsätzen während 6-monatigem Betrieb	€ 45.000	Lagereinsätzekosten für erstmalige Montage, keine zusätzlichen Kosten während 7 Monaten	€ 400
	Wartungskosten während 6 Monaten	€ 12.000	Keine Wartungskosten während 7 Mon	aten€ 0
Gesan	ntkosten	€ 57.000		€ 400

Industrie: Lebensmittel und Getränke

Anwendung: Riemenspanner

Kosteneinsparungen: 15.360 Euro

Einleitung

Ein Hersteller von Tiefkühlpizza sah sich mit regelmäßigen Wälzlagerausfällen an einem Riemenspanner eines Lebensmitteltransportbands konfrontiert. Die Reinigung der Fertigungslinie mit Wasser führte zu Korrosion, Schmierfettauswaschungen und Dichtungsschäden. Die Fertigungslinie musste alle 4 Wochen für einen Wälzlagerwechsel angehalten werden. NSK überprüfte die Anwendung und untersuchte das Problem. NSK empfahl den Austausch der vorhandenen Wälzlager durch Molded-Oil-Lager, womit eine deutliche Verlängerung der Lebensdauer sowie Kosteneinsparungen einhergingen.

Fakten

- Alle 4 Wochen kam es zu Wälzlagerausfällen
- Wassereintritt durch häufiges Reinigen führte zur Abtragung des Schmierstoffs, zu beschädigten Dichtungen und zu Korrosionen an Wälzkörpern und Laufbahnen
- NSK Lösung: rostfreie Lager mit Molded-Oil-Schmierung
- Deutlich verlängerte Lebensdauer

↑ Fertigungslinie für Tiefkühlpizza

- Die Überprüfung der Anwendung durch NSK zeigte, dass die Wälzlagerausfälle auf eine Verschlechterung der Schmierstoffeigenschaften und auf Wassereintritt zurückzuführen waren
- NSK empfahl die Verwendung von rostfreien Lagern mit Molded-Oil-Schmierung
- In Molded-Oil-Lagern kommt statt Schmierfett ein ölimprägniertes Polymermaterial als Schmierstoff zum Einsatz
- Die Polymermatrix gibt nach und nach Öl zur Schmierung des Wälzlagers ab und schützt dieses gleichzeitig vor Verunreinigungen. Der Schmierstoff kann im Gegensatz zu Standardschmierfetten nicht ausgewaschen werden. Die Lebensdauer von Wälzlagern in feuchten Umgebungen lässt sich daher erheblich steigern.
- Im Testverfahren zeigten sich eine deutliche Steigerung der Lagerlebensdauer und eine Reduzierung der Maschinenausfallzeiten

Produkteigenschaften

- Molded-Oil-Lager bieten eine kontinuierliche Schmierstoffversorgung
- Saubere Umgebungen, da Schmierfett und der Auffüllprozess mit Schmieröl wegfallen
- Betriebsdauer in Umgebungen mit Wasser- und Staubkontamination mehr als doppelt so lang wie bei Fettschmierung
- Schleifende Dichtungen für Kugellager sind jederzeit im Lager vorrätig
- Höhere wartungsfreie Leistung durch konstante Versorgung mit Schmierstoff; für Anwendungen mit hohen Drehzahlen erhältlich
- Verfügbar für Kugellager, Pendel- und Kegelrollenlager
- Rostfreies Material für korrosive Umgebungen

↑ Molded-Oil-Lager

Analyse der Kosteneinsparungen

Vorher		Kosten p.a.	NSK Lösung	Kosten p.a.
	Wälzlageraustausch alle 4 Wochen	€ 2.160	Wälzlagerkosten	€ 1.800
	Nachschmierung von Wälzlagern	€ 600	Keine Nachschmierung	€ 0
	Wartungskosten	€ 14.400	Keine Wartungskosten	€0
Gesan	ntkosten	€ 17.160		€ 1.800

Industrie: Lebensmittel und Getränke

Anwendung: Biogasanlage

Kosteneinsparungen: 19.205 Euro

Einleitung

Bei einem britischen Gemüseverarbeitungsbetrieb kam es aufgrund von Lagerausfällen in einem Trommelsieb häufig zu Betriebsstörungen der Biogasanlage. Die Laufräder der Trommelsiebe (je zwei pro Sieb) waren mit je zwei Rillenkugellagern ausgerüstet. Im Schnitt kam es alle 6 Wochen zu einem Lagerschaden. Der Austausch nahm jedes Mal eine Stunde Arbeitszeit in Anspruch und führte zu erheblichen Produktionsverlusten. Ursache für die Lagerausfälle waren Verunreinigungen, die in die Laufbahnen der Lager gelangten. Die Ingenieure von NSK überprüften die Anwendung und empfahlen einen Austausch der vorhandenen Lager durch rostfreie Molded-Oil-Rillenkugellager mit DDU-Dichtungen.

Fakten

- Biogasanlage Trommelsieb
- Austausch der Lager alle sechs Wochen (achtmal pro lahr)
- Verschmutzte Umgebung
- NSK Lösung: rostfreie Molded-Oil-Rillenkugellager mit DDU-Dichtungen
- Lageraustausch nur noch dreimal jährlich erforderlich
- Erhebliche Kosteneinsparungen durch weniger Ausfallzeiten und geringeren Wartungsbedarf

↑ Biogasanlage - Trommelsieb

- Beim Kunden kam es zu häufigen Ausfällen des Trommelsiebs einer Biogasanlage; eine Analyse der Lagerausfälle durch die Ingenieure von NSK zeigte, dass der Eintritt von bei der Produktion entstehenden Verunreinigungen der Grund für die Ausfälle war
- Bei einer Überprüfung der Anwendung stellte sich heraus, dass die vorhandenen Rillenkugellager mit schleifenden Dichtungen für den Einsatzzweck nicht geeignet waren
- NSK empfahl stattdessen rostfreie
 Molded-Oil-Rillenkugellager mit DDU-Dichtungen
- Dadurch konnte eine erhebliche Verbesserung der Lagerlebensdauer und der Maschinenleistung erzielt werden; der Wartungsaufwand und die Ausfallzeiten wurden reduziert und der Kunde konnte auf diese Weise beträchtliche Kosten einsparen

Produkteigenschaften

- Molded-Oil sorgt für kontinuierliche Schmierung
- Edelstahl für korrosive Umgebungen
- Fettfrei und ohne Nachfüllen von Öl, dadurch saubere Betriebsumgebung
- Betriebsdauer in wasser- und staubbelasteten Umgebungen mehr als zweimal so lang wie mit Fettschmierung
- Kugellager mit schleifenden Dichtungen standardmäßig erhältlich
- Längerer wartungsfreier Betrieb, da Molded-Oil eine ununterbrochene Schmierung gewährleistet
- Auch für Anwendungen mit hoher Drehzahl erhältlich
- Verfügbare Ausführungen: Kugellager, Pendelrollenlager und Kegelrollenlager

↑ Molded-Oil-Rillenkugellager

Analyse der Kosteneinsparungen

Vorhe	r	Kosten p.a.	NSK Lösung	Kosten p.a.
	Kosten für die Lager:insgesamt 32 Lagerwechsel pro Jahr	134€	Kosten für die Lager:insgesamt 12 Lagerwechsel pro Jahr	992€
B	8 Ausfälle jährlich;51€ Wartungskosten pro Ausfall	408€	3 Ausfälle jährlich51€ Wartungskosten pro Ausfall	153€
	1,5 Stunden Produktionsausfall pro Störung;2.641€ pro Stunde	31.692€	1,5 Stunden pro Störung;2.641€ pro Stunde	11.884€
Gesan	ntkosten	32.234€		13.029€

Industrie: Lebensmittel und Getränke

Anwendung: Schäkelrolle für den Ausblutungsbereich

Kosteneinsparungen: 27.263 Euro

Einleitung

In der Produktionslinie eines Schlachtbetriebs kam es regelmäßig zu Ausfällen von Rillenkugellagern in Schäkelrollen, die zum Transport von Tieren entlang der Produktionslinie im Ausblutungsbereich dienten. Die ursprünglich verwendeten Wälzlager wurden regelmäßig ersetzt, was hohe Kosten nach sich zog. Die Ingenieure von NSK überprüften die Anwendung, analysierten mehrere ausgefallene Wälzlagersätze und fanden heraus, dass die Ausfälle auf die Brinellwirkung während des Betriebs zurückzuführen waren.* NSK empfahl die Verwendung eines anderen Wälzlagertyps und einer anderen Lagerungseinheit, die den im Betrieb auftretenden Stoßbelastungen standhalten würden. Der Wechsel der Wälzlager führte zu einer wesentlich höheren Lagerlebensdauer. *Informationen zur Schadensdiagnose finden Sie im NSK Katalog "Wälzlager Doktor"

Fakten

- Schäkelrolle für den Ausblutungsbereich
- Verwendung von 4 Rillenkugellagern pro Rolle
- Ausfälle in Intervallen von 1 bis 14 Tagen
- Brinellwirkung war Ursache f
 ür Ausf
 älle
- NSK Lösung: Zylinderrollenlager, 2 verschiedene Typen
- Deutlich erhöhte Betriebslebenszeit: über 6 Monate

↑ Schäkelrolle für den Ausblutungsbereich

- Ingenieure von NSK führten eine Überprüfung der Anwendung sowie eine Analyse der Lagerausfälle durch
- In der Folge wurde empfohlen, die bislang verwendeten Rillenkugellager durch Zylinderrollenlager zu ersetzen, die für Stoßbelastungen besser geeignet sind
- Eine Testphase mit NSK Zylinderrollenlagern ergab eine Lebensdauer von über 6 Monaten
- Deutliche Verringerung der Austauschkosten und Ausfallzeiten
- Kosteneinsparungen

- Hochstabiler und verschleißfester Stahlblechkäfig
- Verbesserte Wälzkörperführung in den Käfigtaschen
- 1,5- bis 2-mal höhere Käfigfestigkeit
- Käfigsymmetrie reduziert die Geräuschbildung
- Optimierte Wälzkörperprofilierung
- Bis zu 30 % höhere Tragzahl
- Längere Betriebslebensdauer bis zu 2-fache Lagerlebensdauer
- 10–25 % höhere Grenzdrehzahl gegenüber herkömmlichen Serien
- 30–40 % geringere Geräuschbildung (3–7 dB leiser) und weniger Schwingungen

Tylinderrollenlager - EW Serie

Vorher		Kosten p.a.	NSK Lösung	Kosten p.a.
	Kosten für das Ersetzen der Wälzlager	€ 26.699	Kosten für das Ersetzen der Wälzlager	€ 4.015
	Ausfallkosten	€ 4.602	Ausfallkosten	€ 1.198
B	10 neue Schäkel	€ 1.175	Keine Kosten für neue Schäkel	€0
Gesan	ntkosten	€ 32.476		€ 5.213

Industrie: Lebensmittel und Getränke

Anwendung: Cellophaniermaschine für Flaschen

Kosteneinsparungen: 10.874 €

Einleitung

Bei einem Getränkehersteller in Großbritannien kam es aus unbekannten Gründen zu vorzeitigen Lagerausfällen. Als mögliche Ursache wurde eine Verunreinigung vermutet. Die Lebensdauer der Wälzlager lag bei 1 Woche. NSK wurde gebeten, den Grund für die Ausfälle zu identifizieren. Ingenieure von NSK fanden heraus, dass die Ausfälle durch Restmagnetismus verursacht wurden, der zu Bremseffekten durch Wirbelströme führte. Die Quelle des Magnetismus ließ sich nicht beseitigen. Daher war ein alternatives Wälzlager bzw. eine alternative Lagerbauform erforderlich. Mit der Lösung von NSK konnte die Lagerlebensdauer von 1 Woche auf 1 Jahr erhöht werden.

Fakten

- Vorzeitige Lagerausfälle
- Massenproduktion, hohe Geschwindigkeiten
- NSK Lösung: Rillenkugellager mit T1X-Käfig, Lagerluft C5 und Deckscheiben
- Um den Faktor 52 erhöhte Lebensdauer

Abfüllanlage für Getränke

Optimierungsvorschläge

- Überprüfung der Anwendung durch NSK Ingenieure
- Lagerausfälle durch Restmagnetismus

 Rillenkugellager mit T1X-K\u00e4fig, Lagerluft C5 und Deckscheiben

 Rillenkugellager mit T1X-K\u00e4fig, Lagerluft C5 und Deckscheiben

Rillenkugellager mit T1X-Käfig

Vorher		Kosten NSK Lösung p.a.	Kosten p.a.	
	Jährliche Kosten für Wälzlager: 3.328 × 1,58 €	5.283 €	Jährliche Kosten für Wälzlager: 64 × 2,81 €	180 €
	59 € pro Stunde × 2 Mitarbeiter × 52 Mal pro Jahr	5.772 €		0€
Gesamtkosten		11.055 €		180 €

Industrie: Lebensmittel und Getränke

Anwendung: Karottenwaschmaschine

Kosteneinsparungen: 12.139 Euro

Einleitung

Bei einem Premium-Unternehmen der Gemüseverarbeitung verursachten die häufigen Lagerausfälle einer Gemüsewaschanlage erhebliche Ausfallzeiten und Produktionsverluste. NSK führte eine Analyse der Lagerausfälle durch, die ergab, dass die erhebliche Verkürzung der Lebensdauer durch den Eintritt von Verunreinigungen verursacht wurde. NSK empfahl die Verwendung seiner Life-Lube®-Lager mit Molded-Oil-Einsätzen. Bereits während der Testphase wurde eine längere Lebensdauer erzielt, die zu geringeren Ausfallzeiten und Wartungskosten und einer erhöhten Produktivität führte. Auf diese Weise konnte der Kunde erhebliche Kosteneinsparungen verzeichnen.

Fakten

- Gemüsewaschanlage mit hohem Durchsatz
- Erhebliche Produktionsausfälle und hohe Kosten durch häufige Lagerausfälle
- Eintritt von Wasser und harten Partikeln
- NSK Lösung: Life-Lube®-Lager mit Molded-Oil-Einsätzen
- Verlängerung der Lagerlebensdauer von 1,5 Monaten auf über 12 Monate
- Größere Produktivität
- Kosteneinsparungen

- Die Ingenieure von NSK stellten bei der Analyse der Anwendung fest, dass durch Eintritt von Verunreinigungen in die Wälzlager Fett ausgewaschen wurde, wodurch es zu den Ausfällen kam
- Mit einer Prozessdatenerfassung der Anwendung wurden die Problembereiche der Wälzlager ermittelt
- Die NSK Ingenieure führten eine Analyse der Waschanlage durch und schlugen die Verwendung von NSK Life-Lube®-Einheiten mit Molded-Oil-Einsätzen vor
- Während der vereinbarten Testphase konnte eine Verlängerung der Lebensdauer von 1,5 Monaten auf über 12 Monate erzielt werden
- Der Kunde profitierte von h\u00f6herer Produktivit\u00e4t und geringeren Wartungskosten

- Gehäuse aus thermoplastischem Kunststoff (PBT)
- Molded-Oil-Einsätze (mit Festschmierstoff)
- Martensitischer rostfreier Stahl
- Dichtungen aus Nitrilkautschuk
- Gehäuse für Stehlager, Flanschlager mit 2 oder 4 Befestigungslöchern und Spannkopflager erhältlich
- Bohrungsdurchmesser: 20–40 mm
- Korrosionsbeständig
- Unlackierte Gehäuse verhindern Spanbildung und Abblätterungen
- Unempfindlich gegenüber Verschmutzung, daher erhöhte Lebensdauer
- Optimal für Verfahren, bei denen sich Prozessflüssigkeit nicht vermeiden lässt
- Kein Nachschmieren erforderlich

NSK Molded-Oil-Einsatz

Vorher		Kosten p.a.	NSK Losung	Kosten p.a.
	Produktionsverluste aufgrund unplanmäßiger Ausfälle	€11.491	Ausfallfrei Dauerbetrieb; keinerlei Ausfallkosten während 12 Monaten	€0
E	Wartungskosten: 2 Personen × 18 €/h × 2 h × 9 Ausfälle/Jahr	€648	Keine Ausfälle – keine Wartungskosten	€0
Gesamtkosten		€12.139		€0

Industrie: Lebensmittel und Getränke

Anwendung: Süßwaren-Waschprozess

Kosteneinsparungen: 94.664 Euro

Einleitung

Bei einem Süßwarenhersteller war die Lebensdauer der Rillenkugellager in einer Waschanlage mit 3 Monaten viel zu kurz. Für das Verfahren wurde sehr viel Wasser benötigt, welches in die Lager eintrat und die vorzeitigen Ausfälle verursachte. Die Folgen waren kostspielige Stillstandszeiten und Produktionsverluste. NSK empfahl die Verwendung von Wälzlagern aus Edelstahl mit Molded-Oil-Schmierung, da diese für nasse Anwendungen bestens geeignet sind. Die Lebensdauer der Lager verlängerte sich auf über 18 Monate, wie sich bei regelmäßigen Kontrollen zeigte. Gegenüber der ursprünglichen Ausführung stellte dies eine erhebliche Verbesserung dar.

Fakten

- Waschanlage eines Süßwarenherstellers
- Frühzeitige Ausfälle der Standardlager durch nasse Umgebung
- Produktionsverluste durch unplanmäßige Ausfälle der Anlage
- Lebensdauer von nur 3 Monaten
- 4 Stunden Wartungsarbeiten pro Ausfall
- Test mit NSK Molded-Oil-Lagern aus Edelstahl
- Ergebnis: Verlängerung der Laufzeit auf mehr als 18 Monate

↑ Waschanlage

- Eine Untersuchung der Anwendung ergab, dass eindringendes Wasser zu den frühzeitigen Lagerausfällen führte
- NSK empfahl die Verwendung von Molded-Oil-Rillenkugellagern aus Edelstahl, um die Lebensdauer zu verlängern
- Die neuen Lager wurden montiert und bei Kontrollen zeigten sich im Verlauf von 18 Monaten keinerlei Ausfälle
- Die auf diese Weise erzielten Kosteneinsparungen beliefen sich auf 94.700 €, wie der Kunde bestätigte
- Der Kunde profitierte von h\u00f6herer Produktivit\u00e4t und geringeren Wartungskosten f\u00fcr seine Fertigungslinie

- Komplette Wälzlagereinheit aus Edelstahl perfekt für korrosive Umgebungen
- Lebensdauergeschmierte Lagerlösung dank Molded-Oil-Schmiersystem
- Fettfrei und ohne Nachfüllen von Öl, dadurch saubere Betriebsumgebung
- Betriebslebensdauer in wasser- und staubbelasteten Umgebungen mehr als 2-mal so lang wie mit Fettschmierung
- Hocheffiziente schleifende Dichtung
- Längerer wartungsfreier Betrieb, da Molded-Oil eine ununterbrochene Schmierung gewährleistet. Auch für Anwendungen mit hoher Drehzahl erhältlich
- Verfügbare Ausführungen: Kugellager, Pendelrollenlager und Kegelrollenlager

↑ Molded-Oil-Lager

Vorher		Kosten p.a.	NSK Lösung	Kosten p.a.
	Kosten für die Lager	€114	Kosten für die Lager	€370
	Arbeitskosten: 2 Techniker × 33 €/h × 4 h Reparaturzeit × Anzahl der Lagerwechsel	€1.584	Arbeitskosten: 2 Techniker × 33 €/h × 4 h Reparaturzeit	€264
	Entgangener potenzieller Gewinn durch Produktionsausfälle: 3.900 €/h × 4 h Ausfallzeit	€93.600		
Gesan	ntkosten	€95.298		€634

Industrie: Lebensmittel und Getränke

Anwendung: Förderband

Kosteneinsparungen: 9.315 Euro

Einleitung

Ein deutscher Verarbeiter von Gemüse stellte bei einer seiner Transportanlagen einen erhöhten Verbrauch von Wälzlagern fest. NSK wurde beauftragt, das Problem zu untersuchen. Bei einer Überprüfung konnte festgestellt werden, dass es durch einen starken Wassereintritt zum Auswaschen der Fettfüllung kam. NSK schlug deshalb vor, abgedichtete, korrosionsarme Molded-Oil-Lager einzusetzen. Die Nutzungsdauer der verbauten Wälzlager erhöhte sich von ca. 2 Wochen auf über 9 Monate.

Fakten

- Förderband
- Verarbeitung von Gemüse (Lebensmittel)
- Standzeit der Standardlager von nur 2 Wochen
- Erhöhter Ausfall der Standardlager
- Forderung nach Verlängerung der Standzeiten
- NSK Lösung: Molded-Oil-Lager
- Ergebnis: Verlängerung der Laufzeit von 2 Wochen auf über 9 Monate

- Die Untersuchung durch NSK zeigte, dass es durch starken Wassereinsatz zu Problemen Auswaschung von Fett) kam
- Einsatz von rostarmen Molded-Oil-Lagern

- Standzeit wurde erheblich verlängert
- Kosteneinsparung realisiert

- Molded-Oil sorgt für ununterbrochene Zufuhr von Schmieröl
- Rostfreier Stahl für korrosive Umgebungen
- Fettfrei und ohne Nachfüllen von Öl, dadurch saubere Betriebsumgebung
- Betriebslebensdauer mehr als zweimal so hoch wie mit Fettschmierung, in wasser- und staubbelasteten Umgebungen
- Kugellager sind mit schleifenden Dichtungen (DDU) aus Vorrat erhältlich
- Längere wartungsfreie Betriebszeit, da Molded-Oil eine ununterbrochene Schmierung gewährleistet. Erhältlich für Anwendungen mit hohen Drehzahlen
- Erhältlich als Kugellager, Pendelrollenlager und Kegelrollenlager

↑ Molded-Oil-Lager

Vorher		Kosten p.a.			
	Kosten für die Schmierung	€ 6.377	Keine Kosten für die Nachschmierung	€ 0	_
	Kosten für Montage und Demontage der Lager	€ 2.938	Keine Kosten für den Einbau	€0	
Gesamtkosten		€ 9.315		€ 0	

Industrie: Lebensmittel und Getränke

Anwendung: Förderband-Umlenktrommel

Kosteneinsparungen: 192.600 Euro

Einleitung

Bei einem international bekannten italienischen Lebensmittelhersteller traten Probleme mit den Festlagern der Umlenktrommel-Förderbänder auf. Durch den Betrieb in feuchter Umgebung betrug die Lebensdauer der Lager lediglich 6 Monate. Das Unternehmen bat NSK, die Anwendung zu untersuchen und eine technische Lösung auszuarbeiten, mit der die Lagerlebensdauer verlängert und der Wartungsaufwand verringert werden konnte. NSK schlug ein hochbelastbares Pendelrollenlager mit Molded-Oil-Schmiersystem vor. Das Ergebnis war eine Leistungssteigerung durch höhere Zuverlässigkeit der Maschine und eine Senkung der Wartungskosten.

Fakten

- Lebensmittelproduktion mit häufiger Hochdruckreinigung
- Anwendung mit Förderband-Umlenktrommel
- Regelmäßiges Versagen der vorhandenen Lager durch Eindringen von Wasser
- NSK analysierte die Anwendung im Hinblick auf die optimale Lösung
- Pendelrollenlager mit Molded-Oil-Schmierung
- Höhere Zuverlässigkeit, geringere Wartungskosten

TFörderband-Umlenktrommel

- Überprüfung der Ausfallursache und Analyse der Anwendung
- NSK schlug Austausch der bestehenden 2-reihigen Rillenkugellager mit Fettschmierung gegen den Einsatz von NSK Molded-Oil Pendelrollenlagern vor
- Durch erhöhte Tragzahlen und der Einsatz von Molded-Oil Lagern konnte die Anwendung 15 Monate wartungsfrei laufen
- Durch eine verbesserte Zuverlässigkeit der Maschinen konnten die Wartungsintervalle verlängert werden
- Reduzierten Wartungskosten und eine Reduzierung der Maschinenstillstandzeiten sorgten insgesamt für Kosteneinsparungen in Höhe von €193.000

- Hochbelastbare Pendelrollenlager mit Messingmassivkäfig-Molded-Oil-Schmiersystem stellen eine wartungsfreie Lagerlösung dar
- Fettfrei und ohne Nachfüllen von Öl, dadurch saubere Betriebsumgebung
- Betriebslebensdauer mehr als doppelt so hoch als mit Fettschmierung, in wasser- und staubbelasteten Umgebungen
- Molded Oil Schmiersystem erhältlich für Kugellager, Pendelrollenlager und Kegelrollenlager

Vorher		Kosten p.a.	NSK Lösung	Kosten p.a.
	Kosten für den Austausch der Lager (p.a.)	€2.160	Kosten für die Lager	€1.800
	Produktionsausfall wegen Austauscharbeiten: 6Förderbänder x 3 Produktionsstopps x 3 Std. x 3.500 €/Std.	€189.000	Keine Produktionsausfälle. Die Lager werden im Rahmen der üblichen Wartungsarbeiten ausgetauscht. Nach 15 Monaten sind die Lager weiterhin in	€264
B	Kosten durch Wartungsarbeiten: 6 Förderbänder x 3 Produktionsstopps x 2 Mitarbeiter x 3 Std. x 30 €/Std	€3.240	Refrie Wartungskosten	€0
Gesamtkosten		€194.400		€1.800

Industrie: Lebensmittel und Getränke

Anwendung: Schneidelinie

Kosteneinsparungen: 134.478 Euro

Einleitung

Bei einem großen Hersteller von Snackartikeln kam es häufig zu Problemen mit den Lagern der Schneidelinie. Im Rahmen einer Untersuchung stellte NSK fest, dass die Lagerausfälle durch Ausspülen der Fettschmierung im Reinigungsprozess der Linie verursacht wurden. Alle 6 Wochen wurden Routinewartungen durchgeführt, darunter auch Lagerwechsel, um ungeplante Stillstände zu vermeiden. Die Ausfälle traten allerdings auch vor diesen Wartungsarbeiten auf, was Produktionseinbußen zur Folge hatte. Durch den von NSK vorgeschlagenen Austausch der aktuellen Lager durch NSK Life-Lube®-Gehäuselager wurden deutliche Verbesserungen im Hinblick auf die Lebensdauer der Lager und somit eine Senkung der Wartungs- und Produktionsausfallkosten erzielt.

Fakten

- Schneidelinie eines Snackherstellers
- Lagerausfälle durch Reinigungsprozess
- Hohe Wartungskosten und Produktionsausfälle
- NSK Lösung: Life-Lube®-Gehäuselager
- Deutliche Verbesserung der Lagerlebensdauer
- Reduzierung von Ausfallzeiten, Ersatzteilen und Wartungsaufwand

- Im Rahmen einer Untersuchung vor Ort erkannte NSK das Problem des reinigungsbedingten Schmierfettverlusts
- Es wurde ein Test mit NSK Life-Lube® an einer Linie vorgeschlagen
- Versuchslager wurden montiert und überwacht
- Diese Lager liefen nach einem Jahr immer noch einwandfrei und ohne Ausfälle
- Der Erfolg wird gegenwärtig auf die beiden übrigen Linien übertragen

- Gehäuse aus thermoplastischem Kunststoff (PBT)
- Molded-Oil-Einsätze (mit Festschmierstoff)
- Martensitischer rostfreier Stahl
- Dichtungen aus Nitrilkautschuk
- Verfügbar als Stehlager (NP), Flanschlager (SF, SFT) und Spannkopflager (ST)
- Bohrungsdurchmesser: 20–40 mm
- Unlackierte Gehäuse verhindern Spanbildung und Abblätterungen
- Unempfindlich gegenüber Verschmutzung, daher erhöhte Lebensdauer
- Optimal für Verfahren, bei denen sich Prozessflüssigkeit nicht vermeiden lässt
- Nachschmieren entfällt

NSK Life-Lube® mit Molded-Oil-Gehäuselagereinsatz

Vorher		Kosten p.a.	NSK Lösung	Kosten p.a.
	Kosten der Lager für alle drei Linien	5.512€	Kosten der Lager für alle drei Linien	1.571€
E	29 x 1,5 Stunden Montage; 72€ pro Stunde für alle 3 Linien	3.088€	4,5 Stunden Montage; 72€ pro Stunde für alle 3 Linien	319€
	2 x 2,5 Stunden Produktionsausfall; 426€ pro Minute für alle 3 Linien	127.768€	Keine Kosten durch Produktionsausfälle	0€
Gesamtkosten		136.368€		1.890€

Industrie: Lebensmittel und Getränke

Anwendung: Umlenkrolle eines Tauchbecken-Förderbands

Kosteneinsparungen: 80.493 Euro

Einleitung

Bei einem großen Kaugummi- und Süßwarenhersteller kam es wiederholt zu Lagerausfällen an der Umlenkrolle eines Tauchbecken-Förderbands. Der Kunde musste die Lager etwa alle sieben Wochen austauschen, was zu hohen Wartungskosten und regelmäßigen, unplanmäßigen Stillständen führte. NSK untersuchte das Problem und stellte fest, dass die Lageranordnung aus drei bündig zueinander montierten Rillenkugellagern bestand, von denen sich jeweils ein Satz an jeder Seite der Umlenkrolle befand. Die Lager sind für diese Anordnung nicht geeignet, da die Last nicht gleichmäßig verteilt wurde und eine axiale Vorspannung bestand. Zur Vermeidung der Axialbelastung schlug NSK vor, zwischen den Lagern Distanzscheiben zu montieren. Eine Testphase ergab sofortige Verbesserungen und eine erhebliche Verlängerung der Lebensdauer.

Fakten

- Regelmäßige Lagerausfälle etwa alle sieben Wochen
- Etwa acht Arbeitsstunden jährlich für den Lageraustausch erforderlich
- Erhebliche Stillstandszeiten: eine Stunde pro Umlenkrolle und Lagersatzaustausch
- NSK Lösung: Trennung der einzelnen Lager durch Distanzscheiben
- Bedeutende Verlängerung der Lebensdauer; keinerlei Ausfälle im Verlauf eines Jahres
- Gesteigerte Produktivität
- Große jährliche Kosteneinsparungen

Tumlenkrolle eines Tauchbecken-Förderbands

- Nach wiederholten, kostspieligen Ausfällen suchte der Kunde eine Lösung für die Umlenkrollen des Tauchbecken-Förderbands
- NSK nahm eine Überprüfung der Anwendung vor und stellte fest, dass die an den Seiten der Rolle montierten Sätze aus drei Lagern nicht für eine bündige Installation geeignet waren; mit Distanzscheiben wurden die Lager voneinander getrennt, um eine axiale Vorspannung zu verhindern
- Probeweise wurden neue Lagersätze mit Distanzscheiben montiert
- Dadurch wurden Stillstandszeiten und Wartungskosten reduziert und die jährlichen Einsparungen aufgrund der längeren Lebensdauer der Rollen von einem Jahr waren beträchtlich

- Käfig aus Stahl, Massivmessing oder Kunststoff
- Elektrisch isolierte Lager erhältlich
- Außendurchmesser von bis zu 2.500 mm
- Ultrareiner Stahl um bis zu 80 % längere Lagerlebensdauer
- Geringere axiale Belastungen in beide Richtungen
- Sehr hohe Drehzahlen
- Hochwertige Wälzkörper für geräuscharmen und gleichmäßigeren Betrieb bei hohen Drehzahlen
- Lager-Distanzscheiben
- Mit Distanzscheiben können zwei oder mehr Lager bündig montiert werden, die ursprünglich nicht für diese Anordnung konzipiert sind
- Vermeidung axialer Vorspannung und bessere Verteilung der Last auf alle Lager

↑ Rillenkugellager

Vorher		Kosten p.a.	NSK Lösung	Kosten p.a.
	8 Stunden Produktionsausfall	86.400€	1 Stunde Produktionsausfall	10.800€
	– Lager– Distanzscheiben– Welle und Rolle	2.888€	– Lager– Distanzscheiben– Welle und Rolle	361€
	8 Stunden Arbeitskosten	2.704€	1 Stunde Arbeitskosten	338€
Gesan	ntkosten	91.992€		11.499€

Industrie: Lebensmittel und Getränke

Anwendung: Gäranlage

Kosteneinsparungen: 54.665 Euro

Einleitung

Ein Hersteller von Tortilla-Wraps hatte Probleme mit den im Gärbereich einer Mehrband-Teigproduktionslinie montierten Stehlagereinheiten, da deren Lebensdauer zu kurz war. Alle sechs Wochen mussten zwei Lagereinheiten ausgetauscht werden. Dadurch kam es zu Beschädigungen der Welle, die mit langen Produktionsausfallzeiten und hohen Wartungs- und Ersatzteilkosten verbunden waren. Untersuchungen durch NSK ergaben, dass die Ausfälle auf das Eindringen von Partikeln und sich durch Vibrationen lockernde Gewindestifte zurückzuführen waren. NSK empfahl, die Standard-Stehlagereinheiten durch Self-Lube-Gehäuselagereinheiten mit Dreifachlippendichtung und Spannexzenter zu ersetzen. Diese Empfehlung wurde testweise umgesetzt und die Lebensdauer der Lager konnte von sechs Wochen auf über ein Jahr verlängert werden, was erhebliche Kosteneinsparungen mit sich brachte.

Fakten

- Mehrband-Gäranlage
- Erschwerte Bedingungen, Kontakt mit Mehlstaub und Teig
- Regelmäßige Lagerausfälle, die etwa alle 6 Wochen den Austausch von 2 Lagern und 1 Welle erforderlich machten
- Erheblicher Arbeitsaufwand für den Austausch der defekten Lager und der Welle
- Kostspielige Produktionsausfälle durch lange Maschinenstillstandszeiten
- NSK Lösung: Self-Lube-Gehäuselagereinheit mit Dreifachlippendichtung und Spannexzenter
- Wesentliche Reduzierung der Ausfallzeiten sowie Steigerung der Effizienz und der Anlagenzuverlässigkeit durch längere Lagerlebensdauer
- Kosteneinsparungen generiert

TGäranlage

- Eine Überprüfung der Anwendung durch NSK ergab, dass die Lagerausfälle auf Eindringen von Partikeln und damit verbundenes Wellenwandern zurückzuführen waren
- Die Empfehlung von NSK lautete, die Standard-Stehlagereinheiten durch Self-Lube-Gehäuselagereinheiten mit Dreifachlippendichtung und Spannexzenter zu ersetzen
- Während der Testphase mit den von NSK empfohlenen Lagern kam es im Verlauf von 12 Monaten zu keinerlei Ausfällen
- Dadurch wurde nicht nur die Lebensdauer der Lager und der Welle erheblich verlängert, auch die Ausfallzeiten wurden in großem Maße reduziert und die Effizienz und die Anlagenzuverlässigkeit wurden gesteigert
- Da es zu keinerlei Produktionsverlusten mehr kam, konnte die Rentabilität erhöht werden, und zudem wurden in erheblichem Maße Kosten eingespart

- Nitrilkautschuk, drei Lippendichtungen mit Stahlarmierung
- Erhältlich sowohl mit Gewindestiften als auch mit Spannexzenter
- Umfangreiches Größenspektrum, auch mit zölligen Bohrungen; Einsätze durch Standardeinsätze austauschbar
- Längere Lagerlebensdauer durch bessere Dichtleistung
- Größere Schmierintervalle, dadurch erhebliche Einsparung von Wartungskosten und gesteigerte Produktivität der Maschinen
- Einfache Implementierung; gebrauchsfertiger Ersatz für bestehende Lagereinheiten
- Montage auf der Welle mittels Gewindestift mit Innensechskant und gehärteter Stahlkugel, dadurch besserer Schutz vor Lockerung
- Durch den Spannexzenter wird weitgehend verhindert, dass sich der Einsatz im Betrieb lockert und die Welle schädigt

↑ Self-Lube®-Lagereinheit

Vorher		Kosten p.a.	NSK Lösung Koste p.a.		
	Kosten für die Lager: 9-mal jährlich Austausch von 2 Lagern	€ 660	Kosten für die Lager: Austausch aller Lager im Gärbereich	€ 3.295	
	Ausfallkosten: 2.950 €/h x 2 h Austauschzeit x 9-mal pro Jahr	€ 53.100	Ausfallkosten	€ 0	
B	Kosten für Wellenaustausch	€ 3.180	Kosten für Wellenaustausch	€ 0	
	Montagekosten: 170 €/h x 2 h pro Austausch x 9-mal pro Jahr	€ 3.060	Einmalige Montagekosten: 170 €/h x 12 h	€ 2.040	
Gesar	ntkosten	€ 60.000		€ 5.335	

Industrie: Lebensmittel und Getränke

Anwendung: Futtermittel Förderband

Kosteneinsparungen: 13.309 Euro

Einleitung

Ein Kunde berichtete von regelmäßigen Ausfällen der Wälzlager eines Förderbands in seinem Produktionswerk für Futtermittel. Die vorzeitigen Ausfälle führten zu kostspieligen Stillstandszeiten, da die Einheiten von Technikern ausgetauscht werden mussten. Untersuchungen durch NSK ergaben, dass die Ausfälle auf das Eindringen von harten Fremdkörperpartikel und Feuchtigkeit während des Verarbeitungsprozesses zurückzuführen waren. NSK empfahl dem Kunden, die standardmäßigen Self-Lube®-Lagereinsätze durch Einheiten mit Dreifachlippendichtung auszutauschen. Diese Empfehlung wurde probeweise umgesetzt und die neuen Wälzlager arbeiten seit etwa einem Jahr störungsfrei. Auf diese Weise wurden erhebliche Kosteneinsparungen erzielt.

Fakten

- Förderband in einem Produktionswerk für Futtermittel
- Regelmäßige Lagerausfälle, die etwa alle vier Monate einen Lageraustausch erforderlich machten
- Erheblicher Arbeitsaufwand für den Austausch der defekten Lager
- Kostspielige Produktionsausfälle durch lange Stillstandszeiten der Maschinen
- NSK Lösung: Self-Lube®-Lagereinsätze mit Dreifachlippendichtung
- Produktivitätssteigerung
- Kosteneinsparungen

Törderband in einem Futtermittelwerk

- Die Überprüfung der Anwendung durch NSK ergab, dass die Lagerausfälle auf Eindringen von Feuchtigkeit und harten Fremdkörperpartikel zurückzuführen waren
- Als Folge der Überprüfung empfahl NSK dem Kunden, die standardmäßigen Self-Lube®- Lagereinsätze durch Einheiten mit Dreifachlippendichtung auszutauschen
- Die Self-Lube®-Lagereinsätze mit Dreifachlippendichtung wurden für eine Testphase montiert
- Der Test führte zu einer deutlichen Verlängerung der Lagerlebensdauer und verringerte die Maschinenausfallzeiten

- Dreifachlippendichtung aus Nitrilkautschuk mit Stahlarmierung
- Erhältlich sowohl mit Gewindestiften als auch mit Spannexzenter
- Umfangreiches Größenspektrum, auch mit zölligen Bohrungen
- Lagereinsätze sind mit Standardprodukten austauschbar
- Längere Lagerlebensdauer durch bessere Dichtleistung
- Größere Schmierintervalle, dadurch erhebliche Einsparung von Wartungskosten und gesteigerte Produktivität der Maschinen
- Einfacher Einbau; gebrauchsfertiger Ersatz für bestehende Lagereinheiten
- Montage auf der Welle mittels Gewindestift mit Innensechskant und balligem Stiftende, dadurch besserer Schutz vor Lockerung

Self-Lube®-Lagereinsätze mit Dreifachlippendichtung

Vorher		Kosten p.a.	en NSK Lösung Ko p.a	
	Kosten der standardmäßigen Self-Lube®-Lagereinsätze	€ 506	Kosten der Self-Lube®-Lagereinsätze mit Dreifachlippendichtung	€ 238
	Produktionsausfallkosten	€ 12.960	Produktionsausfallkosten	€ 0
	Arbeitskosten	€ 81	Arbeitskosten	€ 0
Gesan	ntkosten	€ 13.547		€ 238

Industrie: Lebensmittel und Getränke

Anwendung: Förderanlage für die Lebensmittelproduktion

Kosteneinsparungen: 69.826 Euro

Einleitung

Bei einem Kunden kam es alle vier bis sechs Wochen zu Ausfällen der Kugellagereinsätze an einem Förderband für die Lebensmittelproduktion. Regelmäßige Hochdruckreinigungen führten zu Korrosion, Dichtungsschäden und Auswaschung des Schmierfetts aus den Lagern. Dadurch kam es zu häufigen Wartungen und Produktionsausfällen. NSK überprüfte die Lageranwendung und schlug die Verwendung von NSK Life-Lube®-Lagern vor. Diese Lager wurden testweise eingesetzt und führten zu einer wesentlichen Verlängerung der Lagerlaufzeiten; in der Testphase kam es zu keinerlei Ausfällen. Mit dieser Lösung konnte die Zuverlässigkeit erhöht werden, unplanmäßige Stillstandszeiten wurden reduziert und somit erhebliche Kosten eingespart.

Fakten

- Förderanlage für die Lebensmittelproduktion
- Korrosion, Dichtungsschäden und Auswaschung des Schmierfetts aus den Lagern durch Hochdruckreinigungen
- NSK Lösung: Molded-Oil-Lagereinsätze aus rostfreiem Stahl
- 12-monatige Testphase mit zehn Lagern
- Erheblich längere Lebensdauer: auch nach 12 Monaten Betrieb keinerlei Ausfälle
- Kosteneinsparungen bei Lagern, Schmierung und Wartung
- Höhere Produktivität
- Höhere Produktivität

† Förderband

- NSK untersuchte die Lageranwendung und stellten fest, dass Korrosion und Fettauswaschungen aus den Lagern die größten Probleme darstellten
- Es wurde ein Test mit Molded-Oil-Lagereinsätzen aus rostfreiem Stahl vorgeschlagen
- Diese Lager liefen nach 12 Monaten immer noch einwandfrei und ohne Ausfälle
- Die Testanordnung wurde auf weitere, ähnliche Anwendungen ausgeweitet, wodurch erhebliche Kosten eingespart wurden
- Der Kunde übernahm diese erfolgreiche Lösung daraufhin auch für andere Produktionsstandorte

- Gehäuse aus thermoplastischem Kunststoff (PBT)
- Molded-Oil-Einsätze (mit Festschmierstoff)
- Martensitischer rostfreier Stahl
- Dichtungen aus Nitrilkautschuk
- Gehäuse für Stehlager, Flanschlager mit zwei oder vier Befestigungslöchern und Spannlagereinheiten erhältlich
- Bohrungsdurchmesser: 20–40 mm
- Korrosionsbeständig
- Unlackierte Gehäuse verhindern Abblätterungen
- Unempfindlich gegenüber Verschmutzung, daher erhöhte Lebensdauer
- Optimal für Verfahren, bei denen sich Prozessflüssigkeit nicht vermeiden lässt
- Kein Nachschmieren erforderlich

↑ Molded-Oil-Lager

Vorher		Kosten p.a.	NSK Lösung	Kosten p.a.
	Regelmäßige Lagerausfälle alle 4 bis 5 Wochen an 2 wichtigen Prozesslinien.Jährliche Lagerkosten: 922 € pro Linie × 2	€1.844	Keine Lagerausfälle nach 12 Monaten, dadurch geringere Lagerhaltungskosten; 533 € pro Linie × 2	€1.066
	Wartungskosten pro Linie einschließlich Nachschmierung, Arbeits- und Gemeinkosten: 1.644 € pro Linie × 2	€3.288	Geringere Arbeitskosten, da das Nachschmieren entfällt	€0
	Produktionsausfallzeit (12 × pro Jahr): 32.880 € pro Linie × 2	€65.760	Kein Produktionsverlust durch unplanmäßige Stillstandszeiten	€0
Gesamtkosten		€70.892		€1.066

Industrie: Lebensmittel und Getränke

Anwendung: Keimkasten - Rührwerke

Kosteneinsparungen: 53.807 Euro

Einleitung

Beim Zulieferer einer großen britischen Brauerei kam es regelmäßig zu Wälzlagerausfällen in den Rührwerken für das Korn in den Keimkästen. Die Wälzlager mussten häufig ausgewechselt werden, was zu hohen Kosten und Produktionsausfällen führte. NSK überprüfte die Anwendung und schlug vor, statt der vorhandenen Wälzlager Pendelrollenlager der SWR Serie zu verwenden. Die neuen Lager zeichneten sich durch eine längere Lebensdauer aus und die ungeplanten Ausfallzeiten konnten reduziert werden.

Fakten

- 4 Keimkästen
- 22 Rührwerke pro Kasten
- Vertikale Anwendung
- Regelmäßige Ausfälle der Pendelkugellager des Konkurrenten aufgrund der Anwendungsbedingungen
- NSK Lösung: Austausch der Pendelkugellager durch Pendelrollenlager der SWR Serie 3- bis 4-mal längere Lebensdauer der Wälzlager

Keimkasten - Rührwerke

- Überprüfung der Anwendung und Analyse der ausgefallenen Wälzlager durch NSK Experten
- Empfehlung: NSK Pendelrollenlager der SWR Serie mit höherer Tragfähigkeit
- Testlauf mit NSK Pendelrollenlagern der SWR Serie führte zu einer 3- bis 4-mal längeren Lagerlebensdauer

- Verbesserte Verschleißfestigkeit dreimal höher im Vergleich zu Wälzlagerstahl (AISI 52100)
- Optimiertes Verschleißverhalten zwischen Außenringlaufbahn und Wälzkörper, verringert die Ausbrüche (Pittingbildung)
- Verbesserter Schutz gegen Ausbrüche fünfmal höher im Vergleich zu Wälzlagerstahl (AISI 52100)
- Verbesserte Materialeigenschaft verringert die Bruchgefahr des Außenringes - fünfmal höher im Vergleich zum Wälzlagerstahl (AISI 52100)
- SWR-Lager sind 100% austauschbar zu den verwendeten Standardlagern der gleichen Baureihe

Pendelrollenlager der SWR Serie

Vorher		Kosten p.a.	NSK Lösung	Kosten p.a.
	Kosten für die Wälzlager x 4 Keimkästen	15.270€	Kosten für die Wälzlager x 4 Keimkästen	14.625€
	Anfängliche Arbeitskosten 50/Std. x 13 Std. x 4 Keimkästen	49.769€	Anfängliche Arbeitskosten 50/Std. x 22 Rührwerke x 8 Std. x 4 Keimkästen	49.769€
	Ausfallkosten 50/Std. x 13 Std. x 4 Keimkästen	7.352€	Keine Ausfallzeiten	0€
B	Austausch beschädigter Teile x 4 Keimkästen	45.810€	Kein Austausch beschädigter Teile erforderlich	0€
Gesan	ntkosten	118.201€		64.394€

Industrie: Lebensmittel und Getränke

Anwendung: Fleischschneidemaschine

Kosteneinsparungen: 30.471 Euro

Einleitung

Ein führender Hersteller von Schweinefleischerzeugnissen sah sich mit dem wiederholten Ausfall von Wälzlagern an 14 Fleischschneidemaschinen konfrontiert. Der Kunde musste jeden Monat Wälzlager an allen Maschinen ersetzen, was zu hohen Wartungskosten und langen Ausfallzeiten führte. NSK untersuchte das Problem und fand heraus, dass die Wälzlager durch das Eindringen von Wasser und harten Verunreinigungen beim täglichen Abspritzen der Maschinen beschädigt wurden. NSK schlug den versuchsweisen Einbau von NSK Molded-Oil-Lagern vor. Dies führte zu einer beträchtlichen Verlängerung der Lebensdauer und erheblichen Kosteneinsparungen.

Fakten

- An allen 14 Maschinen kam es jeden Monat zu häufigen Ausfällen von Wälzlagern.
- Ca. 168 Arbeitsstunden waren jedes Jahr für den Austausch ausgefallener Lager erforderlich.
- Erhebliche Maschinenausfallzeiten, 3 Stunden je Austausch von Lager und Welle pro Maschine.
- NSK Lösung: Rillenkugellager mit Molded-Oil-Schmierung.
- Erhebliche Erhöhung der Lebensdauer kein Ausfall an sämtlichen Maschinen über einen Zeitraum von 4 Monaten.
- Produktivitätssteigerung.
- Erzielung deutlicher Kosteneinsparungen pro Jahr.

† Fleischschneidemaschine

- Nach wiederholten und kostspieligen Ausfällen von Wälzlagern bat der Kunde um eine Lösung für seine Maschinen zum Fleischformen, -klassifizieren und -schneiden.
- Die Analyse ausgefallener Wälzlager ergab, dass die Ausfälle auf das Eindringen von Wasser und harten Partikeln zurückzuführen waren, das zu einem Versagen der Schmierung / Herauswaschen des Schmiermittels führte.
- Versuchsweise wurden NSK Rillenkugellager mit Molded-Oil-Schmierung eingebaut. Dieser Ansatz stellte sich als erfolgreich heraus. Die Nutzungsdauer der Wälzlager konnte deutlich erhöht werden.
- Molded-Oil-Lager werden nun in allen 14 Maschinen eingesetzt. Durch geringere Ausfallzeiten der Maschinen und einen reduzierten Wartungsaufwand werden jedes Jahr deutliche Kosteneinsparungen erwartet.

- Auch für Anwendungen mit hohen Drehzahlen erhältlich
- Verfügbare Ausführungen: Kugellager, Pendelrollenlager und Kegelrollenlager
- Rostfrei Edelstahl für korrosive Umgebungen
- Fettfrei und ohne Nachfüllen von Öl, dadurch saubere Betriebsumgebung

↑ Rillenkugellager mit Molded-Oil-Schmierung

Vorher		Kosten p.a.	NSK Lösung	Kosten p.a.
	Wälzlagerkosten	€11.021	Wälzlagerkosten	€ 34.478
	Produktionsausfallkosten	€ 23.520	Produktionsausfallkosten	€ 5.880
	Lohnkosten	€15.120	Lohnkosten	€ 3.528
	Kosten für Zusatzbauteil	€ 32.928	Kosten für Zusatzbauteil	€ 8.232
Gesamtkosten		€ 82.589		€ 52.118

Industrie: Lebensmittel und Getränke

Anwendung: Mecatherm-Teigmischmaschine

Kosteneinsparungen: 47.987 Euro

Einleitung

Bei einer großen britischen Bäckerei kam es zu regelmäßigen Wälzlagerausfällen der Mecatherm-Teigmischmaschine. Die Wälzlager mussten alle zwei bis drei Monate ausgewechselt werden, was zu hohen Wartungskosten und Produktionsausfällen führte. NSK überprüfte die Lagerstellen und empfahl die Verwendung von NSKHPS-Pendelrollenlagern. Auf diese Weise konnte die Lagerlaufzeit um das Drei- bis Vierfache verlängert werden, unplanmäßige Stillstandszeiten wurden reduziert und somit erhebliche Kosten eingespart.

Fakten

- 2 Mecatherm-Teigmischmaschinen im Einsatz
- Wälzlager in Mischmaschinen müssen hohe Kräfte aufnehmen, um auch durch Wellendurchbiegung verursachte Taumelbewegungen standhalten zu können
- Die Originallager fielen aufgrund der Anwendungsbedingungen bereits nach zwei bis drei Monaten au.
- NSK Lösung: NSKHPS Pendelrollenlager (High Performance Standard), die optimal für hohe Belastungen geeignet sind
- Drei- bis viermal längere Lebensdauer
- Erhebliche Kosteneinsparungen durch geringeren Wartungsaufwand

Teigmischmaschine

- Untersuchung der Wälzlageranwendung und Analyse der ausgefallenen Lager durch NSK Ingenieure
- NSK Empfehlung: NSKHPS-Pendelrollenlager
- Testlauf mit NSKHPS-Lagern führte zu einer drei- bis viermal längeren Lebensdauer

- Pendelrollenlager mit höchsten Tragzahlen
- Optimale Laufbahnausführung und Oberflächenbearbeitung
- Messingkäfig (CAM) oder verstärkter Stahlblechkäfig (EA)
- Hochreiner Z-Stahl
- Temperaturbeständig bis 200 °C
- Bohrungsdurchmesser: 40 bis 260 mm
- Verdoppelung der Lebensdauer
- Bis zu 20 % höhere Grenzdrehzahl
- Dynamische Tragzahl: 25 % höher
- Geringere Wartungskosten und erhöhte Produktivität
- Hohe Tragzahl ermöglicht kleinere Bauform

1 NSKHPS-Pendelrollenlager

Vorher		Kosten p.a.	NSK Lösung	Kosten p.a.
	Produktionsausfälle: 12 h × 600 € × 8/Jahr	€57.600	Produktionsausfälle: 12 h × 600 € × 2/Jahr	€14.400
	Arbeitskosten: 22 €/h × 24 h × 8/Jahr	€4.224	Arbeitskosten: 22 €/h × 24 h × 4/Jahr	€2.112
	Kosten für die Wälzlager	€864	Kosten für die Wälzlager	€432
	Technische Unterstützung	€2.243	Technische Unterstützung	€0
Gesamtkosten		€64.931		€16.944

Industrie: Lebensmittel und Getränke

Anwendung: Förderanlage für Milchflaschen

Kosteneinsparungen: 7.625 Euro

Einleitung

Bei einem führenden Milchverarbeitungs- und -abfüllbetrieb kam es an den fünf Förderbändern wiederholt zu Lagerausfällen. Die Wälzlager der Förderanlage mussten etwa alle 16 Wochen erneuert werden. Dies führte zu hohen Wartungskosten und ungewollten Maschinenausfallzeiten. NSK untersuchte das Problem und stellte fest, dass beim Reinigen Wasser in die Wälzlager eindrang und so die Ausfälle bewirkte. Probeweise wurden NSK Silver-Lube-Wälzlager mit Lebensmittelschmierfett installiert. Diese Lösung führte zu einer sofortigen Besserung und einer erheblichen Verlängerung der Lebensdauer.

Fakten

- Regelmäßige Lagerausfälle im Abstand von etwa 16 Wochen an fünf Förderbändern
- Aufwand von ca. 20 Arbeitsstunden für den Austausch der defekten Wälzlager in einem Zeitraum von 5 Jahren
- Beträchtliche Maschinenausfallzeiten, eine Stunde pro Lagerwechsel
- NSK Lösung: Wälzlagereinheiten mit Silver-Lube-Gehäuse
- Erhebliche Verlängerung der Lebensdauer, keinerlei Ausfälle im Verlauf von fünf Jahren
- Produktivitätssteigerung
- Beträchtliche Kosteneinsparungen

Förderanlage für Milchflaschen

- Nach wiederholten, kostspieligen Wälzlagerausfällen suchte der Kunde nach einer Lösung für das Problem an seinen fünf Förderbändern für die Milchabfüllung
- Bei der Überprüfung der Anwendung stellte sich heraus, dass Wasser in die Wälzlager eindrang und Korrosion verursachte
- NSK empfahl dem Kunden Silver-Lube-Wälzlager aus rostfreiem Stahl, um das Problem zu beheben
- Diese Lösung wurde probeweise an allen fünf Förderanlagen umgesetzt
- Dadurch konnten nicht nur die Maschinenausfallzeiten und die Wartungskosten reduziert werden, sondern es kam auch zu erheblichen jährlichen Kosteneinsparungen, da die Lagerlebensdauer auf über fünf Jahre verlängert werden konnte

- Gehäuse aus thermoplastischem Kunststoff (PBT)
- Martensitischer rostfreier Stahl
- Dichtungen aus Nitrilkautschuk
- Erhältlich für Stehlager, Flanschlager mit zwei oder vier Befestigungslöchern sowie Spannlagereinheiten
- Bohrungsdurchmesser: 20–40 mm
- Korrosionsbeständig
- Unlackierte Gehäuse verhindern Spanbildung und Abblätterungen
- Unempfindlich gegenüber Verschmutzung, daher erhöhte Lebensdauer
- Optimal für Verfahren, bei denen sich Prozessflüssigkeit nicht vermeiden lässt

1 NSK Silver-Lube

Vorher		Kosten p.a.	NSK Lösung	Kosten p.a.
	Kosten für die Wälzlager	€ 2.804	Kosten für die Wälzlager	€ 748
	Arbeitskosten	€ 1.925	Arbeitskosten	€ 481
	Produktionsausfallkosten	€ 4.125	Keine Produktionsausfallkosten	€0
Gesamtkosten		€ 8.854		€ 1.229

Industrie: Lebensmittel und Getränke

Anwendung: Milchverarbeitungsanlage

Kosteneinsparungen: 13.304 Euro

Einleitung

In der Milchverarbeitungsanlage eines Kunden kam es regelmäßig zu Ausfällen der Lager eines Förderbandes. Die Lager befanden sich an unzugänglichen Stellen und waren nur schwer zu schmieren. Der Kunde musste die Lager alle zehn Wochen austauschen, wodurch jeweils zu dreistündigen Stillstandszeiten kam. NSK untersuchte die Lageranwendung und schlug vor, die Lebensdauer durch den Einbau von Lagereinsätzen aus rostfreiem Stahl mit Molded-Oil-Technologie zu verlängern. Durch Kombination mit den Life-Lube®-Lagereinheiten konnten auch die zusätzlichen Vorteile der Silver-Lube®-Polymergehäuse genutzt werden. Mit dieser Testanordnung konnte die Lagerlebensdauer von zehn Wochen auf mehr als ein Jahr verlängert werden.

Fakten

- Milchverarbeitungsanlage
- Austausch der Lager alle zehn Wochen
- NSK Lösung: Life-Lube®-Gehäuse mit Molded-Oil-Lagereinsätzen
- Reduzierung der Stillstandszeiten
- Höhere Produktivität
- Kosteneinsparungen und keinerlei Wartung

↑ Milchverarbeitung

- Die Anwendungsanalyse von NSK hob die kurze Lebensdauer und die schwierige Wartung hervor
- NSK empfahl Molded-Oil-Einsätze und Silver-Lube®-Kunststoffgehäuse
- Dank besserer Korrosionsbeständigkeit und Molded-Oil-Schmierung konnte die Lebensdauer auf mehr als 12 Monate verlängert werden
- Ein weiterer Vorteil bestand darin, dass bei einem Lagerausfall die Welle nicht mehr ausgetauscht werden musste
- Für den Einbau der neuen Life-Lube®-Lagereinheiten wurde technische Unterstützung bereitgestellt

- Gehäuse aus thermoplastischem Kunststoff (PBT)
- Molded-Oil-Einsätze (mit Festschmierstoff)
- Martensitischer rostfreier Stahl
- Dichtungen aus Nitrilkautschuk
- Gehäuse für Stehlager, Flanschlager mit zwei oder vier Befestigungslöchern und Spannlagereinheiten erhältlich
- Bohrungsdurchmesser: 20–40 mm
- Korrosionsbeständig
- Unlackierte Gehäuse verhindern Spanbildung und Abblätterungen
- Unempfindlich gegenüber Verschmutzung, daher erhöhte Lebensdauer
- Optimal für Verfahren, bei denen sich Prozessflüssigkeit nicht vermeiden lässt
- Kein Nachschmieren erforderlich

Life-Lube®-Gehäuse mit Molded-Oil-Lagereinsätzen

Vorher		Kosten p.a.	NSK Lösung	Kosten p.a.
	Alte Lagerausführung	€140	Neue Lagerausführung	€136
	Arbeitskosten: 2 Monteure × 3 Stunden zu 25 €/h, 5 × pro Jahr	€750	Keine Wartung	€0
	Stillstandszeit: 3 Stunden zu 2.055 €, 2 × pro Jahr	€12.330	Keine Stillstandszeit	€0
	2 x Wellen austauschen zu je 110 €	€220	Kein Wellenaustausch erforderlich	€0
Gesamtkosten		€13.440		€136

Industrie: Lebensmittel und Getränke

Anwendung: Ofenventilator

Kosteneinsparungen: € 34 907

Einleitung

Bei einer führenden britischen Bäckerei kam es immer wieder zu unerwarteten Produktionsstopps, da die Stehlagereinheiten am Umluftventilator eines Hochtemperaturofens vorzeitig ausfielen. Dies führte zu erheblichen Produktionsstörungen, hohen Ausfallkosten und verdorbener Ware. NSK führte eine umfassende Überprüfung der Anwendung einschließlich einer Analyse der ausgefallenen Wälzlager durch. Dabei stellte sich heraus, dass die Wälzlager blockierten, da bereits beim Einbau eine zu hohe Vorspannung und eine falsche Schmierung ausgewählt worden waren. NSK schlug die Verwendung von SNN-Lagergehäusen mit Hochleistungs-Pendelrollenlagern und Labyrinthdichtungen vor und gab Empfehlungen für die korrekten Wälzlagereinbaustellen und die Schmierung. Das Ergebnis war unmittelbar positiv und die Lebensdauer der Wälzlager erhöhte sich um das 4,5-Fache.

Fakten

- Hochtemperaturofen-Umluftventilator mit vertikaler Ausrichtung und Riemenantrieb
- Eingebaute Wälzlager ungeeignet für die Betriebsbedingungen
- Alle 6 Wochen kam es zu Wälzlagerausfällen
- Erhebliche Maschinenausfallzeiten und kostspielige Produktionsverluste durch Wälzlagerausfälle
- Vorschlag von NSK: SNN-Lagergehäuse mit Hochleistungs-Pendelrollenlagern und Labyrinthdichtungen und Empfehlungen für korrekte Wälzlagereinbaustellen und Schmierung
- Steigerung der Wälzlagerlebensdauer von 6 auf 27 Wochen
- Erhebliche Kosteneinsparungen durch verbesserte Produktionseffizienz und Anlagenzuverlässigkeit

1 Ofen-Umluftventilator

- Nach wiederholten, kostspieligen Ausfällen der Wälzlager bat der Kunde um eine Lösung für den Umluftventilator seines Ofens.
- Die Überprüfung der Anwendung durch NSK zeigte, dass die Wälzlager aufgrund einer übermäßigen Vorspannung und unzureichender Schmierung ausfielen.
- NSK schlug SNN-Lagergehäuse mit HPS-Hochleistungs-Pendelrollenlagern und Labyrinthdichtungen vor und gab Empfehlungen für die korrekten Wälzlagereinbaustellen und die Schmierung.
- Die Empfehlungen von NSK wurden umgesetzt und in einer Testphase ließ sich die Lebensdauer um das 4,5-Fache verlängern.
- Dadurch wurden Stillstandszeiten und Wartungskosten reduziert und die jährlichen Einsparungen waren beträchtlich.

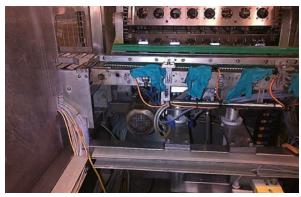
- Ausgestattet mit 2 Schmierbohrungen und 1 Fettaustrittsbohrung
- Massive Ecken im Gehäuseunterteil für Fixierstifte
- Quadratische Form und Mittenmarkierungen
- Einfache Montage und Ausrichtung, geringe Wartungskosten
- Hohe Steifigkeit (minimiert die Verformung des Lagersitzes)
- Zahlreiche Abdichtungsmöglichkeiten und Anordnungen für jeden Anwendungsfall
- Gute Wärmeableitung
- Gehäuse eignen sich sowohl für zweireihige Pendelkugellager als auch für zweireihige Pendelrollenlager

SNN-Lagergehäusen mit Hochleistungs-Pendelrollenlagern und Labyrinthdichtungen

Vorher		Kosten p.a.	NSK Lösung	Kosten p.a.
	9-mal jährlich Austausch von 2 Lagereinheiten	€ 14 171	Erstmontage + Austausch von 2 Wälzlagereinheiten zweimal jährlich	€ 2 873
	550 €/Stunde × 5 Stunden für den Austausch × 9 Ausfälle pro Jahr	€ 24 750	550 €/Stunde × 5 Stunden für den Austausch × 2 Ausfälle pro Jahr	€ 5 500
6	2 Wartungstechniker × 5 Stunden/Ausfall × 9 Ausfälle pro Jahr	€ 2 565	2 Wartungstechniker × 5 Stunden/Ausfall × 2 Ausfälle pro Jahr	€ 855
	Verdorbene Ware	€ 3 406	Verdorbene Ware	€ 757
Gesamtkosten		€ 44 892		€ 9 985

Industrie: Lebensmittel und Getränke

Anwendung: Bestückungseinheit


Kosteneinsparungen: € 41.791

Einleitung

Ein Unternehmen der Lebensmittel- und Getränkeindustrie sah sich mit wiederholten Ausfällen von Wälzlagern an der Rolle einer Bestückungseinheit konfrontiert. Da die Rolle etwa alle 3 Monate ausfiel, mussten pro Jahr rund 4 Wälzlagersätze ausgetauscht werden. Eine Überprüfung durch NSK ergab, dass das Eindringen von Wasser und Fremdkörperpartikeln während des Verarbeitungsprozesses die Ursache war. NSK empfahl den Austausch der Standardlager durch seine Molded-Oil-Lager. In einem entsprechenden Testlauf konnte die Ausfallrate erheblich reduziert werden – etwa ein Jahr lang gab es keinerlei Ausfälle. Dank reduzierter Ausfallzeiten konnte die Produktivität gesteigert werden.

Fakten

- Infolge häufiger Lagerausfälle ca. 8 Lagerwechsel jährlich
- Erheblicher Arbeitsaufwand für den Austausch der defekten Lager
- Kostspielige Produktionsausfälle durch hohe Maschinenausfallzeiten
- NSK Lösung: Molded-Oil-Rillenkugellager
- Gesteigerte Produktivität
- Kosteneinsparungen

↑ Bestückungseinheit

- Die Überprüfung der Anwendung durch NSK ergab, dass die Lagerausfälle auf fehlende Schmierung und das Eindringen von Wasser und Fremdkörperpartikeln während des Verarbeitungsprozesses zurückzuführen waren
- Nach Abschluss der Überprüfung empfahl NSK die Verwendung von Molded-Oil-Kugellagern
- Es wurde ein Test mit Molded-Oil-Kugellagern durchgeführt
- Dieser Test führte zu einer wesentlichen Verlängerung der Lagerlebensdauer und zu einer Verringerung der Maschinenausfallzeiten

- Molded-Oil sorgt für kontinuierliche Schmierung
- Fettfrei und ohne Nachfüllen von Öl, dadurch saubere Betriebsumgebung
- Betriebsdauer in wasser- und staubbelasteten
 Umgebungen mehr als zweimal so lang wie mit Fettschmierung
- Kugellager mit schleifenden Dichtungen standardmäßig erhältlich
- Längerer wartungsfreier Betrieb, da Molded-Oil eine ununterbrochene Schmierung gewährleistet; auch für Anwendungen mit hohen Drehzahlen erhältlich
- Erhältlich als Kugellager, Pendelrollenlager und Kegelrollenlager
- Edelstahl für korrosionsfördernde Umgebungen

NSK Molded-Oil-Rillenkugellager

Vorher		Kosten p.a.	NSK Lösung	Kosten p.a.
	Kosten für die Lager	€ 172	Kosten für die Lager	€ 501
	Arbeitskosten	€ 3.240	Arbeitskosten	€ 0
	Produktionsausfallkosten	€ 38.880	Produktionsausfallkosten	€ 0
Gesamtkosten		€ 42.292		€ 501

Industrie: Lebensmittel und Getränke

Anwendung: Kartoffelwaschmaschine

Kosteneinsparungen: 22.250 Euro

Einleitung

Bei einem führenden Snack-Hersteller verursachten die häufigen Lagerausfälle einer Kartoffelwaschanlage erhebliche Ausfallzeiten und Produktionsverluste. Eine von NSK durchgeführte Analyse der Wälzlagerausfälle ergab, dass die erheblich verkürzte Lebensdauer auf den Eintritt von Verunreinigungen zurückzuführen war. NSK wurde gebeten, eine Lösung für dieses Problem zu finden, um die Gebrauchsdauer der eingesetzten Wälzlager zu verlängern. Bereits während der vereinbarten Testphase konnte eine Verdopplung der Lebensdauer erzielt werden.

Fakten

- Kartoffelwaschanlage mit hohem Durchsatz
- Erhebliche Produktionsausfälle und hohe Kosten durch häufige Ausfälle der Wälzlager
- Eintritt von Wasser und Bodenpartikeln
- Einsatz im Innen- und Außenbereich (Witterungseinflüsse)
- NSK Lösung: Austausch der Standardkugellager durch Molded-Oil-Kugellager von NSK
- Keinerlei Lagerausfälle für mehr als 8 Monate
- Produktivitätssteigerung
- Kosteneinsparungen

T Kartoffelwaschanlage

- Die Ingenieure von NSK stellten bei einer Analyse der Lagerausfälle fest, dass Verunreinigungen (in Form von Wasser und Erde) in die Lager eindrangen
- Die Standardkugellager wurden durch Molded-Oil-Kugellager ersetzt
- Während der vereinbarten Testphase wurde eine Verlängerung der Lebensdauer von 4 Monaten auf mehr als 8 Monate erzielt
- Der Kunde profitierte von erhöhter Produktivität und geringeren Wartungskosten
- Nachschmieren war nicht mehr erforderlich

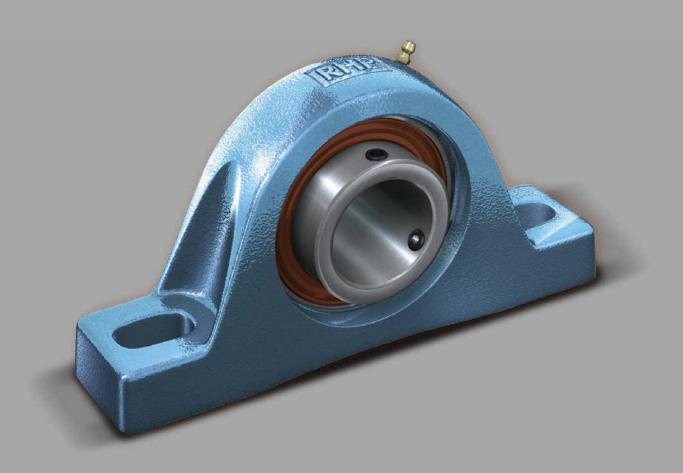
Produkteigenschaften

- Molded-Oil sorgt für kontinuierliche Schmierung
- Edelstahl für korrosive Umgebungen
- Fettfrei und ohne Nachfüllen von Öl, dadurch saubere Betriebsumgebung
- Betriebsdauer in wasser- und staubbelasteten Umgebungen mehr als zweimal so lang wie mit Fettschmierung
- Kugellager mit schleifenden Dichtungen standardmäßig erhältlich
- Längerer wartungsfreier Betrieb, da Molded-Oil eine ununterbrochene Schmierung gewährleistet
- Auch für Anwendungen mit hohen Drehzahlen erhältlich
- Verfügbare Ausführungen: Kugellager, Pendelrollenlager und Kegelrollenlager

↑ Molded-Oil-Lager

Analyse der Kosteneinsparungen

Vorher		Kosten p.a.	NSK Lösung	Kosten p.a.	
	Arbeitskosten	€ 2.500	Arbeitskosten	€ 250	
	Produktionsausfälle	€ 20.000	Kein Umbau notwendig	€ 0	
Gesamtkosten		€ 22.500		€ 250	



Präsentationen

Self-Lube® Gehäuselager

Lösungen für die Lebens mittel- und Getränkeindustrie

Self-Lube® Gehäuselager

NSK Produktpalette Self-Lube® Lagereinheiten Datum: 28. Oktober 2020 Ort: Musterstadt Moderator: Max Mustermann

Einführung

Wussten Sie,

dass Self-Lube[®] Lagereinheiten entwickelt wurden, um eine einfache und schnelle Lösung für die Montage von Wälzlagern ohne die Erfordernis komplexer Gehäuse und spezieller Wellenvorrichtungen bereitzustellen?

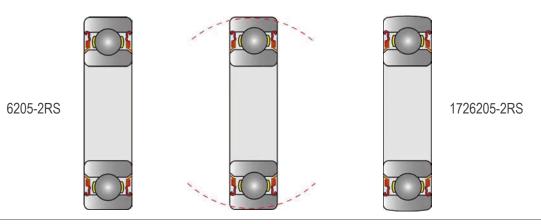
©NSK Deutschland GmbH, 2020 - Self-Lube® Lagereinheiten

Was sind Self-Lube® Lagereinheiten?

Diese Wälzlagereinheiten wurden entwickelt, um eine praktische Lösung mit allen Eigenschaften bereitzustellen, die für die einfache Befestigung sowohl an einem Rahmen als auch auf einer Welle erforderlich sind.

Sie zeichnen sich durch drei Merkmale aus:

- Abgedichtet gegen Eindringen von Verunreinigungen
- Ausgleich von Fehlausrichtungen bei der Montage
- Einfacher Ein- und Ausbau mit Fokus auf Zeitersparnis und bequemer Handhabung



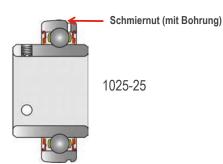
©NSK Deutschland GmbH, 2020 - Self-Lube® Lagereinheiten

Die Entwicklung der Self-Lube® Einheiten

- Self-Lube[®] Einsätze basieren auf den einreihigen Kugellagern der Serie 6200
- Um das Schmierfett zurückzuhalten und das Eindringen von Fremdkörpern zu verhindern, sind zwei Dichtungen verbaut
- Im Rahmen der ersten Entwicklungsstufe wurde der Außenring ballig gestaltet

©NSK Deutschland GmbH, 2020 - Self-Lube® Lagereinheiten

,


Die Entwicklung der Self-Lube® Einheiten

- Der Innenring wird anschließend in beide Richtungen verlängert, um die Welle zu lagern
- Die Bohrung ist etwas größer, um eine einfache Montage auf die Welle zu ermöglichen
- Eine standardmäßige Befestigung auf der Welle umfasst zwei in einem Winkel von 120° zueinander angeordnete Gewindebohrungen, in die Gewindestifte geschraubt werden
- Der Außenring weist eine gefräste Schmiernut mit zugehöriger Bohrung auf, über die Schmierfett zu den innenliegenden Komponenten des Wälzlagers gelangt. Das Schmierfett wird über einen Schmiernippel im Gehäuse zugeführt.

©NSK Deutschland GmbH, 2020 - Self-Lube® Lagereinheiten

5

Die Entwicklung der Self-Lube® Einheiten

Das ursprüngliche Konzept dieses Wälzlagertyps bestand darin, eine fertig entwickelte Lösung inklusive eines Gehäuses und eines Mechanismus zum Befestigen auf der Welle bereitzustellen. Dazu gehörten eine sehr gute Wälzlagerabdichtung und eine auf die Lebensdauer des Wälzlagers ausgelegte Schmierung, daher der Name Self-Lube®.

Bei den meisten Anwendungen ist keine Nachschmierung erforderlich. Dieses Merkmal wurde dennoch in einem späteren Entwicklungsstadium hinzugefügt, um extremen Bedingungen gerecht zu werden.

©NSK Deutschland GmbH, 2020 - Self-Lube® Lagereinheiten

Self-Lube® Abdichtung

Die standardmäßige Self-Lube® Dichtung läuft direkt auf der fein bearbeiteten Oberfläche des Innenrings und bildet ein effizientes Dichtungssystem.

- Bei der Standardabdichtung handelt es sich um eine Dichtung aus schwarzem Nitrilkautschuk, die auf einen Stahlkäfig geklebt ist
- Die flexible Dichtlippe gleitet auf der fein bearbeiteten Oberfläche des Innenrings und gewährleistet eine effektive Abdichtung bei geringer Reibung
- Der Gesamttemperaturbereich liegt bei -20 bis 110° C
- Diese Dichtung wird in einem Metall-Umformverfahren am Außenring befestigt. Das bedeutet, dass sie fixiert ist und sich während des Nachschmierens nicht lösen kann.

©NSK Deutschland GmbH, 2020 - Self-Lube® Lagereinheiten

Self-Lube® Abdichtung

Für Anwendungen in stark verunreinigten Umgebungen wird die speziell entwickelte RHP-Dreifachlippendichtung empfohlen.

- Die Dreifachlippendichtung eignet sich hervorragend für erschwerte Bedingungen,
 z. B. mit hoher Belastung durch Staub, Sand, Wasser oder Schlamm
- Drei Dichtlippen bieten im Vergleich zu Standarddichtungen eine h\u00f6here
 Lagerlebensdauer. Die st\u00e4rkere Reibung wirkt sich allerdings auf die Drehzahl aus.
- Die Kurzbezeichnung des Wälzlagers wird um das Vorsetzzeichen T erweitert, um den Dichtungstyp anzugeben, z. B. T1025-25G

©NSK Deutschland GmbH, 2020 - Self-Lube® Lagereinheiten

Self-Lube® Abdichtung

Wenn es neben einer guten Dichtfunktion auch auf die Drehzahl ankommt, kann die standardmäßige Dichtungsanordnung um eine Schleuderscheibe erweitert werden.

- Die Schleuderscheibe verfügt über eine flexible Lippe aus Nitrilkautschuk, die das Eindringen großer Partikel verhindert
- Sie sitzt sicher auf dem Innenring und sorgt bei h\u00f6heren Drehzahlen daf\u00fcr, dass Schmutz und Wasser durch die Zentrifugalkraft vom W\u00e4lzlager weggeschleudert werden
- Diese Eigenschaft verhindert zudem zuverlässig, dass sich Ablagerungen von Verunreinigungen auf der Welle bilden, was bei Standarddichtungen normalerweise zur Zerstörung der Dichtung führt

©NSK Deutschland GmbH, 2020 - Self-Lube® Lagereinheiten

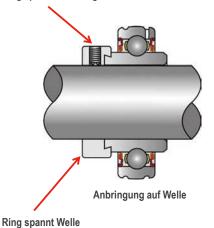
_

Alternative Vorrichtungen zum Befestigen auf der Welle

Befestigung mit Gewindestiften

- Umfasst zwei Gewindestifte mit gerändelter Spitze, die in einem Winkel von 60° zueinander am verlängerten Innenring angeordnet sind
- Die gerändelte selbstsichernde Konstruktion gewährleistet die sichere Befestigung auf der Welle
- Um die Fixierung durch den Gewindestift zu verbessern und so die Sicherheit zu erh\u00f6hen, kann die Welle angebohrt werden

Set screw tightening torques and maximum axial loads

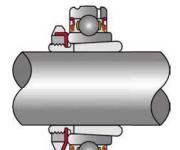

	Socket/Allen key size	Recommended maximum tightening torque		
Set screw size	(across flats)	newton metres (Nm)	lbf-inches	
1/4 UNF	1/8"	6.8	60	
5/16 UNF	5/32"	12.4	110	
3/8 UNF	3/16"	22.6	200	
7/16 UNF	7/32"	31.6	280	
1/2 UNF	1/4"	45.2	400	
5/8 UNF	5/16"	53.9	477	
M6 x 0.75	3mm	5.7	50	
M8 x 1.00	4mm	12.4	110	
M10 x 1.25	5mm	27.1	240	
M12 x 1.50	6mm	38.4	340	
M16 x 1.50	8mm	53.9	477	

©NSK Deutschland GmbH, 2020 - Self-Lube® Lagereinheiten

Alternative Vorrichtungen zum Befestigen auf der Welle

Ring spannt Innenring

Exzenterspannring


- Gewindestifte k\u00f6nnen sich durch Vibrationen l\u00f6sen
- In solchen Fällen kann eine andere Befestigungsmethode, der Exzenterring, gewählt werden
- In Innenring und Exzenterring sind entsprechende exzentrische Nuten gefräst
- Die Welle wird durch Drehen des Exzenterrings in die Drehrichtung der Welle zwischen Exzenterring und Innenring gespannt
- Diese Befestigungsvariante eignet sich nur für Wellen mit einer Drehrichtung

©NSK Deutschland GmbH, 2020 - Self-Lube® Lagereinheiten

11

Alternative Vorrichtungen zum Befestigen auf der Welle

Anbringung auf Welle

Befestigung mit Kegelhülse

- Kommt es bei Wellen mit umkehrbarer Drehrichtung zu Vibrationen, kann sich der Exzenterring bei der Umkehr lösen. Dieses Problem lässt sich durch Befestigung mit einer Kegelhülse umgehen.
- Die kegelige Bohrung des Wälzlagers sitzt in einer geteilten Hülse mit passendem Konus, die auf der Welle befestigt wird
- Durch Festziehen der Mutter am Ende der Hülse wird die geteilte Hülse in die Bohrung des Wälzlagers gezogen

©NSK Deutschland GmbH, 2020 - Self-Lube® Lagereinheiten

Schmierung

Funktionsweise

- Über einen Schmiernippel wird dem Gehäuse Schmierfett zugeführt
- Anschließend wird es über einen Kanal im Gehäuse zu einer Nut im Einsatz geleitet
- Über diese Nut gelangt das Schmierfett zu einer kleinen Bohrung im Außenring des Wälzlagers
- Das Schmierfett verteilt sich seitlich an der Laufbahn, wo es benötigt wir

Wann schmieren?

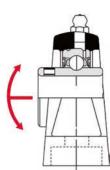
- Unter normalen Bedingungen ist es nicht erforderlich, diese Wälzlager nachzuschmieren
- Ausnahmen bilden der Betrieb bei extremen Temperaturen, Drehzahlen und Belastungen oder bei übermäßiger Feuchtigkeit oder Verschmutzung

Zu beachten:

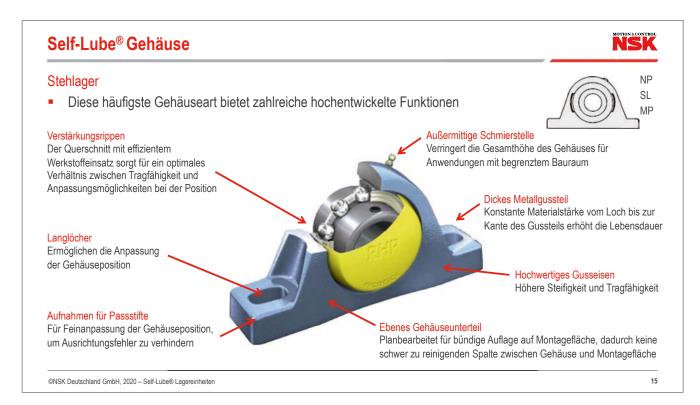
- Damit die Schmierfettzufuhr nicht abreißt, darf der Fluchtungsfehler einen bestimmten Grenzwert nicht überschreiten
- Wird das Schmierfett ersetzt, muss das neue mit dem vorhandenen Schmierfett kompatibel sein
- Nicht mit zu viel Schmierfett befüllen, insbesondere wenn das Wälzlager bei hohen Drehzahlen betrieben wird

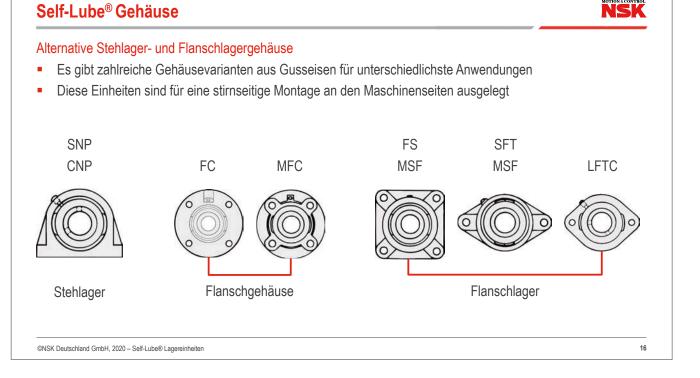
©NSK Deutschland GmbH, 2020 - Self-Lube® Lagereinheiten

Self-Lube® Gehäuse



Self-Lube[®] Einheiten bestehen aus zwei Komponenten – einem Einsatz und einem Gehäuse.


Self-Lube® Gehäuse werden aus unterschiedlichsten Werkstoffen und in vielen Formen gefertigt, sodass sie sich für die Montage in zahlreichen Anordnungen eignen.


- Die Gehäuse weisen eine Kugelbohrung bzw. eine kugelige Innenoberfläche auf
- Die Einsätze werden über zwei Einführnuten in diese Bohrung gedreht
- Dadurch lassen sich die Kugeln einzeln anordnen, sodass die Möglichkeit besteht, kleinere Anpassungen der Ausrichtung vorzunehmen

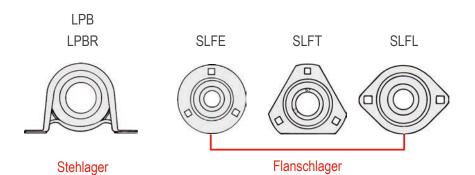
©NSK Deutschland GmbH, 2020 - Self-Lube® Lagereinheiten

Self-Lube® Gehäuse

Spannlagereinheiten und Spannvorrichtungen

• Diese Einheiten sind für die Verwendung in Riemen- und Fördersystemen vorgesehen

©NSK Deutschland GmbH, 2020 - Self-Lube® Lagereinheiten


17

Self-Lube® Gehäuse

Stahlblechgehäuse

 Diese Einheiten sind für Anwendungen mit geringeren Belastungen ausgelegt und zum Schutz vor Korrosion verzinkt

©NSK Deutschland GmbH, 2020 - Self-Lube® Lagereinheiten

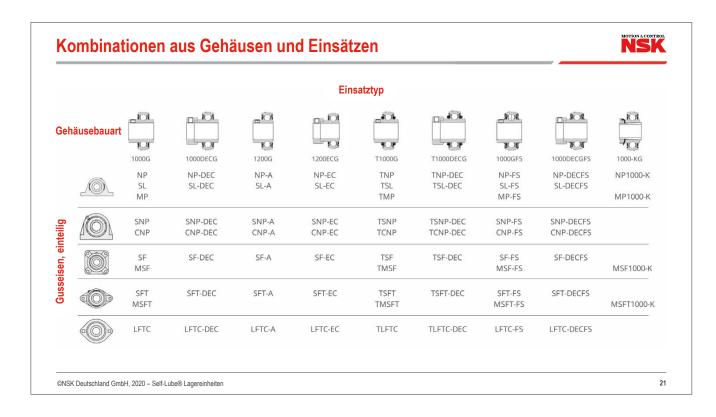
Schutzkappen für Wellenenden

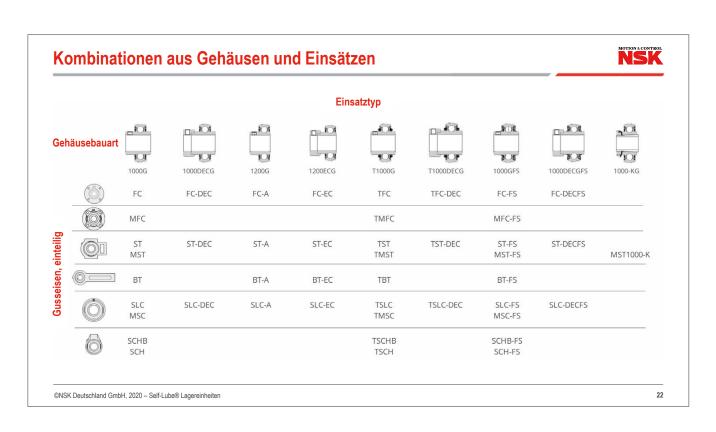
Die standardmäßigen Self-Lube[®] Einsätze verfügen über eine Positioniernut für die Anbringung einer Schutzabdeckung

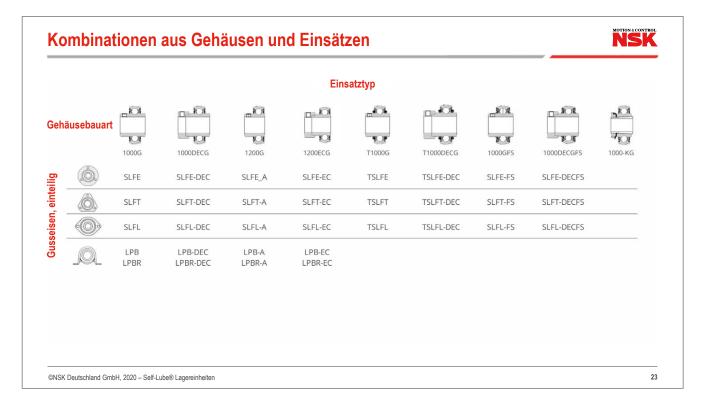
- Dieses optional erhältliche Zubehörteil lässt sich durch einfaches Einrasten an den Außenring des Einsatzes anbringen
- Die Silver-Lube®- und Life-Lube® Gehäuse bieten die Möglichkeit, eine Endkappe anzubringen, die im Gehäuse statt am Außenring des Einsatzes positioniert ist
- Sie schützt zum einen Personen im Umfeld vor sich drehenden Teilen, zum anderen bietet sie einen gewissen Schutz für das Wälzlager vor dem Eindringen von Verunreinigungen

Silver-Lube® Einheit

©NSK Deutschland GmbH, 2020 - Self-Lube® Lagereinheiten


9


Kombinationen aus Gehäusen und Einsätzen

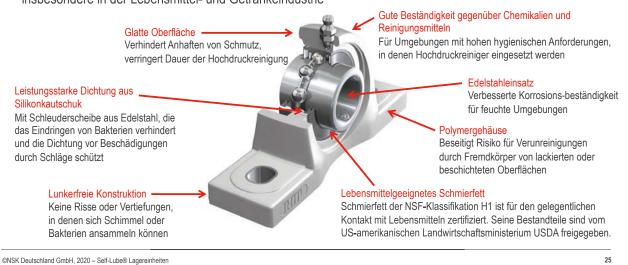


Es gibt zahlreiche Kombinationen aus Einsätzen und Gehäusen für unterschiedlichste Wälzlager

©NSK Deutschland GmbH, 2020 - Self-Lube® Lagereinheiten

Self-Lube® Auswahlhilfe

Sehen Sie hier eine einfache Auswahlhilfe für metrische Self-Lube® Einheiten mit Angabe der zugehörigen Teilenummern.


©NSK Deutschland GmbH, 2020 - Self-Lube® Lagereinheiten

Self-Lube® für besondere Umgebungen

Silver-Lube®

 Dank Polymergehäuse und Edelstahlteilen eignet es sich für feuchte und schmutzige Umgebungen, insbesondere in der Lebensmittel- und Getränkeindustrie

Self-Lube® für besondere Umgebungen

HLT-Einsätze

 Dank ihrer speziellen Dichtungen, ihres Schmierfetts und ihrer Lagerluft eignen sie sich für extreme Temperaturen zwischen –40 und +180 °C

©NSK Deutschland GmbH, 2020 - Self-Lube® Lagereinheiten

Self-Lube® für besondere Umgebungen

Life-Lube® Einheiten

 Dank Polymergehäuse und Edelstahlteilen in Kombination mit Molded-Oil-Schmierung eignen sie sich für feuchte und schmutzige Umgebungen, insbesondere in der Lebensmittel- und Getränkeindustrie, da keine Nachschmierung erforderlich ist

Glatte Oberfläche •

Verhindert Anhaften von Schmutz, verringert Dauer der Hochdruckreinigung

Molded-Oil

Der Hohlraum des Einsatzes ist vollständig mit Schmieröl und Polyolefinharz befüllt. Dadurch wird verhindert, dass Schmutz oder Wasser eindringt und Schmiermittel austritt.

Lippendichtung mit Schleuderscheibe

Bietet hervorragenden Schutz vor dem Eindringen von Bakterien und schützt zudem den mit Molded-Oil befüllten Hohlraum

Polymergehäuse

Beseitigt Risiko für Verunreinigungen durch Fremdkörper von lackierten oder beschichteten Oberflächen

Keine Nachschmierung

In sich abgeschlossenes Schmiersystem enthält Lebensdauer-Ölbefüllung und erfordert keine Nachschmierung

Edelstahleinsatz

Verbesserte Korrosionsbeständigkeit für feuchte Umgebungen

Lunkerfreie Konstruktion Keine Risse oder Vertiefungen, in denen sich Schimmel oder Bakterien ansammeln können

©NSK Deutschland GmbH, 2020 - Self-Lube® Lagereinheiten

27

Auswahl je nach Umgebung

Auswahlhilfe mit Angabe der Eignung der Produkte für verschiedene Umgebungen

Conditions		Self-Lube®		Silver-Lube®	Life-Lube®	HLT
	Standard	Triple Lip Seal	Flinger Seal	Standard	Standard Range	Standard
DryDust	**	***	**	**	***	*
Wet	*	***	*	**	***	*
WetDust	*	***	**	**	***	*
Submerged	-	**	-	-	***	-
Temp 0 ~ 80 °C	***	**	***	***	***	***
Temp 80 ~ 180 °C	*	*	*	*	<u>-</u> -	***
Temp 180+ °C	-	-	-	-	-	-
Low Temp -18 ~ 0 °C	*	*	*	*	*	**
Starch	*	**	*	**	**	*
Abrasive Wet	*	**	*	**	***	*
Chemical	-	-	-	**	-	-
Acidic	-	-	-	**	-	-
High Speed	*	_	**	*	_	*

©NSK Deutschland GmbH, 2020 - Self-Lube® Lagereinheiten

Lösungen für die Lebensmittel- und Getränkeindustrie

Einführung

Wussten Sie,

dass die großen Wassermengen, die in der Lebensmittel- und Getränkeindustrie zum Einsatz kommen, der häufigste Grund für Maschinenausfälle sind?

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

Schlüsselfaktoren für die Industrie

Hygiene

 Um den Anforderungen von ISO 22000 an die Lebensmittelsicherheit gerecht zu werden, sind Betriebsbedingungen zu verhindern, unter denen es zu lebensmittelbedingten Erkrankungen kommen könnte.

Sicherheit

 Verringerung des Risikos für Verletzungen, die im Zusammenhang mit rutschigen Oberflächen, manueller Handhabung und dem Heben schwerer Lasten oder anderen häufig ausgeübten Tätigkeiten entstehen.

Energie

Verringerung und Optimierung des Energieverbrauchs sämtlicher rotierender Anlagen und sonstiger Ausrüstung.

Abfall

 Verringerung des Abfallaufkommens im Zusammenhang mit Fertigungs- und Instandhaltungsprozessen, um die immer strengeren gesetzlichen Vorgaben zum Schutz der Umwelt zu erfüllen.

Productivität

 Verbesserung der Leistungsfähigkeit und des Wirkungsgrads in allen Produktionsbereichen sowie bei Anlagen, Prozessen und Mitarbeitern, um maximale Produktivität zu erzielen.

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

3

Fünf häufige Umgebungen

- Verschiedene Betriebsbedingungen in der Lebensmittel- und Getränkeindustrie stellen höchste Anforderungen an Dreh- und Hilfseinrichtungen.
- Heiße, kalte und feuchte Umgebungen wirken sich nachteilig auf viele Maschinenkomponenten aus. Die Folge sind wiederholte Ausfälle, gefährliche Arbeitsbedingungen und kostspielige Stillstandszeiten.
- Die Bandbreite an Prozessen und Maschinen ist groß; sie lassen sich jedoch nach den folgenden Betriebsbedingungen kategorisieren:

Feuchte Betriebsbedingungen

Saubere oder lebensmitteltaugliche Betriebsbedingungen

Schmutzige/sandige Betriebsbedingungen

Heiße Betriebsbedingungen

Kalte Betriebsbedingungen

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

Häufige Betriebsbedingungen

Feuchte Betriebsbedingungen

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

.

Schwierige Umgebungen – feuchte Betriebsbedingungen

Feuchte Betriebsbedingungen sind die häufigste Ursache für Lagerausfälle in Anwendungen der Lebensmittel- und Getränkeindustrie

Warum?

- Bei der Lebensmittelverarbeitung sind in der Regel große Mengen Wasser für die Reinigung der Produkte erforderlich.
- In den meisten Lebensmittelproduktionsanlagen müssen die Maschinen gereinigt werden, um hygienischen und sanitären Standards zu entsprechen. Dazu gehören die Hochdruckreinigung mit heißem oder kaltem Wasser sowie die Verwendung von Reinigungsprodukten wie Seife oder Natronlauge.

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

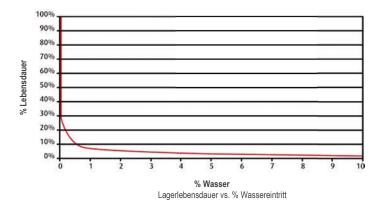
Betriebsbedingungen, unter denen Maschinen permanent oder wiederkehrend Wasser/Prozessflüssigkeiten ausgesetzt sind

Typische Anwendungen:

- Förderanlagen
- Waschanlagen (für Obst und Gemüse)
- Hochdruckreinigung von Sanitärinstallationen
- Misch- und Abfüllanlagen

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

Schwierige Umgebungen – feuchte Betriebsbedingungen



Was passiert mit Wälzlagern, die feuchten Betriebsbedingungen ausgesetzt sind?

 Schon eine kleine Menge Wasser, die in ein Wälzlager eindringt, kann die Lagerlebensdauer deutlich verringern

Wenn beispielsweise die berechnete Lebensdauer eines Wälzlagers 4 Jahre ist, verringert der Eintritt von nur 1 Vol.-% Wasser die Lebensdauer auf 3 Monate.

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

Gründe für den Ausfall von Wälzlagern durch Wassereintritt

Korrosion

- Dazu kommt es an den Laufbahnen des Lagers, wenn Wasser das Schmiermittel durch Kapillarwirkung, insbesondere bei stillstehendem Wälzlager, verdrängt.
- Die Maschinen laufen tagsüber und werden im Anschluss hochdruckgereinigt. Das bedeutet, dass das Wälzlager "atmet", während sich die Maschine abkühlt. Dabei entsteht ein Unterdruck, durch den vorhandenes Wasser angesaugt wird.
- Ist es einmal zu Korrosion gekommen, sind die Laufbahnen beschädigt und das Wälzlager verschleißt innerhalb kurzer Zeit.

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

9

Schwierige Umgebungen – feuchte Betriebsbedingungen

Gründe für den Ausfall von Wälzlagern durch Wassereintritt

Schmiermittelversagen

- Die meisten Schmiermittel emulgieren, wenn sie mit Wasser vermischt werden. Dabei verlieren sie ihre Eigenschaft, die metallischen Komponenten des Wälzlagers voneinander zu trennen.
- In der Regel wird das emulgierte Fett aus dem Wälzlager herausgespült, sodass das Wälzlager schließlich ungeschützt ist.

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

Gründe für den Ausfall von Wälzlagern durch Wassereintritt

Verunreinigung

Die meisten Prozesse bringen es mit sich, dass im Wasser Partikel enthalten sind. Sobald eine Wälzlagerdichtung beschädigt ist, können die Partikel in das Wälzlager eindringen und einen schnellen Verschleiß verursachen.

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

Schwierige Umgebungen – feuchte Betriebsbedingungen

1. Silver-Lube®-Wälzlagereinheiten

Mit ihrem Polymergehäuse und dem Kugellager aus Edelstahl sind sie korrosionsbeständig

2. Molded-Oil-Lager

Das Schmieröl wird in Dieses Produkt einer robusten Matrix vereint die Vorteile gehalten, die beständig gegen Wassereintritt ist und eine feste Barriere bildet

3. Life-Lube®-Wälzlagereinheiten

von Silver-Lube® mit der Leistungsfähigkeit der Molded-Oil-Schmierung

4. Wälzlager aus Edelstahl

Dank der Edelstahlausführung sind sie korrosionsbeständig und sie können mit zahlreichen Dichtungsvarianten kombiniert werden

5. Dreilippendichtungen

Die robuste Dreilippenkonstruktion sorgt für eine 3-mal längere Beständigkeit gegenüber dem Eindringen von Verunreinigungen

@NSK Deutschland GmhH 2020 - Lebensmittel- und Getränkeindustrie

6. EdelstahlLinearführungen mit K1-Schmierung Die Edelstahlkonstruktion mit Molded-Oil-K1Schmierung ist beständig gegenüber Schäden durch Wassereintritt und Korrosion

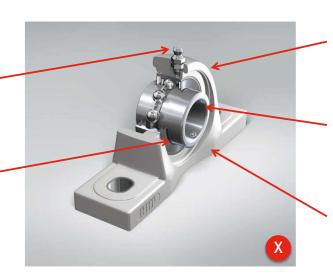
7. EdelstahlKugelgewindetriebe
mit K1-Schmierung
Die Molded-Oil-K1Schmierung in
Kombination mit der
Edelstahlkonstruktion
bietet Beständigkeit
gegenüber Schäden
durch Wassereintritt und
Korrosion

8. Miniaturlinearführungen – PU-Serie Miniaturlinearführungen bieten hervorragende Stabilität in feuchten und korrosiven Umgebungen

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

13

Schwierige Umgebungen – feuchte Betriebsbedingungen



1. Silver-Lube®-Wälzlagereinheiten

Dank einer Nachschmiervorrichtung wird jegliche Feuchtigkeit verdrängt

Leistungsstarke Dichtungen aus Silikonkautschuk mit Schleuderscheibe aus Edelstahl verhindern das Eindringen von Flüssigkeiten

Gute Beständigkeit gegenüber Reinigungsmitteln und Chemikalien

Korrosionsbeständige Edelstahlteile

Das Polymergehäuse rostet nicht

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

2. Molded-Oil-Lager

Hochkorrosionsbeständige Wälzlager aus Edelstahl

Signifikante Erhöhung der Lagerlebensdauer durch Verhindern des Auswaschens von Schmiermittel in der jeweiligen Anwendung

Polyolefinkörper mit bis zu 50 Vol.-% Schmieröl. Großer Schmiermittelvorrat verfügbar.

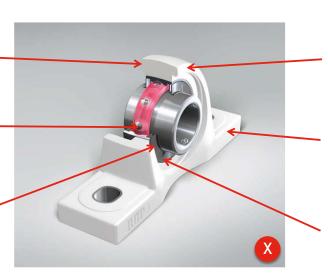
Molded-Oil füllt das gesamte Wälzlager aus und fungiert gleichzeitig als Dichtung

Wartungsfrei, keine weitere Schmierung erforderlich. Hervorragende Leistung in wasserbelasteten Umgebungen.

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

15

Schwierige Umgebungen – feuchte Betriebsbedingungen

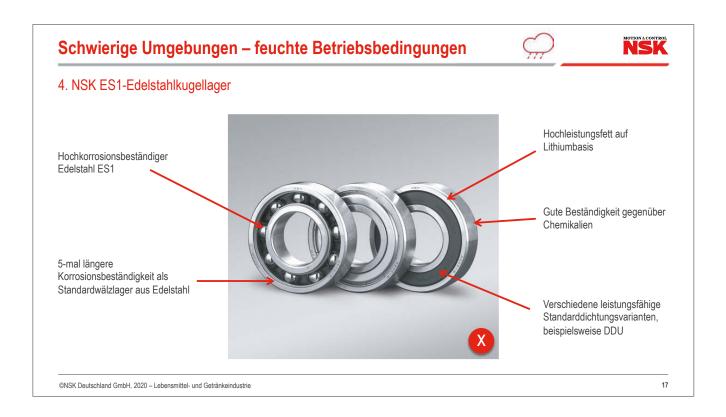


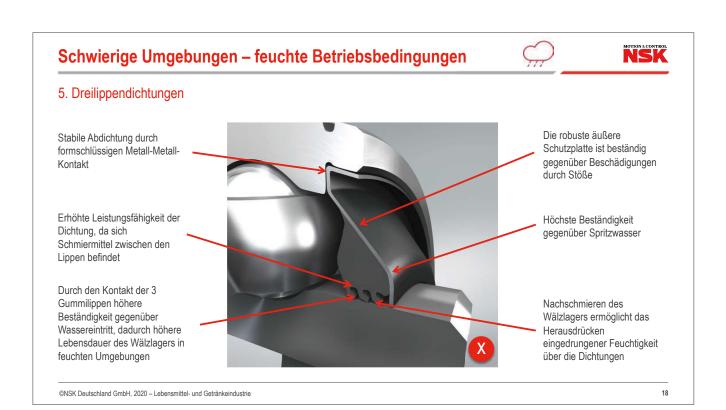
3. Life-Lube®-Wälzlagereinheiten

Optimal für Verfahren, bei denen sich ein Kontakt mit Wasser und Prozessflüssigkeiten nicht vermeiden lässt

Molded-Oil-Lager müssen nicht nachgeschmiert werden

Dreifachdichtung; eine
Lippendichtung und eine
Schleuderscheibe in Kombination
mit einem mit Molded-Oil
befüllten Wälzlagerraum
verhindern das Eindringen von
Flüssigkeiten



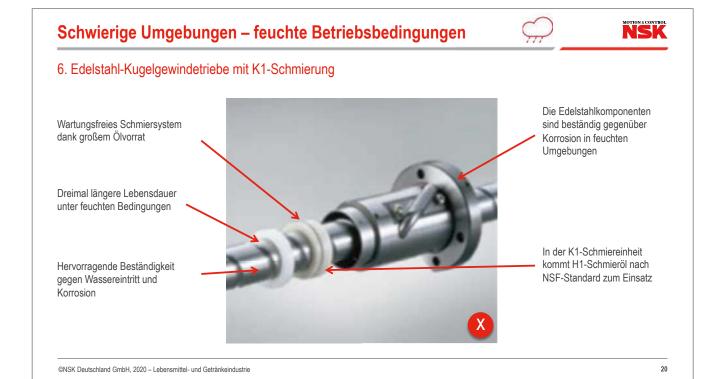

Unlackierte Gehäuse verhindern Abplatzungen und Abblätterungen bei der Hochdruckreinigung

Hohe Korrosionsbeständigkeit durch Verwendung von Komponenten aus thermoplastischem Kunststoff und Edelstahl

Signifikante Erhöhung der Lagerlebensdauer durch Verhindern des Auswaschens von Schmiermittel

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

Schwierige Umgebungen – feuchte Betriebsbedingungen 6. Edelstahl-Linearführungen mit K1-Schmierung Die Edelstahlkomponenten sind beständig gegenüber Korrosion in feuchten Umgebungen In der K1-Schmiereinheit kommt H1-Schmieröl nach NSF-Standard zum Einsatz


©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

Dreimal längere Lebensdauer unter feuchten Bedingungen

19

Hervorragende Beständigkeit gegen Wassereintritt und

Korrosion

Schwierige Umgebungen – feuchte Betriebsbedingungen 6. Miniaturlinearführungen – PU-Serie Hochkorrosionsbeständiges Miniaturlinearführungssystem Wartungsfreier Langzeitbetrieb K1-Schmiersystem – kein Nachschmieren erforderlich

Häufige Betriebsbedingungen

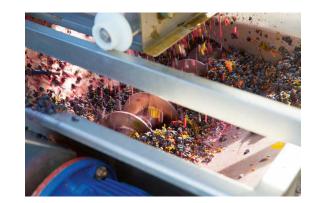
©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

21

Saubere oder lebensmitteltaugliche Betriebsbedingungen

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

Schwierige Umgebungen - reine oder lebensmit. Betriebsbed.



Saubere oder lebensmitteltaugliche Betriebsbedingungen stellen besondere Herausforderungen für Wälzlageranwendungen dar

Warum?

- Es gibt strenge Anforderungen dahingehend, dass es zu keiner Verunreinigung von Lebensmitteln durch mechanische Komponenten kommen darf.
- Die Einrichtungen werden häufig abgespritzt, um die Umgebung zu reinigen.
- Lebensmittel können korrosiv sein oder sich an drehenden Komponenten ablagern, wodurch es zum Versagen von Dichtungen und vorzeitigen Ausfällen kommen kann.

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

23

Schwierige Umgebungen – reine oder lebensmit. Betriebsbed.

Anwendungen, bei denen Wälzlager an oder in der Nähe der Lebensmittelproduktionslinie laufen und bei denen Sauberkeit unerlässlich ist

Typische Anwendungen:

- Sortierförderer oder Transportschnecken
- Beschichtung
- Formmaschinen
- Zubereitung von Roherzeugnissen
- Be- und Abfüllen

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

Schwierige Umgebungen – reine oder lebensmit. Betriebsbed.

Gründe für Wälzlagerausfälle

Totalausfall und Bruch eines Wälzlagers

- Ein solcher katastrophaler Ausfall ist das Ergebnis einer früheren Ursache, wie zum Beispiel Verunreinigung, Korrosion oder Schmierungsprobleme.
- Ein Ausfall dieser Art muss unbedingt verhindert werden, da jede Verunreinigung eines Lebensmittelprodukts extrem gefährlich ist.

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

2

Schwierige Umgebungen – reine oder lebensmit. Betriebsbed.

Gründe für Wälzlagerausfälle

Dichtungsausfall

- Eine Beschädigung des Dichtungssystems durch Reinigungsflüssigkeiten oder Lebensmittel führt zu einem schnellen Ausfall von Wälzlagern.
- Diese Problematik zeigt sich in Lebensmittelanwendungen häufig, insbesondere bei Transportschnecken, Mischern und Rüttlern, bei denen das Wälzlager mit Lebensmitteln in Berührung kommt.

Probleme im Zusammenhang mit Schmiermitteln

- Fett, das in die Lebensmittelproduktionslinie gelangt, führt zu einer Verunreinigung. Das muss verhindert werden.
- Probleme wie Emulgierung k\u00f6nnen ernsthafte Folgen sowohl f\u00fcr das W\u00e4lzlager als auch f\u00fcr das Prozessmaterial haben.

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

Schwierige Umgebungen - reine oder lebensmit. Betriebsbed.

1. Silver-Lube®-Wälzlagereinheiten Mit ihrem Polymergehäuse und dem Edelstahlkugellager in Kombination mit lebensmittelgeeignete m Fett eignen sie sich ideal für Lebens-

mittelproduktionslinien

2. Molded-Oil-Lager
Das spezielle
Schmiersystem ist in sich abgeschlossen und erfordert kein
Nachbefüllen

3. Life-Lube®-Wälzlagereinheiten Das Polymergehäuse ist mit einem Wälzlager aus Edelstahl mit integriertem, in sich abgeschlossenem Molded-Oil-Schmiersystem kombiniert

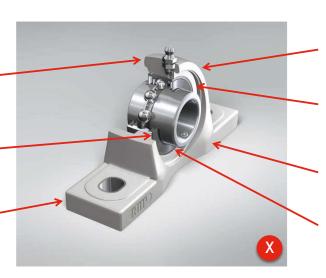
4. Wälzlager aus Edelstahl
Dank der
Edelstahlkonstruktion sind sie korrosionsbeständig und sie können mit zahlreichen leistungsfähigen
Dichtungsvarianten kombiniert werden

5. Lebensmittelgeeignetes Fett
Lebensmittelgeeignete
Fette lassen sich in
Kombination mit
Wälzlagern aus
Edelstahl in
zahlreichen
Anwendungen der
Lebensmittelindustrie
einsetzen

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

27

Schwierige Umgebungen – reine oder lebensmit. Betriebsbed.



1. Silver-Lube[®]-Wälzlagereinheiten

Die besonders glatte Oberfläche ist beständig gegen Anhaftung von Schmutz

Leistungsstarke Dichtungen aus Silikonkautschuk mit Schleuderscheibe aus Edelstahl

Hohlraumfreie Konstruktion verhindert Bildung von Schimmel und Bakterien

Gute Beständigkeit gegenüber Chemikalien und Reinigungsmitteln

Korrosionsbeständige Edelstahlteile

Unlackiertes und unbeschichtetes Polymergehäuse

Mit lebensmittelgeeignetem Fett der Kategorie NSF H1 befüllt

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

Schwierige Umgebungen – reine oder lebensmit. Betriebsbed.

2. Molded-Oil-Lager

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

29

Schwierige Umgebungen – reine oder lebensmit. Betriebsbed.

3. Life-Lube®-Wälzlagereinheiten

Die besonders glatte Oberfläche ist beständig gegen Anhaftung von Schmutz

Die Molded-Oil-Schmierung füllt den freien Raum im Lager vollständig aus. Dabei kommt ein Festschmierstoff zum Einsatz, der während des Betriebs nicht ausgewaschen wird oder austritt.

Hohe Korrosionsbeständigkeit durch Verwendung von Komponenten aus thermoplastischem Kunststoff und Edelstahl

Unlackierte Gehäuse verhindern Abplatzungen und Abblätterungen bei der Hochdruckreinigung

Hohe Korrosionsbeständigkeit durch Verwendung von Komponenten aus thermoplastischem Kunststoff und Edelstahl

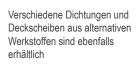
Dreifachdichtung; eine Lippendichtung und eine Schleuderscheibe in Kombination mit einem mit Molded-Oil befüllten Hohlraum verhindern das Eindringen von Flüssigkeiten

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

Schwierige Umgebungen – reine oder lebensmit. Betriebsbed.

4. Wälzlager aus Edelstahl

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie


31

Schwierige Umgebungen – reine oder lebensmit. Betriebsbed.

5. Lebensmittelgeeignetes Fett

Hitzebeständiges (max. 200 °C) und lebensmittelgeeignetes Fett der Kategorie NSF H1 ist ebenfalls erhältlich

Mit lebensmittelgeeignetem Fett befüllte Wälzlager aus Edelstahl

Freigegeben nach NSF H1 und NSF H3

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

Häufige Betriebsbedingungen

Schmutzige/sandige Betriebsbedingungen

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

33

Schwierige Umgebungen – schmutzige/sandige Betriebsbed.

Viele Anwendungen in der Lebensmittelverarbeitung beinhalten schmutzige oder sandige Prozesse. Das kann zu Problemen bei Wälzlagern führen.

Warum?

- Eine Verunreinigung der innenliegenden Komponenten eines Wälzlagers ist die Hauptursache für vorzeitigen Ausfall.
- Schmutz oder Sand verursachen Eindrücke in den Laufbahnen eines Wälzlagers, in deren Folge es zu Pitting kommt
- Schmutz vermischt sich zudem mit dem Schmiermittel des Wälzlagers, wodurch ein abrasives Medium entsteht.
- Sobald Verunreinigungen in ein Wälzlager eingedrungen sind, kommt es zu dauerhaften Schäden, wodurch das Lager vorzeitig ausfällt.

©NSK Deutschland GmbH, 2020 – Lebensmittel- und Getränkeindustrie

Schwierige Umgebungen – schmutzige/sandige Betriebsbed.

Im Allgemeinen jede Anwendung, in der Verunreinigungen in Form von harten/weichen Partikeln in hoher Konzentration vorkommen.

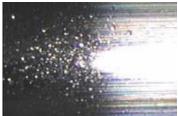
Typische Anwendungen:

- Waschautomaten
- Panier- und Beschichtungsmaschinen
- Schäl-, Pul-, Zupf- und Enthäutungsmaschinen
- Transportschnecken und Hubvorrichtungen
- Misch-, Fräs- und Schleifvorgänge

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

35

Schwierige Umgebungen – schmutzige/sandige Betriebsbed.



Gründe für Wälzlagerausfälle

Wälzlagerverunreinigung

- Sowohl harte als auch weiche Partikel, die in ein Wälzlager eindringen, verursachen Eindrücke in der Lauffläche des Lagers.
- Verunreinigungen vermischen sich zudem mit dem Schmierstoff und zerstören so seine Eigenschaften. Dabei entsteht ein abrasives Medium.
- Das führt zu einer Ermüdung der Wälzlageroberfläche, da die Eindrücke punktuell hohe Beanspruchungen der Lauffläche verursachen, wodurch es zu einem schnellen Verschleiß des Wälzlagers kommt.

Bogenförmiger Kratzer auf der Kugel

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

Schwierige Umgebungen – schmutzige/sandige Betriebsbed.

Rillenkugellager aus
Edelstahl in
Kombination mit einer
Zweifachdichtungsanor
dnung verhindern das
Eindringen von
Wasser oder
Verunreinigungen.

2. Molded-Oil-Lager

Das Schmieröl wird in einer robusten Matrix gehalten, die das Eindringen von Verunreinigungen verhindert und eine feste Barriere bildet

3. Life-Lube®-Wälzlagereinheiten

Dieses Produkt vereint die Vorteile von Silver-Lube® mit der Leistungsfähigkeit der Molded-Oil-Schmierung

4. DDU-Dichtungen

Leistungsstarke
Dichtungsvariante
mit zusätzlicher
Labyrinthdichtung
für Rillenkugellager

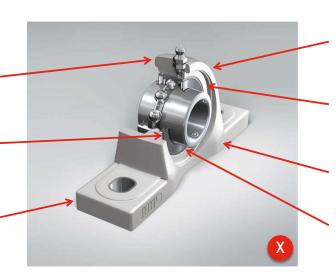
5. Dreilippendichtungen

Die robuste Dreilippenkonstruktion sorgt für eine 3-mal längere Beständigkeit gegenüber dem Eindringen von Verunreinigungen

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

37

${\bf Schwierige\ Umgebungen-schmutzige/sandige\ Betriebsbed}.$



1. Silver-Lube®-Wälzlagereinheiten

Die besonders glatte Oberfläche ist beständig gegen Anhaftung von Schmutz

Leistungsstarke Dichtungen aus Silikonkautschuk mit Schleuderscheibe aus Edelstahl

Hohlraumfreie Konstruktion verhindert Bildung von Schimmel und Bakterien

Gute Beständigkeit gegenüber Chemikalien und Reinigungsmitteln

Korrosionsbeständige Edelstahlteile

Unlackiertes und unbeschichtetes Polymergehäuse

Mit lebensmittelgeeignetem Fett der Kategorie NSF H1 befüllt

©NSK Deutschland GmbH, 2020 – Lebensmittel- und Getränkeindustrie

Schwierige Umgebungen - schmutzige/sandige Betriebsbed.

2. Molded-Oil-Lager

Hochkorrosionsbeständige Wälzlager aus Edelstahl

Schmiermittel wird nur bei Bedarf abgegeben. Überschüssiges Schmiermittel wird in den Polyolefinwerkstoff zurückgesaugt.

Signifikante Erhöhung der Lagerlebensdauer durch Verhindern des Auswaschens von Schmierstoff in der jeweiligen Anwendung

Polyolefinkörper mit bis zu 50 Vol.-% Schmieröl. Zweimal längere Betriebslebensdauer als Wälzlager mit Fettschmierung in staubigen Umgebungen.

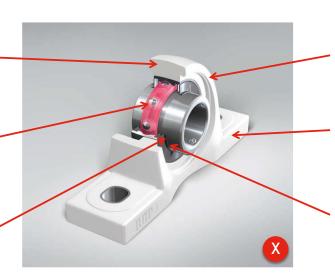
Molded-Oil füllt das gesamte Wälzlager aus und fungiert gleichzeitig als Barriere gegen das Eindringen von Schmutz

Wartungsfrei, keine weitere Schmierung erforderlich. Hervorragende Leistung in staubigen Umgebungen.

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

39

Schwierige Umgebungen – schmutzige/sandige Betriebsbed.



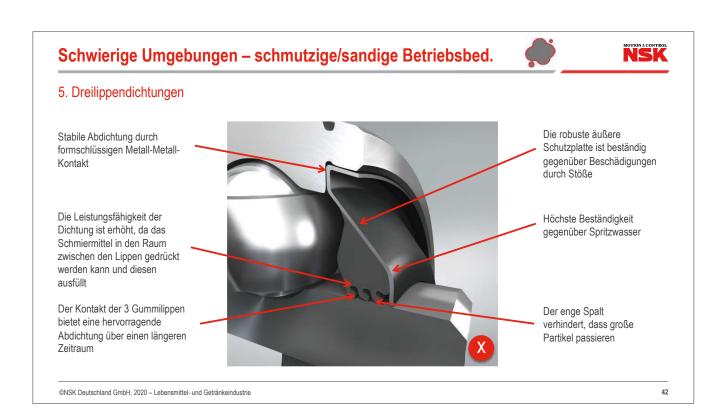
3. Life-Lube®-Wälzlagereinheiten

Optimal für Verfahren, bei denen sich ein Kontakt mit Wasser und Prozessflüssigkeiten nicht vermeiden lässt

Molded-Oil-Einsätze müssen nicht nachgeschmiert werden. Der große Schmierstoffvorrat ermöglicht eine wesentlich höhere Lagerlebensdauer.

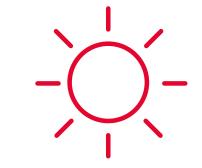
Dreifachdichtung; eine Lippendichtung und eine Schleuderscheibe in Kombination mit einem mit Molded-Oil befüllten freien Raum im Kugellager bieten hervorragenden Schutz

Unlackierte Gehäuse verhindern Abplatzungen und Abblätterungen bei der Hochdruckreinigung


Hohe Korrosionsbeständigkeit durch Verwendung von Komponenten aus thermoplastischem Kunststoff und Edelstahl

Verstärkte Schleuderscheibe aus Edelstahl – fängt Partikel auf und ist beständig gegenüber Beschädigungen durch Stöße

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie


©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

Schwierige Umgebungen – schmutzige/sandige Betriebsbed. 4. Dichtungsvarianten für Kugellager – DDU Ein Anschlagring aus Stahl Fettkanal – hält Fett im Wälzlager bewahrt die Steifigkeit der Dichtung und schützt vor Beschädigungen durch Stöße Hervorragende stirnseitige Lippendichtung für Der enge Spalt verhindert, gleichbleibenden dass große Partikel passieren Dichtungsdruck selbst bei Verschleiß Das Fett bildet eine zusätzliche Durch die schnelle Drehung des Barriere und schützt das Innenrings werden Verunreinigungen Wälzlager vor dem Eindringen herausgeschleudert von Verunreinigungen oder Flüssigkeiten

Häufige Betriebsbedingungen

Heiße Betriebsbedingungen

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

43

Schwierige Umgebungen – heiße Betriebsbedingungen

Heiße Betriebsbedingungen können für Wälzlager extreme Herausforderungen mit sich bringen

Warum?

- Hohe Temperaturen können dazu führen, dass die innere Lagerluft der Wälzlager durch Ausdehnung verloren geht.
- Schmiermittel für Wälzlager können aufgrund von Abscheidung, Oxidation oder Anreicherung mit Kohlenstoff versagen.
- Die Dichtungslippen k\u00f6nnen \u00fcberhitzen und br\u00fcchig werden.
- Lagerringe k\u00f6nnen aufgrund von hohen Temperaturen weich werden, wodurch sich die Mikrostruktur des Werkstoffs ver\u00e4ndert.

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

Im Allgemeinen jede Anwendung, bei der Wälzlager über einen längeren Zeitraum Temperaturen von über 90 °C ausgesetzt sind.

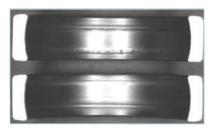
Typische Anwendungen:

- Fritteusen
- Back- oder Röstöfen
- Dampfgarer
- Kochgeräte

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

4

Schwierige Umgebungen – heiße Betriebsbedingungen

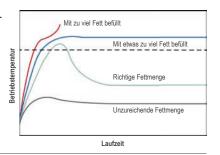


Gründe für Wälzlagerausfälle

Radiale Vorspannung

- Dazu kommt es, wenn die auf das Wälzlager einwirkende Hitze dazu führt, dass sich die Lagerringe ausdehnen und in der Folge die innere Lagerluft verloren geht.
- Wenn das Wälzlager eine radiale Vorspannung aufweist, werden die Wälzkörper hohen Kräften ausgesetzt und es kommt zu einem schnellen Ausfall.

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie



Gründe für Wälzlagerausfälle

Probleme im Zusammenhang mit Schmiermitteln

- Schmierstoff bildet nicht nur einen Schmierfilm zwischen den innenliegenden Komponenten eines Wälzlagers, sondern ermöglicht auch die Ableitung von Wärme. Bei Anwendungen mit hohen Temperaturen kann das Schmiermittel jedoch versagen und aufgrund erhöhter Reibung und mangelnder Wärmeleitung zu einem Temperaturanstieg innerhalb des Wälzlagers beitragen.
- Zu viel Fett kann eine Walkwirkung haben. In der Folge kann es zu einer beschleunigten Erwärmung innerhalb des Wälzlagers kommen, was wiederum zu mechanischen Problemen wie Vorspannung oder Austrocknung des Fetts führen kann. Dieses Phänomen bezeichnet man als thermisches Durchgehen.
- Bei hohen Temperaturen kann das Grundöl aus der Fettverdicker-Matrix auskochen. Dadurch kommt es zu einer Aushärtung des Fetts und es bildet sich eine teerartige Masse im Wälzlager.

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

47

Schwierige Umgebungen - heiße Betriebsbedingungen

Gründe für Wälzlagerausfälle

Werkstoffprobleme

- Wälzlagerstahl benötigt zwei Eigenschaften: eine Oberflächenhärte mit guten Verschleißeigenschaften und eine Zähigkeit, durch die das Wälzlager beständig ist gegen Rissbildung oder Brüchigkeit.
- Möglich machen dies mehrere aufeinanderfolgende Wärmebehandlungsverfahren.
 Dazu gehört auch ein Anlassen, das eine höhere Zähigkeit der Werkstoffmatrix bewirkt.
- Ist ein Wälzlager jedoch während des Einsatzes hohen Temperaturen ausgesetzt, wird dadurch sein gehärteter Zustand zerstört und der Wälzlagerwerkstoff weiter enthärtet.
- Wenn der Wälzlagerwerkstoff enthärtet wird, versagt er innerhalb kurzer Zeit.

Wärmebedingte Verfärbung – aufgrund hoher Temperaturen veränderte Mikrostruktur des Stahls

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

2. KPM-Schmierfett Alternatives Fett für Umgebungen mit hohen Temperaturen

für hohe
Temperaturen
Ganzmetallkonstrukti
on in Kombination mit
Hochtemperaturfett
ermöglicht Einsatz
bei höheren
Temperaturen

3. Linearführungen

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

49

Schwierige Umgebungen – heiße Betriebsbedingungen

1. Lagereinheiten mit HLT-Einsätzen

Spezialfett behält seine guten Schmiereigenschaften auch bei extremen Temperaturen

Die größere Lagerluft ermöglicht es, dass sich die Lagerringe ausdehnen können, ohne eine Vorspannung zu erzeugen

Hervorragende Leistungsfähigkeit bei Temperaturen von bis zu 180 °C

Spezielle Wärmebehandlung des Wälzlagerstahls, um Härte bei erhöhten Temperaturen zu bewahren

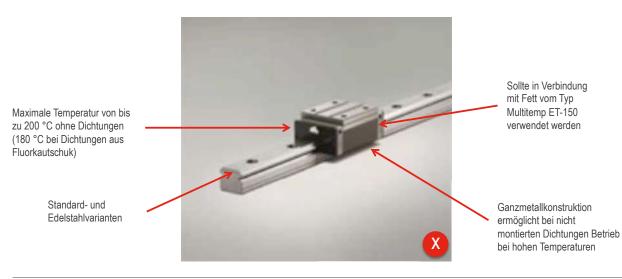
Silikondichtungen sind darauf ausgelegt, bei hohen Temperaturen einwandfrei zu funktionieren

©NSK Deutschland GmbH, 2020 – Lebensmittel- und Getränkeindustrie

2. KPM-Schmierfett

Option für offene und geschlossene Wälzlager von NSK

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie


51

Schwierige Umgebungen – heiße Betriebsbedingungen

2. Linearführungen für hohe Temperaturen

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

Häufige Betriebsbedingungen

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

53

Schwierige Umgebungen – kalte Betriebsbedingungen

Kalte Betriebsbedingungen stellen eine anspruchsvolle Umgebung für Wälzlager dar

Warum?

- In der Betriebsumgebung kommen über längere Zeiträume Temperaturen von unter null vor.
- Unter solchen Bedingungen erhöht sich die Viskosität des Schmierstoffs. Dadurch erhöht sich das Reibmoment und das Wälzlager wird schwergängiger.
- Bei abnehmenden Temperaturen ziehen sich die Lagergehäuse zusammen, wodurch sich die Lagerluft verringert.

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

Im Allgemeinen jede Anwendung, bei der Wälzlager über längere Zeiträume Temperaturen unterhalb des Gefrierpunkts ausgesetzt sein können.

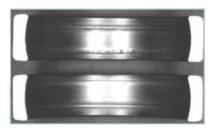
Typische Anwendungen:

- Kühlhäuser
- Gefrier- und Kältemaschinen
- Schockfroster kryogenes Verfahren
- Schockfroster Kaltluftgefrierverfahren

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

55

Schwierige Umgebungen – kalte Betriebsbedingungen



Gründe für Wälzlagerausfälle

Radiale Vorspannung

- Unter kalten Betriebsbedingungen kann sich das Lagergehäuse gegen das Wälzlager zusammenziehen, wodurch sich die Lagerluft verringern kann.
- Das Wälzlager weist dann eine radiale Vorspannung auf. In der Folge werden die Wälzkörper hohen Kräften ausgesetzt und es kommt zu einem schnellen Ausfall.

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

Gründe für Wälzlagerausfälle

Probleme im Zusammenhang mit Schmiermitteln

- Bei niedrigen Temperaturen wird der Schmierstoff dickflüssiger und durchströmt das Wälzlager nicht mehr wie beabsichtigt.
- Die veränderten Eigenschaften des Schmiermittels führen dazu, dass es die Metalloberflächen der verschiedenen Komponenten im Lagerinneren schlechter voneinander trennen kann.
- Die Folge sind ein h\u00f6heres Reibmoment und ein schnellerer Verschlei\u00df
 der W\u00e4lzlagerkomponenten.

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

57

Schwierige Umgebungen – kalte Betriebsbedingungen

1. Lagereinheiten mit HLT-Einsätzen Speziell entwickeltes Gehäuselager für extreme Temperaturen von bis zu -40 °C

2. Silver-Lube®-Wälzlagereinheiten Das Polymergehäuse ist mit einem Wälzlager aus Edelstahl mit integriertem, in sich abgeschlossenem Molded-Oil-Schmiersystem kombiniert

Edelstahl
Dank der Edelstahlkonstruktion sind sie korrosionsbeständig und sie können mit zahlreichen leistungsfähigen Dichtungsvarianten kombiniert werden

3. Wälzlager aus

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

1. Lagereinheiten mit HLT-Einsätzen

Hervorragende Leistungsfähigkeit bei niedrigen Temperaturen bis

Die größere Lagerluft ermöglicht einen Betrieb bei niedrigen Temperaturen

Silikondichtungen sind darauf ausgelegt, bei niedrigeren Temperaturen einwandfrei zu

funktionieren

©NSK Deutschland GmbH, 2020 - Lebensmittel- und Getränkeindustrie

Schwierige Umgebungen – kalte Betriebsbedingungen

2. Silver-Lube®-Wälzlagereinheiten

Geeignet für Betriebstemperaturen bis -20 °C

Beim Polymergehäuse kommt es zu keinen Abblätterungen oder Abplatzungen

Dank der Edelstahlkonstruktion ist es beständig gegenüber Kondensation

Dichtungen aus Silikonkautschuk mit Schleuderscheibe aus Edelstahl gewährleisten effektiven Betrieb bei niedrigen Temperaturen

©NSK Deutschland GmbH. 2020 - Lebensmittel- und Getränkeindustrie

3. NSK ES1-Edelstahlkugellager

Allgemeine Umgebung

MOTION & CONTROL

In der Lebensmittel- und Getränkeindustrie können Wälzlager auf zahlreiche anspruchsvolle Umgebungen treffen. Jedoch gibt es einige wichtige Anwendungsfälle, in denen es besonders auf Leistungsfähigkeit und Zuverlässigkeit ankommt. Auch wenn sich die Wälzlager nicht immer in unmittelbarer Nähe der Lebensmittelproduktionslinie befinden, sind sie doch essenziell für den unterbrechungsfreien Betrieb der Anlage.

Typische Anwendungen:

- Getriebe
- Elektromotoren
- Zutatenmischer
- Förderanlagen
- Pumpen
- Verpackungsmaschinen

Die Hochleistungswälzlager von NSK sind auf höchste Lebensdauer und minimale Ausfallzeiten ausgelegt.

©NSK Deutschland GmbH, 2020 – Lebensmittel- und Getränkeindustrie

Übersicht Betriebsbed, in der Lebensmittel- und Getränkeindustrie

Wälzlager- und Dichtungslösungen

Silver-Lube®-Wälzlagereinheiten

Molded-Oil-Lager

DDU-Dichtungen

Wälzlager aus **Edelstahl**

Life-Lube®-Wälzlagereinheiten

KPM-**Schmierfett**

Dreilippendichtungen

Klicken Sie auf die Icons, um mehr zu erfahren.

©NSK Deutschland GmbH. 2020 - Lebensmittel- und Getränkeindustrie

63

Übersicht Betriebsbed. in der Lebensmittel- und Getränkeindustrie

Linear solutions

Edelstahl-

mit K1-Schmierung

Edelstahl-Kugelgewindetriebe mit K1-Schmierung

Miniaturlinearführungen -**PU-Serie**

Linearführungen für hohe Temperaturen

Klicken Sie auf die Icons, um mehr zu erfahren.

@NSK Deutschland GmbH 2020 - Lebensmittel- und Getränkeindustrie

Produktkatalog

Gehäuselagereinheiten

+GEHÄUSELAGEREINHEITEN

Gehäuselagereinheiten

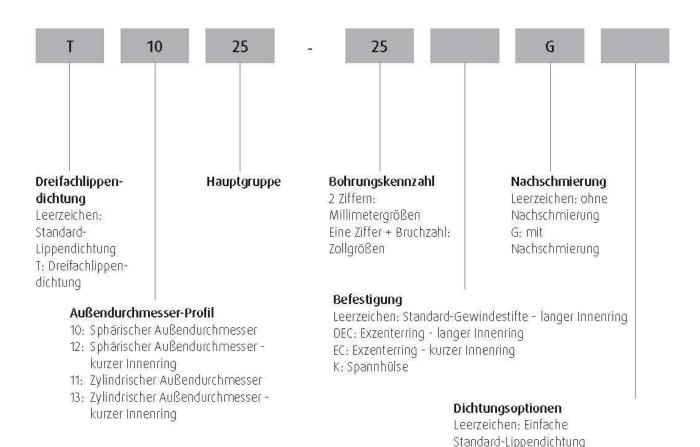
inhalt	Seiten
Self-Lube Lagereinheiten	5 - 153
l-Line Wälzlagereinheiten	154 - 239

Self-Lube Lagereinheiten

Self-Lube	5
Produktprogramm	6
Bezeichnungssystem	8
Allgemeine Technische Informationen	9
Lastverhältnisse	12
Technische Daten	13
Lagertabellen	2
Zusätzliche Produkte	92
silver-Lube	95
Produktprogramm	96
Bezeichnungssystem	96
Lagertabellen	102
Molded-Oil – Einheiten aus rostfreiem Stahl	111
Produktprogramm	112
Bezeichnungssystem	112
Technische Spezifikationen	113
Lagertabellen	112
ife-Lube (Molded-Oil Einsätze in Silver-Lube-Gehäusen)	121
Produktprogramm	122
Bezeichnungssystem	122
Technische Spezifikationen	123
Lagertabellen	126
Sonderprodukte und Lagerlösungen	137
Weitere Produkte	138
HLT Self-Lube - Einsätze für extreme Temperaturen	138
Sondergehäuse	138
/ergleichsliste Vergleichsliste für Austauschteile	139
Jmrechnungstabellen	147

SELF-LUBE LAGEREINHEITEN 3

Self-Lube Allgemeine technische Daten


Kombinationsformen Gehäuse / Einsatz

	PC N
Gehäuse	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	32
A MANAGEMENT AND A MANA	P-EC
_/(©)\ 28 SL SL-DEC SL-A SL	-EC
30 MP	
34 SNP SNP-DEC SNP-A SN	P-EC
34 CNP CNP-DEC CNP-A CNI	P-EC
	-EC
38 MSF	
42 SFT SFT-DEC SFT-A SF	T-EC
44 MSFT	
48 LFTC LFTC-DEC LFTC-A LFT	C-EC
50 FC FC-DEC FC-A FC	-EC
52 MFC	
Gini 54 ST ST-DEC ST-A ST	-EC
56 MST	
60 BT BT-A BT	-EC
62 SLC SLC-DEC SLC-A SLC	C-EC
64 MSC	
66 SCHB	
66 SCH	
Pressstahl zweiteilig	
68 SLFE SLFE-DEC SLFE-A SLF	E-EC
70 SLFT SLFT-DEC SLFT-A SLF	T-EC
72 SLFL SLFL-DEC SLFL-A SLF	-L-EC
74 LPB LPB-DEC LPB-A LPE	B-EC
$+ \mathcal{R} = \mathcal{H}_{\mathcal{F}}$	R-EC

		D Secret	Sectal.		
	TION				40%
	1000-KG	1000DECGFS	1000GFS	T1000DECG	T1000G
Seit	84	90	89	88	86
26	NP1000-K	NP-DECFS	NP-FS	TNP-DEC	TNP
		SL-DECFS	SL-FS	TSL-DEC	TSL
32	MP1000-K		MP-FS		TMP
		SNP-DECFS	SNP-FS	TSNP-DEC	TSNP
		CNP-DECFS	CNP-FS	TCNP-DEC	TCNP
		SF-DECFS	SF-FS	TSF-DEC	TSF
40	MSF1000-K		MSF-FS		TMSF
		SFT-DECFS	SFT-FS	TSFT-DEC	TSFT
46	MSFT1000-K		MS FT-FS		TMSFT
		LFTC-DECFS	LFTC-FS	TLFTC-DEC	TLFTC
		FC-DECFS	FC-FS	TFC-DEC	TFC
			MFC-FS		TMFC
		ST-DECFS	ST-FS	TST-DEC	TST
58	MST1000-K		MST-FS		TMST
			BT-FS		TBT
		SLC-DECFS	SLC-FS	TSLC-DEC	TSLC
			MSC-FS		TMSC
			SCHB-FS		TSCHB
			SCH-FS		TSCH
		SLFE-DECFS	SLFE-FS	TSLFE-DEC	TSLFE
		SLFT-DECFS	SLFT-FS	TSLFT-DEC	TSLFT
		SLFL-DECFS	SLFL-FS	TSLFL-DEC	TSLFL

SELF-LUBE LAGEREINHEITEN 7

Bezeichnungssystem für Standard-Self-Lube

FS: Schleuderscheibe 2Z: Deckscheiben

2ZFS: Deckscheiben & Schleuderscheiben

Liste Vor- und Nachsetzzeichen

Vorsetzzeichen

- Einheit oder Lagereinsatz wird ohne Exzenterring geliefert.
- Schmiernut auf der Seite des Lagereinsatzes.
- Lagereinsatz mit Dreifachlippendichtung.

Nachsetzzeichen

- Lagereinsatz mit Gewindestiften und einseitig verbreitertem Innenring.
- Radiale Lagerluft größer als C3. C4
- Zylindrischer Außenring mit Schmiernut und Sprengring. CG
- Exzenterring mit beidseitig verbreitertem Innenring.
- Doppelt sichernder Innenring 4 Stellschrauben (2 an beiden Enden). DL
- Exzenterring mit einseitig verbreitertem Innenring. EC
- Lagereinsatz, nachschmierbar. G
- HLT Lagereinsatz für Hoch- und Niedrigtemperaturanwendungen.
- Lagereinsatz mit kegeliger Bohrung. K
- Breiterer Bohrungsdurchmesser als bei normaler Einheit. L
- Ρ Gehäuse mit 1/8" BSP- Schmiernippel (Standard 1/4" UNF).
- Schmalerer Bohrungsdurchmesser als bei normaler Einheit. R

FS Lagereinsatz mit Schleuderscheiben.

Self-Lube Produktreihe

NSK stellt zahlreiche montierbare Lagereinheiten her. Das Produktsortiment umfasst Lager der Reihe Self-Lube, unsere anerkannte Standardreihe, sowie Lager der kürzlich auf dem Markt eingeführten Produktreihen Silver-Lube, Life-Lube und Molded-Oil. Jeder Typ besteht aus zwei Grundkomponenten, dem Einsatz und dem Gehäuse.

Self-Lube-Lagereinsätze

Der Self-Lube-Lagereinsatz ist gemeinhin als Lager mit breitem Innenring bekannt und ist für die Ausführungen derjenigen Gehäuse entworfen, die NSK in seiner Self-Lube-Lagerfamilie anbietet. Ein weiterer Anwendungsbereich ist dann gegeben, wenn der Anwender seine eigenen Gehäuse verwenden möchte.

Alle Lager stellen vornehmlich Rillenkugellager dar, auf Basis unserer beliebten 6200 Serienkonfiguration. Sie verfügt über Konstruktionseigenschaften, die die Lager funktioneller und vielseitiger machen als standardmäßige Kugellager. Die radiale Lagerluft für Standard-Lagereinsätze lautet C3. Die Lager können zudem entweder mit zylindrischen oder kugeligen Mantelflächen des Außenringes geliefert werden, wobei die letztgenannten in die Lager-einheit montiert werden. Die wesentlichen Eigenschaften der Lagereinsätze wie Wellensicherung, Dichtung und Schmierung werden auf den folgenden Seiten erklärt.

Self-Lube-Lagereinheiten

Die Produktreihe der Self-Lube- Lagereinheiten bietet eine große Auswahl an Gehäusen aus Gusseisen, Pressstahl, synthetischem Gummi, Thermoplasten oder rostfreien Stählen an, die mit Self-Lube-Lagereinsätzen mit kugeligem Außendurchmesser ausgestattet sind. Sie sind bei anfänglichen Ausrichtungsfehlern von bis zu ± 1,7° ge-eignet, werden jedoch nicht bei betriebsbedingten Ausrichtungsfehlern von mehr als ± 3,3° empfohlen.

Die allgemeinen Gehäusetypen sind Stehlager, Flanschlager, Spannlagereinheiten, Hülsenlager und Hängelager. Die Auswahl wird maßgeblich durch die Anforderungen an die Anwendung bestimmt, obgleich auch ästhetische Aspekte im Anlagendesign bei der Auswahl oftmals eine Rolle spielen. Die Self-Lube-Einheiten wurden entwickelt, um beiden Kriterien zu genügen.

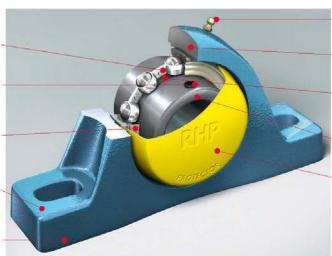
- Die gusseisernen Einheiten werden aus hochwertigem Gusseisen gefertigt und mit einem elektrostatischen luftgetrockneten Anstrich auf den unbearbeiteten Oberflächen versehen.
- Die Pressstahlgehäuse werden aus weichem Bandstahl gefertigt und mit einem Zinküberzug versehen.
- Die thermoplastischen Gehäuse werden aus hochgradigem PBT, einem hochwertigen thermoplastischen Polyesterharz, gegossen.
- Die Gehäuse aus rostfreiem Stahl werden aus Stahlguß (SCS13, austenitisch, rostfrei) gefertigt.

Zusatzprodukte

NSK ist sich der Bedeutung von kundenspezifischen Lösungen bewusst und jederzeit gewillt, seinen Kunden bei besonderen Wünschen entgegenzukommen.

Dynamische Tragzahlen

Die in diesem Katalog angegebenen dynamischen Tragzahlen sowie die Beziehung zwischen diesen und der nominellen Lebensdauer basieren auf dem ISO-Standard 281.


Zweiteiliger, genieteter, hochwiderstandsfähiger Stahl- oder Edelstahlkäfig.

Befestigung auf der Welle mit Gewindestift. Exzenterring und Kegelspannhülse sind auch als Standardausführung erhältlich.

> Bewährte einlippige Dichtung. Dreifachlippendichtung und Schlenderscheiben ebenso erhältlich.

> > Spannstiftposition

Steifes, einteiliges, Hochqualitätsgehäuse aus Gusseisen. Ebenso erhältlich Ausführungen aus hochwertigem thermoplastischen Harz öder rostfreiem Gussstahl.

Standardmäßiger Schmiernippel. Die Molded-Oil-Lager sind nicht nachschmierbar.

Balliger Sitz zum Ausgleich von anfänglichen Ausrichtungsfehlern bei der Montage.

Feinstbearbeitete Laufbahnen für einen ruhigen und effizienten Retrieb

Innen- und Außenringe aus gehärtetem Qualitätsstahl. Ebenso erhältlich aus Edelstahl.

'Schutzkappe' für zusätzlichen Lagerschutz und erhöhte Sicherheit. In Stahl für Self-Lube-Einheiten oder in Polypropylen für Silver-Lube-Einheiten erhältlich.

SELF-LUBE LAGEREINHEITEN 9

Tragfähigkeit und Lebensdauer

Dynamische radiale Tragzahl C,

Die Last, die auf ein Lager ausgeübt werden kann, so dass sich eine nominelle Lebensdauer L₁₀ von einer Million Umdrehungen ergibt. Innerhalb dieser Lebensdauer kann eine Zuverlässigkeit von 90% aufrecht erhalten werden. Dieser empirische Wert gilt in Lageranwendungen gemeinhin als anerkannt. Die Mehrzahl der Lager erreicht jedoch eine weitaus höhere Lebensdauer. Der Durchschnittswert beträgt ca. das Fünffache der Lebensdauer L₁₀. Tragzahlen für alle Lager werden in den Lagertabellen angegeben und können für die Berechnung der Lebensdauer in Bezug auf Radialbelastung mit gleichbleibender Größe und Richtung verwendet werden.

Äquivalente dynamische Lagerbelastung P,

Bei Anwendungen, die axiale und radiale Belastungen aufweisen, müssen beide Werte in einen Wert der äquivalenten dynamischen Belastung P, umgerechnet werden, der folgendermaßen bestimmt wird:

= Ist-Radiallast (N)

= Ist-Axiallast (N)

= Axialfaktor aus Tabelle 18.2

 C_{or} = statische Tragzahl

Cr = dynamische radiale Tragzahl f = Axiallastfaktor

Hinweis: Die Axiallast F_a darf einen Wert von 0,5_{cor} nicht übersteigen. Wählen Sie f_a aus Tabelle 18.1, um einen passenden Lagereinsatz zu bestimmen.

Berechnen Sie $\frac{f_o F_o}{C_o}$ den Wert Y aus Tabelle 18.2. Berechnen Sie P_r mit:

$$P_r = F_r$$
 ode
 $P_r = 0.56 F_r + YF_a$

Verwenden Sie den P. Wert, welcher der größere ist.

Beziehung zwischen Belastung und Lebensdauer

Wenn Sie die äquivalente Belastung P, bestimmt haben, wird die nominelle Lebensdauer L, folgendermaßen

L₁₀ Lebensdauer in Stunden = $\left(\frac{C_r}{P_r}\right)^3 \cdot \frac{10^6}{60_0}$ mit n = Betriebsdrehzahl (U/min).

Alternativ kann durch Verwendung des Verhältnis हे die Lagerlebensdauer L₁₀ durch direktes Ablesen aus den Tabellen auf Seite 12 unter Berücksichtigung der Drehzahl der jeweiligen Spalte bestimmt werden.

Statische Tragzahl Cor

Dieser Wert wird nach DIN ISO 76 bestimmt. Die jeweiligen Tragzahlen werden in den Lagertabellen angegeben.

Äquivalente statische Lagerbelastung P_{or} Wenn statische und radiale Lasten auf ein Lager wirken, müssen diese in die äquivalente Lagerbelastung P., umgerechnet werden, dabei gilt:

F_{or} = Ist-Radiallast (N) F_{or} = Ist-Axiallast (N)

Berechnen Sie Par mit:

P_{or} = F_{or} oder P_{or} = 0,6 F_{or} + 0,5 F_{oo} Verwenden Sie den jeweils größeren Wert für P_{or}, der Wert sollte jedoch die statische radiale Tragzahl des Lagers C. nicht überschreiten.

Betriebsfaktoren

Üblicherweise werden bei der Berechnung der Lagerlebensdauer Faktoren berücksichtigt, die während ihres Betriebs auftreten, wobei Schwankungen der Belastungen während des Betriebs in Betracht gezogen werden. Folgende auf Erfahrung basierende Angaben können als Grundlage genutzt werden. Bei leichten, ständigen Stoßbelastungen ist die Lagerbelastung mit 1,2 bis 1,5 zu multiplizieren. Bei mäßigen Stoßbelastungen sollte ein Faktor von 1,7 bis 2,0 angesetzt werden. Bei der Auswahl der Lagergröße unter Berücksichtigung einer gewissen Last sollte die Lebensdauer den Werten für L_o aus der nächsten Spalte entsprechen:

Anlagen mit 8 Stunden Betrieb pro Tag – keine volle Belastung - 10.000 bis 20.000 Stunden

Anlagen mit 8 Stunden Betrieb pro Tag – volle Belastung - 20.000 bis 30.000 Stunden

Anlagen mit 24 Stunden Betrieb pro Tag – 40.000 bis 80.000 Stunden

Anlagen mit saisonalem Betrieb – 4.000 bis 8.000

Grenzwerte für die Belastung

Die Axiallast F $_{\rm or}$ darf die Hälfte des Wertes der statischen Tragzahl C $_{\rm or}$ nicht übersteigen. Die Einschränkungen durch die Gehäusefestigkeit müssen ebenfalls berücksichtigt werden. Siehe dazu Seite 17.

Tabelle 18.1

Lagereinsatz	f _o	Lagereinsatz	f,
1017	13,1	1060	14,3
1020	13,1	1065	14,4
1025	13,9	1070	14,4
1030	13,8	1075	14,7
1035	13,8	1080	14,6
1040	14,0	1085	14,7
1045	14,1	1090	14,5
1050	14,4	3095	13,6
1055	14,3	5)	

Tabelle 18.2

$\frac{f_0 F_a}{C_{\alpha}}$	Υ
0,172	2,30
0,345	1,99
0,689	1,71
1,03	1,55
1,38	1,45
2,07	1,31
3,45	1,15
5,17	1,04
6,89	1,00

Beispiele für Lagerberechnungen

Beispiel 1

Welche nominelle Lebensdauer L₁₀ kann die Ausführung NP55 mit einer ständigen Radiallast F, = 3900 N und einer Drehzahlvon 1500 U/min erreichen? Die dynamische Tragzahl C, des Lagers, ist 43500 N. Da das Lager keine Axiallast aufnimmt, lautet die äquivalente Last P, = F, gemäß der Formel auf Seite 10. Unter Berücksichtigung eines Betriebfaktors von 1,2 für stoßfreie Belastung ergibt sich:

$$P_r = F_r \cdot 1,2 = 3900 \cdot 1,2 = 4680N.$$

Laut Seite 10,

L₁₀ Lebensdauer in Stunden

$$= \left(\frac{C_r}{P_r}\right)^3 \cdot \frac{10^6}{nx60}$$
$$= \left(\frac{43500}{4680}\right)^3 \cdot \frac{10^6}{1500x60}$$

= 8923 Stunden

Alternativ dazu kann anhand der Lastverhältnistabellen auf Seite 12 mittels der jeweiligen Drehzahlspalte die ungefähre $\frac{C_{\ell}}{P_{\ell}}$ Lebensdauer bestimmt werden.

Daher gilt
$$\frac{C_r}{P_r} = \frac{43500}{4680} = 9,29$$

In der Spalte für 1500 U/min lautet der nächste ट्रि Wert 9,65, wodurch sich eine ungefähre Lebensdauer von 10000 Stunden ergibt.

Beispiel 2

Welche nominelle Lebensdauer L₁₀ ergibt sich für die Ausführung SF40 bei einer Radiallast F, = 2940 N und einer Axiallast F_a = 1470 N, 300 U/min und mäßigen Stoßbelastungen?

Die dynamische radiale Tragzahl C, des Lagers lautet nach Seite 37 32500 N, die statische Tragzahl C_{or} 19900 N. Da das Lager radialen und axialen Belastungen ausgesetzt ist, muss ein Äquivalenzwert P, gemäß den Angaben auf Seite 10 bestimmt werden.

In der Tabelle 18.2 auf Seite 10, kann für den $\frac{f_o \, F_o}{C_{or}}$ Wert der Y Wert abgelesen werden.

$$\frac{f_0 F_a}{C_{or}} = \frac{14.0 \cdot 1470}{19900} = 1.03$$

Mit diesem Wert ermitteln wir mit Hilfe der Tabelle 18.2 den Wert für Y = 1,55. Laut Seite 10 errechnen wir anschließend den Wert für P,

bzw.

$$P_r = 0.56 (2940) + 1.55 (1470) = 3925N$$

Mittels des größeren Werts P, und dem Betriebsfaktor 1,7 (Seite 10) für mäßige Stoßbelastungen ergibt sich:

Laut Seite 10 demnach: L, Lebensdauer in Stunden

$$= \left(\frac{C_r}{P_r}\right)^3 \cdot \frac{10^6}{60n}$$
$$= \left(\frac{32500}{6673}\right)^3 \cdot \frac{10^6}{60x300}$$

= 6418 Stunden

Alternativ dazu kann anhand der Lastverhältnistabellen auf Seite 12 mittels der jeweiligen Drehzahlspalte der nächstgelegene Wert C_r/P_r bestimmt werden. Daher gilt: $C_r/P_r = 32500/6673 = 4,87$. Auf der Seite 12, in der Spalte für 300 U/min lautet der nächstgelegene Wert 5,13, wodurch sich eine ungefähre Lebensdauer von 7500 Stunden ergibt.

Gehäusefestigkeit

Zur Prüfung der Gehäusefestigkeit für das Beispiel 2 mit einer Axiallast F₂ = 1470 N und einem Betriebsfaktor von 1,7 gilt: Axiallast = 1470 · 1,7 = 2499N

Laut Seite 17 sind die maximalen Axiallasten für das oben genannte Gehäuselager:

0.45 C_{or} in einer Richtung und

0.25 C_{or} in der entgegengesetzten Richtung. Bei der Berechnung dieser beiden Höchstwerte für die Axiallast, die auf das Gehäuse wirken dürfen, gelten:

0,45 · 19900 = 8955N

 $0.25 \cdot 19900 = 4975N$

Nach dem oben erhaltenen Wert kann das Gehäuse eine Axiallast von 2499N in beiden Richtungen aufnehmen. Daraus folgt, dass das oben genannte Gehäuselager hinsichtlich der angegebenen Belastungen ausreichend dimensioniert ist.

Hinweis Es wird empfohlen, bei hohen Axiallasten eine Wellenschulter zu verwenden.

SELF-LUBE LAGEREINHEITEN 11

Lastverhältnisse

Lebensdauerwerte für Kugellager bei unterschiedlichen C,/P, Werten und Drehzahlen

L ₁₀ Lebens- dauer	Orehzahl: U/ min 25								
(Std.)		50	100	150	200	300	500	750	1000
100					1,06	1,22	1,45	1,65	1,82
500		1,14	1,45	1,65	1,82	2,08	2,47	2,82	3,11
1000	1,14	1,44	1,82	2,08	2,29	2,62	3,11	3,56	3,91
1500	1,31	1,65	2,08	2,38	2,62	3,00	3,56	4,07	4,48
2000	1,45	1,82	2,29	2,62	2,88	3,30	3,91	4,48	4,93
3000	1,65	2,08	2,62	3,00	3,30	3,78	4,48	5,13	5,65
5000	1,96	2,47	3,11	3,56	3,91	4,48	5,32	6,08	6,70
7500	2,24	2,82	3,56	4,07	4,48	5,13	6,08	6,96	7,66
10000	2,47	3,11	3,91	4,48	4,93	5,65	6,70	7,66	8,43
19500	2,82	3,56	4,48	5,13	5,65	6,46	7,66	8,77	9,65
20000	3,11	3,91	4,93	5,65	6,21	7,11	8,43	9,65	10,60
30000	3,56	4,48	5,65	6,46	7,11	8,14	9,65	11,10	12,20
40000	3,91	4,93	6,21	7,11	7,81	8,96	10,60	12,20	13,40
60000	4,48	5,65	7,11	8,14	8,96	10,30	12,20	13,90	15,30
80000	4,93	6,21	7,81	8,96	9,83	11,30	13,40	15,30	16,80

Lebensdauerwerte für Kugellager bei unterschiedlichen C_r/P_r Werten und Drehzahlen

L ₁₀ Lebens- dauer	Drehzahl: U/ min 1500							
(Std.)		2000	3000	4000	5000	6000	8000	10000
100	2,08	2,29	2,62	2,88	3,11	3,30	3,63	3,91
500	3,56	3,91	4,48	4,93	5,32	5,65	6,21	6,69
1000	4,48	4,93	5,65	6,21	6,70	7,11	7,81	8,43
1500	5,13	5,65	6,46	7,11	7,65	8,15	8,96	9,65
2000	5,65	6,21	7.11	7,81	8,43	8,96	9,83	10,60
3000	6,46	7,11	9,14	8,96	9,65	10,30	11,30	12,20
5000	7,66	8,43	9,65	10,60	11,50	12,20	13,40	14,40
7500	8,77	9,65	11,10	12,20	13,10	13,90	15,30	16,50
10000	9,65	10,60	12,20	13,40	14,50	15,30	16,80	18,20
19500	11,10	12,20	13,90	15,30	16,50	17,50	19,30	20,80
20000	12,20	13,40	15,30	16,80	18,50	19,30	21,20	22,90
30000	13,90	15,30	17,50	19,30	20,80	22,10	24,30	26,20
40000	15,30	16,80	19,30	12,20	22,90	24,30	26,70	28,80
60000	17,50	19,30	22,10	14,30	26,20	27,80	30,70	33,00
80000	19,30	21,20	24,30	16,70	28,80	30,70	33,70	36,30

Self-Lube-Produktreihe

In der Produktreihe der Self-Lube-Lager wird zwischen zwei Hauptprodukten unterschieden, dem Self-Lube-Lagereinsatz und der Self-Lube-Lagereinheit.

Self-Lube-Lager

Die Produktreihe der Self-Lube-Lagereinheiten bietet eine große Auswahl an Gehäusen aus Gusseisen, Pressstahl und synthetischem Gummi, die mit der kompletten Palette der Self-Lube-Lagereinsätze mit balligem Außenring ausgestattet sind. Sie sind bei anfänglichen Ausrichtungsfehlern von bis zu ± 1,7° geeignet, werden jedoch nicht bei Ausrichtungsfehlern von mehr als ± 3,3° während des Betriebs empfohlen.

Die allgemeinen Gehäusetypen sind Stehlager, Flanschlager, Spannlager, Hülsenlager und Hängelager. Die Auswahl wird maßgeblich durch die Anforderungen an die Anwendung bestimmt, obgleich auch ästhetische Aspekte im Anlagendesign bei der Auswahl oftmals eine Rolle spielen. Die Self-Lube-Einheiten wurden entwickelt, um beiden Kriterien zu genügen.

Die gegossenen Einheiten werden aus hochwertigem Gusseisen gefertigt und mit einem elektrostatischen luftgetrockneten Lack auf den unbearbeiteten Oberflächen versehen.

Die Pressstahlgehäuse werden aus Weichstahl gefertigt und mit einem Zinküberzug versehen. Gummigehäuse werden aus antistatischen Nitrilkautschuk gegossen.

Self-Lube-Schutzvorrichtung (Protector)

Die Self-Lube-Schutzvorrichtung wurde entwickelt, um den Anlagenbediener vor Gefahren durch die Enden der drehenden Welle und die Außenflächen der Lager vor Verunreinigungen zu schützen. Die Schutzvorrichtung wird aus qualitativ hochwertigem Weichstahl gefertigt und mit einer Einbrennlackierung versehen, um ihr mehr Robustheit, ein besseres Aussehen und eine höhere Lebensdauer zu verleihen. Er kann leicht eingebaut und entfernt werden, ohne dass er dabei zerstört oder verformt wird, sodass er wiederholt ein- und ausgebaut werden kann.

Standard-Self-Lube-Einsätze mit balligem Außendurchmesser verfügen über eine 'Nut' im Außenring auf der Gegenseite der Schmiernut. Die Schutzvorrichtung verfügt über zwei Krallen, die durch die Aussparungen im Gehäuse in die Nut im Außenring hinein gedrückt werden. Dies bietet einen sicheren Halt und erschwert ein Lösen der Schutzvorrichtung. Benutzer der Self-Lube-Lager brauchen keine Speziallager kaufen oder zusätzliche Sicherungsmaßnahmen vornehmen, um den sicheren Halt zu erlangen.

Die Schutzvorrichtung kann durch Einsetzen einer hebelartigen Hilfsvorrichtung in ein kleines Loch in eine der beiden Krallen und durch Ausüben eines leichten Drucks nach außen entfernt werden. Dadurch wird die Klammer aus der Außenringnut entfernt. Eine Abdeckung für das Loch wird mitgeliefert.

SELF-LUBE LAGEREINHEITEN 13

Dichtung

Nachschmierung von Self-Lube Lagern

NSK Self-Lube Lager sind mit der richtigen Menge Schmierfett befüllt und benötigen keine weitere Fettzugabe beim Einbau.

Nachschmierung ist normalerweise nicht notwendig außer bei extremen Bedingungen wie hohen Temperaturen, hohen Drehzahlen und hohen Belastungen, oder bei übermäßiger Nässe oder Verschmutzung.

Die Nachschmierintervalle sind abhängig von der Art und der Qualität des verwendeten Fetts sowie den Betriebsbedingungen. Deshalb ist es schwierig eine allgemeine Regel festzulegen. Jedoch unter normalen Betriebsbedingungen ist es empfehlenswert, nachzuschmieren bevor 1/3 der berechneten Lebensdauer erreicht wurde. Es ist notwendig, zu prüfen ob Faktoren wie Verhärtung von Fett in der Nachschmierbohrung, nachschmieren unmöglich macht, oder Zerstörung des Fettes durch Oxydation während die Maschine im Betrieb ist.

Die Tabelle zeigt die Standard Schmierfristintervalle. Abgesehen von der berechneten Lebensdauer des Fettes, berücksichtigt diese Tabelle, Faktoren wie die Drehzahl der Lager, den Betriebstemperaturbereich und die Umwelteinflüsse.

Die Leistung eines Lagers wird durch die Fett-Menge beeinflusst. Um eine Überschmierung zu vermeiden, ist es ratsam, nachzuschmieren, während die Maschine im Betrieb ist.

Bei allen Self-Lube Gehäuselagern beträgt der Durchmesser der Gewindebohrung des Schmiernippels 1/4 Zoll UNF, ausgenommen hiervon ist die Reihe FC, die über eine Gewindebohrung M5 x 0,8 verfügt.

Schmierung

Einsatz	Temperaturbereich	Fett	Hersteller
Standardeinsatz	-20°C bis +110°C	Alvania R3	Shell
HLT-Einsatz	-40°C bis +180°C	Kluberquiet 8QH72-102	Klüber

Einlippendichtung

Die Standard-Self-Lube-Dichtung besteht aus einer gewebeverstärkten Nitrildichtscheibe zwischen zwei Me-tallpressstücken. Dieses System hat sich im Laufe der Jahre in mehreren Anwendungen bewährt. Die "S"-Dichtung weist noch weitere Konstruktions-neuerungen auf. Die Nitrildichtung

ist auf einer festen Stahlform aufvulkanisiert, welche im Außenring des Lager stabil befestigt ist. Die flexiblen Dichtungslippen schleifen auf der feingeschliffenen Oberfläche des Innenrings, um eine effektive Abdichtung mit minimaler Reibung sicherzustellen.

Ein lippendichtung (Standard)

Schleuderscheibe

An Stellen, an denen zusätzlicher Schutz erforderlich ist, ohne dass sich eine Einschränkung der Lagerdrehzahl ergibt, ist eine Schleuderscheibe sehr geeignet. Sie besteht aus einem Stahlflansch, der mit einer flexiblen Nitrildichtungslippe verbunden ist. Sie werden für die Ausführungen 1000G und 1000DECG angeboten und verfügen über das Nachsetzzeichen FS (z. B. 1025-25GFS,NP25FS). Die Schleuderscheibe wird auf dem Innenring aufgepreßt.

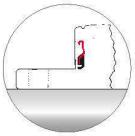
Einlippendichtung + Schleuderscheibe

Dreifachlippendichtung

Für Anwendungen mit einem gewissen Verunreinigungsgrad wird die speziell dafür entwickelte RHP-Drei-fachlippendichtung empfohlen. Sie besteht aus einer einteilig gegossenen Nitrildichtung mit drei Dichtungslippen, welche mit einem schützenden Stahlpressstück verbunden ist und am Außenring stabil befestigt ist und damit eine hocheffiziente Dichtung darstellt. Diese Dichtung ist nicht für hohe Drehzahlen geeignet. Siehe Seiten 86 bis 88.

Dreifachlippendichtung

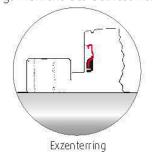
			(E1271E21E E12	3 337 5550		
Lagerart Drehzahlkennwert		Umwelteinflüsse	Betriebstem	peraturbereich °C	Schmierf	ristintervall
	max.				Stunden	Zeitraum
Standard	40000	Normal	-15 bis +80	+5 bis +176	1500 bis 3000	6 bis 12 Monate
Standard	70000	Normal	-15 bis +80	+5 bis +176	1000 bis 2000	3 bis 6 Monate
Standard	70000	Normal	+80 bis +100	+176 bis +212	500 bis 700	1 Monat
HLT	70000	Normal	+100 bis +130	+212 bis +266	300 bis 700	1 Monat
HLT	70000	Normal	+130 bis +180	+266 bis +356	100 bis 300	1 Woche
HLT	70000	Normal	-60 bis +80	-76 bis +176	1000 bis 2000	3 bis 6 Monate
Standard	70000	Sehr staubig	-15 bis +100	+5 bis +212	100 bis 500	1 Woche bis 1 Monat
Standard	70000	Ungeschützt vor Spritzwasser	-15 bis +100	+5 his +212	30 his 100	1 Tag bis 1 Woche


^{*} n · d_m = Drehzahl (min¹) · mittlerer Durchmesser (mm)

Standard Schmierfristintervalle

Wellenbefestigungen

Gewindestift


Diese Wellenbefestigung besteht aus zwei selbstsichernden Innen-Sechskant-Gewindestiften mit gerändelter Ringscheibe im erweiterten Innenring. Bei normalen Belastungen und mäßigen Drehzahlen ist die Lagereinheit einfach in ihrer Position anzubringen. Die Gewindestifte sind mit dem empfohlenen Anzugsmoment anzuziehen. Eine zusätzliche Anzugssicherheit wird erreicht, indem man die Welle anbohrt, sodass der Gewindestift aufgenommen wird. Zum Anbohren ist zunächst ein Gewindestift zu lösen und die Position auf der Welle zu bestimmen. Wählen Sie einen Bohrer mit entsprechendem Kerndurchmesser des Innenrings und führen Sie anschließend die Bohrung bis zum Eindringen der Bohrspitze aus. Gewindestift wieder einschrauben und vorschriftsmäßig festziehen. Die empfohlenen Anzugsmomente für die Gewindestifte sind auf Seite 16 angegeben.

Gewindestift

Exzenterring

Diese Wellenbefestigung besteht aus einem exzentrischen Ring, der sich auf dem erweiterten Innenring des Lagers befindet. Er ist mit einem separaten ähnlich geformten Exzenterring in der Bohrung verbunden. Die Verriegelung erreicht man, indem der Exzenterring in Wellendrehrichtung gedreht wird, bis der exzentrische Durchmesser des Exzenterringes in den Innenring greift. Der Exzenterring wird mit einem Sackloch geliefert, um das Sichern des Lagers auf der Welle zu erleichtern. Der Gewindestift verhindert bei korrekt angewandtem Anzugsdrehmoment ein Zurückrutschen des Exzenterringes während des Betriebs. Durch das Anziehen des Gewindestifts mit dem auf Seite 16 empfohlenen Anzugsmoment wird ein "Lockern" des Exzenterrings während des Betriebs verhindert.

Spannhülse

Diese Art der Sicherung basiert auf einer Standard-Kegel-spannhülse, einer Sicherungsmutterundeinem Sicherungsblech. Sie wird empfohlen, wenn eine konzentrische Wellenbefestigung erforderlich ist. Wenn das Lager an
der Welle montiert wird, ist darauf zu achten, dass die
Sicherungsmutter nicht zu fest gezogen wird, da dies die
Lagerluft derart reduzieren kann, dass ein vorzeitiger
Ausfall möglich ist. Ein Sicherungsblech wird mitgeliefert,
sodass sich die Sicherungsmutter nicht lockert, wenn eine
der Nasen in die entsprechende Spalte der Sicherungsmutter eingeführt wird. (Siehe untenstehende Einbauhinweise). Die empfohlenen Anzugsmomente für die
Sicherungsmuttern sind auf Seite 16 angegeben.

Spannhülse

Montage der Self-Lube-Spannhülseneinheiten

- Befestigen Sie zunächst das Self-Lube-Gehäuse an der Anlage und befreien Sie die Welle und die Spannhülsen von jeglichen Öl- und Fettrückständen.
- Positionieren Sie die Welle in der Einheit und ziehen Sie die Sicherungsmutter von Hand an. Falls sich die Spannhülse auf der Welle dreht, ziehen Sie die Spannülse innerhalb des Lagers an, um ihr Halt zu geben. Ziehen Sie die Sicherungsmutter mit dem auf Seite 16 angegebenen empfohlenen Anzugsmoment an.
- Wenn Sie nicht über einen Drehmomentschlüssel verfügen, können ein stumpfer Dorn und ein kleiner Hammer zum Anziehen verwendet werden.
- Stellen Sie sicher, dass sich das Lager frei drehen kann, sodass die Lagerluft nicht völlig verschwindet, um auch eine Vorspannung zu vermeiden.
- Sichern Sie schließlich die Mutter mit der entsprechenden Nase des Sicherungsbleches. Ziehen Sie die Mutter, wenn nötig, leicht nach. Keinesfalls darf sie gelöst werden.
- Nach 100 Betriebsstunden ist der feste Sitz der Sicherungsmutter zu pr
 üfen.

SELF-LUBE LAGEREINHEITEN 15

Gewindestiftgewinde und Anzugsmomente

Gewindestiftgewinde und -größe

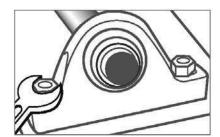
Kurzzeichen					
Lagereinsatz	1000G, 1100,	12006, 1300	1000DECG, 1100DEC, 1200ECG, 1300EC		
	Bohrungsdurchmesser in Zoll	Bohrungsdurchmesser in mm	Bohrungsdurchmesser in Zoll	Bohrungsdurchmesser in mm	
1017	1/4UNF	M6 x 0,75	1/4UNF	M6 x 0,75	
1020	1/4UNF	M6 x 0,75	1/4UNF	M6 x 0,75	
1025	1/4UNF	M6 x 0,75	1/4UNF	M6 x 0,75	
1030	1⁄4UNF	M6 x 0,75	5/16UNF	M8 x 1,00	
1035	5/16UNF	M8 x 1,00	5⁄16UNF	M8 x 1,00	
1040	54 ¢UNF	M8 x 1,00	3/sUNF	M10 x 1,25	
1045	\$16UNF	M8 x 1,00	3/sUNF	M10 x 1,25	
1050	3/eUNF	M10 x 1,25	3/sUNF	M10 x 1,25	
1055	3⁄eUNF	M10 x 1,25	3/sUNF	M10 x 1,25	
1060	3⁄eUNF	M10 x 1,25	3/sUNF	M10 x 1,25	
1065	3⁄eUNF	M10 x 1,25	3/eUNF	M10 x 1,25	
1070	7/16UNF	M12 x 1,50	3%UNF	M10 x 1,25	
1075	7/16UNF	M12 x 1,50	3/sUNF	M10 x 1,25	
1080	7/16UNF	M12 x 1,50	-	÷ "	
1085	716UNF	M12 x 1,50	120	(E)	
1090	1½UNF	M12 x 1,50	* <u>-</u>	12/	
3095	%UNF	M16 x 1,50	k=	-	

Anzugsdrehmomente für Gewindestifte und maximale Axiallasten

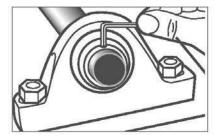
Stellschrauben- größe	Steck-/Innensechskant- schlüsselgröße (Schlüsselweite)	Empfohlenes maximales Anzugsmoment	Maximale Gewindestift- Axiallast
		Nm	N
1/4UNF	1⁄e"	6,8	2500
5/16UNF	∜ 32"	12,4	3500
3⁄8UNF	346"	22,6	4500
₹/16UNF	7/32"	31,6	7500
1/2UNF	1/4"	45,2	9000
%UNF	\$16"°	53,9	15000
M6 x 0,75	3mm	5,7	2500
M8 x 1,00	4mm	12,4	3500
M10 x 1,25	5mm	27,1	5000
M12 x 1,50	6mm	38,4	8000
M16 x 1,50	8mm	53,9	15000

Hinweis: Bei Axiallasten oberhalb der aufgelisteten Werte, wird empfohlen den Innenring gegen eine Wellenschulter abzustützen.

Empfohlene Anzugsdrehmomente für Spannhülsenlager


Bohrungsgröße der Spannhülse	Anzugsmomente Nm
20mm, ¾"	30
25mm, 15/16", 1"	40
30mm, 11/8", 13/16"	50
35mm, 11/4", 13/8"	60
40mm, ½16", 1½"	65
45mm, 111/16", 134"	75
50mm, 115/16", 2"	85

Montageanweisungen für Self-Lube-Lager


Self-Lube mit Gewindestiften

 Lösen Sie die Gewindestifte, sodass die Bohrung freiliegt und schieben Sie das Lager auf die Welle.

 Befestigen Sie das Lagergehäuse auf einer ebenen Oberfläche, ziehen Sie es jedoch nicht zu fest an.

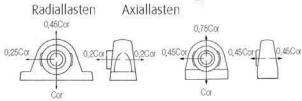
 Ziehen Sie die Gewindestifte mit den empfohlenen Anzugsmomenten an.

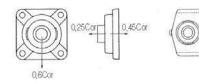
Self-Lube mit Exzenterring

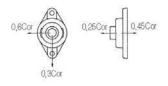
 Setzen Sie das Lager und das Gehäuse auf die Welle. Montieren Sie den Exzenterring nicht ein.

2. Ziehen Sie die Muttern leicht an, wiederholen Sie den Vorgang auf der anderen Wellenseite und ziehen Sie anschließend die Muttern an beiden Seiten fest.

 Befestigen Sie den Exzenterring in Wellendrehrichtung.




 Ziehen Sie den Exzenterring mit dem Dorn und einem kleinen Hammer an.



 Ziehen Sie den Gewindestift mit den empfohlenen Anzugsmomenten an.

Grenzwerte für die Gehäusefestigkeit

SELF-LUBE LAGEREINHEITEN 17

Zulässige Belastung von Gehäusen aus Grauguß

Die nebenstehenden Maximallasten sind als Anteil der statischen Tragzahl (C_{or}) des Lagereinsatzes angegeben. Wenn der Wert der Axiallast die maximale zulässige Axialbelastung des Gewindestiftes (siehe Seite 16) übersteigt, ist der Innenring seitlich gegen eine Wellenschulter abzustützen.

Zusätzliche Sicherheitsfaktoren sind bei Stoßbelastungen einzurechnen.

Toleranzen und Drehzahlen

Toleranzen für Innenringe

3	Nennmaß Bohru	ngsdurchmesser d		Toleranzwerte					
				0,001 mm	Intervalle	0,0001 Zol	l Intervalle		
mm über	inkl.	Zoll über	inkl.	max.	min.	max.	min.		
10	18	0,3937	0,7087	+15	0	+6	0		
18	31,750	0,7087	1,2500	+18	0	+7	0		
31,750	50,800	1,2500	2,0000	+21	0	+8	0		
50,800	80	2,0000	3,1496	+24	0	+9	0		
80	100	3,1496	3,9370	+28	0	+11	0		

Toleranzwerte für Außenringe

Nennn Außendurch		Auf	Bendurchm	nesser Toler	ranz	Ringbreite Toleranz							
			1 mm valle	0,0001 Zoll Intervalle		Nominale La	gerbohrung		l mm valle	0,0001 Zoll Intervalle			
mm über	inkl.	max.	min.	max.	min.	mm über	inkl.	max.	min.	max.	min.		
30	50	0	-11	0	-4	9	18	0	-120	0	-47		
50	80	0	-13	0	-5	18	30	0	-120	0	-47		
80	120	0	-15	0	-6	30	50	0	-120	0	-47		
120	150	0	-18	0	-7	50	80	0	-150	0	-59		
150	180	0	-25	0	-10	80	120	0	-200	0	-78		
180	250	0	-30	0	-12		:-	(4)	40	ψ.	-		

Gehäusetoleranzwerte für Einsätze mit zylindrischem Außenring - Reihen 1100, 1100DEC, 1300 und 1300EC

Nenndurchmesser		Stehender	Außenring			Rotierende	r Außenring	
Gehäusebohrung		Gehäusetolera	anzwert ISO H7			Gehäusetoler	anzwert ISO N7	
	0,00	1 mm	0,000	1 Zoll	0,00	1 mm	0,000	1 Zoll
mm	max.	min.	max.	min.	max.	min.	max.	min.
40	+25	0	+10	0	-8	-33	-3	-13
47	+25	0	+10	0	-8	-33	-3	-13
52	+30	0	+12	0	-9	-39	-4	-15
62	+30	0	+12	0	-9	-39	-4	-15
72	+30	0	+12	0	-9	-39	-4	-15
80	+30	0	+12	0	-9	-39	-4	-15
85	+35	0	+14	0	-10	-45	-4	-18
90	+35	0	+14	0	-10	-45	-4	-18
100	+35	0	+14	0	-10	-45	-4	-18
110	+35	0	+14	0	-10	-45	-4	-18
120	+35	0	+14	0	-10	-45	-4	-18
125	+40	0	+16	0	-12	-52	-5	-20
130	+40	0	+16	0	-12	-52	-5	-20
140	+40	0	+16	0	-12	-52	-5	-20
150	+40	0	+16	0	-12	-52	-5	-20
160	+40	0	+16	0	-12	-52	-5	-20

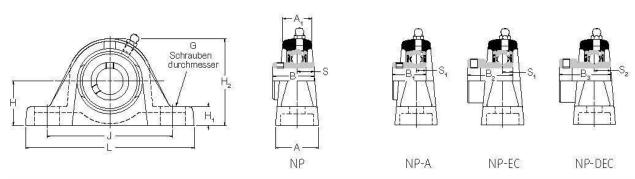
Wellentoleranzbereiche und zulässige Drehzahlen

		ırchmesser Bohrung		t	iohe Dr	stunge ehzahle	n		1017/1010	riebsbe	male dingun	Section of the second		ge	eringe O	lastung rehzahl	en
Lager- Kurz-			Max. Oreh- zahl	0,00		0,000	SO h6 O1 Zoll	Max. Dreh- zahl	350000000000000000000000000000000000000	ntolera 1 mm	0,000	SO h7	Max. Dreh- zahl		ntolera 1 mm	0,000	SO h9
zeichen	mm	Zoll	min ⁻¹	max.	min.	max.	min.	min ⁻¹	max.	min.	max.	min.	min-1	max.	min.	max.	min.
1017	12-17	1/2-11/16	7000	0	-11	0	-4	5000	0	-18	0	-7	2000	0	-43	0	-17
1020	20	3/4	6700	0	-13	0	-5	4200	0	-21	0	-8	1700	0	-52	0	-20
1025	25	13/16-1	6250	0	-13	0	-5	3600	0	-21	0	-8	1350	0	-52	0	-20
1030	25-30	7/8-11/4	5300	0	-13	0	-5	3100	0	-21	0	-8	1100	0	-52	0	-20
1035	30-35	11/8-17/16	4500	0	-16	0	-6	2700	0	-25	0	-10	900	0	-62	0	-24
1040	35-40	13/6-19/16	4000	0	-16	0	-6	2400	0	-25	0	-10	750	0	-62	0	-24
1045	40-45	11/2-13/4	3700	0	-16	0	-6	2200	0	-25	0	-10	600	0	-62	0	-24
1050	45-50	1%-2	3400	0	-16	0	-6	1950	0	-25	0	-10	500	0	-62	0	-24
1055	50-55	11/8-2₹16	3100	0	-19	0	-7	1800	0	-30	0	-12	450	0	-74	0	-29
1060	55-60	21/8-27/16	2800	0	-19	0	-7	1600	0	-30	0	-12	400	0	-74	0	-29
1065	65	21/2	2600	0	-19	0	-7	1500	0	-30	0	-12	350	0	-74	0	-29
1070	60-70	17/16-211/16	2450	0	-19	0	-7	1400	0	-30	0	-12	300	0	-74	0	-29
1075	65-75	211/16-215/16	2300	0	-19	0	-7	1300	0	-30	0	-12	280	0	-74	0	-29
1080	75-80	215/16-31/4	2150	0	-19	0	-7	1200	0	-30	0	-12	250	0	-74	0	-29
1085	80-85	33/16-37/16	2000	0	-22	0	-9	1100	0	-35	0	-14	220	0	-87	0	-34
1090	85-90	37/16-31/2	1900	0	-22	0	-9	1050	0	-35	0	-14	200	0	-87	0	-34
3095	95-100	3 15/16-4	1600	0	-22	0	-9	1000	0	-35	0	-14	180	0	-87	0	-34

Für die meisten Anwendungen bieten Gewindestifte eine ausrei-chend sichere Befestigung. Wenn Exzenterringe zum Einsatz
kommen, sollten Wellentoleranzwerte aus der Spalte für hohe Lasten angewendet werden. Sollten Spannhülsen zum Einsatz kommen, können Wellentoleranzwerte aus der Spalte für geringe Lasten angewendet werden. Falls sich die Betriebsbedingungen als
sehr schwierig erweisen (z. B. bei starker Vibration oder hoher
Stoßbe-lastung), ist eine Preßpassung zwischen Welle und Lagerbohrung erforderlich.

Gehäusetoleranzwerte für Lagereinheiten -Reihen FC, MFC, SLC und MSC

Kurzzeichen Lagereinheit	Gehäusetoleranzwerte						
	Stehendes Gehäuse	Drehendes Gehäuse					
SLC MSC	ISO H7	ISO N7					
FC MFC	ISO H7	ISO H7					


Radiale Lagerluft

Radial Internal Clearance	Bearing Type
C3	Self-Lube Standardreihe
C4	Self-Lube mit Spannhülse
C5	Self-Lube HLT

Self-Lube-Lagertabellen

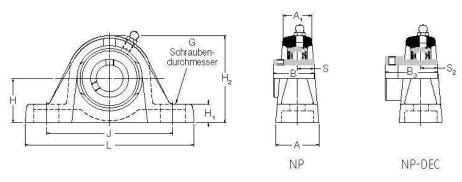
Self-Lube-Stehlager aus Gussgehäuse Reihe NP

Wellend	urchmesser		Kurz	zeichen		Lager- einsatz	Guss- gruppe	1	lbmessun	gen (mn	1)	Locha	bstand
mm	Zoll						9.00	L	Н	Н1	H2	J _{max}	J _{min}
12		NP12		NP12EC		1017	1	126,5	30,20	14,2	57,2	100,5	85,5
15		NP15		NP15EC									
16		NP16		NP16EC									
17		NP17		NP17EC									
	1/2	NP½		NP1/2EC									
	5/8	NP5/s		NP%EC									
20		NP20	NP20A	NP20EC	NP20DEC	1020	2	127,0	33,30	14,0	65,2	100,5	88,5
	3/4	NP¾	NP3/4A	NP3/4EC	NP3/4DEC								
25		NP25	NP25A	NP25EC	NP25DEC	1025	3	139,0	36,50	16,0	71,0	112,7	96,8
	7/8	NP%		NP%EC	NP%DEC								
	15/16	NP15/16		NP15/16EC	NP15/16DEC								
	1	NP1	NP1A	NP1EC	NP1DEC								
30		NP30	NP30A	NP30EC	NP30DEC	1030	4	160,5	42,90	17,7	82,7	129,5	108,5
	11/8	NP1%		NP1%EC	NP1%DEC								
	1∛16	NP13/16		NP13/16EC	NP1¾6DEC								
	11/4	NP1¼R	NP1¼AR	NP1¼ECR	NP11/4DECR								
35		NP35	NP35A	NP35EC	NP35DEC	1035	5	166,0	47,60	17,5	93,0	136,5	121,5
	11/4	NP11/4	NP11/4A	NP1¼EC	NP11/4DEC							· · · · ·	
	13/8	NP1%		NP1%EC	NP1%DEC								
	17/16	NP17/16		NP17/16EC	NP17/16DEC								
40		NP40	NP40A	NP40EC	NP40DEC	1040	6	180,5	49,20	18,5	98,5	148,0	127,0
	11/2	NP11/2	NP11/2A	NP11/2EC	NP1½DEC								
45		NP45	NP45A	NP45EC	NP45DEC	1045	7	190,5	54,00	20,0	108,0	154,5	140,5
	15/8	NP1%		NP1%EC	NP1%DEC								
	1 ¹¹ / ₁₆	NP111/16		NP111/16EC	NP111/16DEC								
	13/4	NP13/4	NP1¾A	NP1¾EC	NP1%DEC								
50		NP50	NP50A	NP50EC	NP50DEC	1050	8	206,0	57,20	21,0	115,2	163,0	154,0
	17/8	NP1%		NP1%EC	NP1%DEC								
	1 ¹⁵ / ₁₆	NP115/16		NP115/16EC	NP1¹₹16DEC								
	2	NP2R			NP2DECR								
55		NP55			NP55DEC	1055	9	219,5	63,50	24,8	129,5	178,5	162,5
	2	NP2			NP2DEC								
	21⁄8	NP21/8			NP2%DEC								
	2¾16	NP23/16			NP2¾60EC								
60		NP60			NP60DEC	1060	10	240,0	69,90	26,3	142,3	201,0	176,0
	21/4	NP21/4			NP2¼DEC								
	23/8	NP23/8			NP2%DEC								
	27/16	NP27/16			NP27/16DEC								

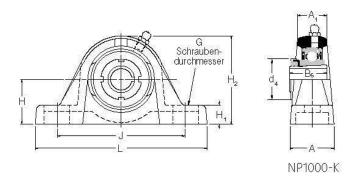
Bitte Verfügbarkeit prüfen

22

Lagereinsätze mit Schleuderscheiben der Seiten 89 und 90 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Nachsetzzeichen 'FS', z. B. NP40FS.

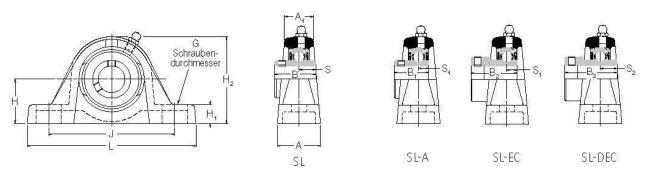

Lagereinsätze mit Dreifachdichtungen der Seiten 86 bis 88 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Vorsetzzeichen 'T', z. B. TNP25.

			Þ	lbmessur	igen (mn	n)				Tragza	hlen	Drehzahl- grenze	Gewicht (ca.)
G	А	A1	В	81	82	83	s	s 1	s2	dynamisch Cr N	statisch Cor N	min ⁻¹	kg
10	30,5	20,5	27,38	2	28,63	848	11,58	6,53	F48	9550	4800	7000	0,5
10	32,5	22,5	31,00	25,80	31,03	43,73	12,73	7,53	17,13	12800	6650	6700	0,6
10	36,5	24,5	34,10	27,30	31,03	44,43	14,33	7,53	17,53	14000	7880	6250	0,7
47	44.5	27.5	20.40	24.20	3F 73	40.40	45.00	0.03	40.22	10500	44200	5200	45
12	41,5	27,5	38,10	31, 20	35,73	48,43	15,93	9,03	18,33	19500	11300	5300	1,3
12	44,5	30,5	42,90	34,90	38,93	51,13	17,53	9,53	18,83	25700	15300	4500	1,7
12	51,0	34,5	49,20	41,20	43,73	56,33	19,03	11,03	21,43	32500	19900	4000	2,1
12	54,0	35,0	49,20	41,20	43,73	56,33	19,04	11,04	21,43	32500	20500	3700	2,8
16	55,0	36,0	51,60	43,50	43,73	62,73	19,04	11,04	24,64	35000	23200	3400	3,2
16	60,0	39,5	55,60	2	144	71,42	22,24	144	27,84	43500	29200	3100	4,0
16	70,0	46,0	65,10	22	4/	77,84	25,44	44	31,04	48000	33000	2800	5,9


Self-Lube-Stehlager aus Gusseisen Reihe NP (Fortsetzung)

Wellende	urchmesser	chmesser Kurzzeichen		Lager- einsatz	Guss- gruppe	ı	Abmessun	n)	Lochabstand		
mm	Zoll				J. JPP	L	Н	H1	H2	J _{max}	J _{min}
65		NP65	NP65DEC	1065	10/65	250,0	69,90	26,3	144,3	205,0	176,0
	21/2	NP21/2	NP21/2DEC								
70		NP70	NP70DEC	1070	11	266,0	79,40	30,2	156,0	220,0	200,0
	211/16	NP211/16				10					
75		NP75	NP75DEC	1075	12	275,0	82,60	28,0	164,0	228,0	206,0
	23/4	NP23/4				6					
	27/8	NP2%				p:					
	215/16	NP215/16									
	3	NP3				8					
80		NP80		1080	13	291,0	88,90	30,0	174,0	241,0	214,0
	3	NP3L									
85		NP85		1085	14	310,0	95,20	32,0	187,0	262,0	232,0
	31/4	NP31/4									
	33/8	NP3%									
90		NP90		1090	15	327,0	101,60	36,0	200,0	280,0	244,0
	37/16	NP37/16		3000000							
	31/2	NP31/2									

	Abmess					n)			Tragza	hlen	Orehzahl- grenze	Gewicht (ca.)	
G	A	A1	В	81	82	B3	S	s1	s2	dynamisch Cr N	statisch Cor N	min ⁻¹	kg
16	70,0	45,0	65,10	=	242	85,74	25,44	: :	34,14	57500	40000	2600	5,9
24	72,0	47,0	74,60	ā		85,74	30, 24	7	34,14	61000	45000	2450	8,0
24	74,0	48,0	77,80	8	744)	92,14	33,34	58k	37,34	66000	49500	2300	9,0
24	78,0	56,0	82,60	Ħ	(5	₹	33,34	s#e	#	71500	54500	2150	9,7
24	83,0	56,0	85,70	æ	8 5	1=0	34,15	8 m 8	ä	83000	64000	2000	11,8
24	88,0	62,0	96,00	=	()	÷.	39,74	(=)	e	96000	71500	1900	14,7
24	0,88	62,0	96,00	*	X +	**	39,74	-	æ	96000	71500	1900	


Self-Lube-Stehlager aus Gusseisen mit Spannhülsen Reihe NP1000-K

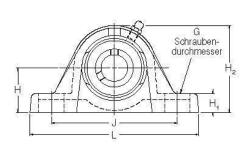
Wellend	urchmesser	Kurzzeichen	Nur Hülse, Mutter und Unterlegscheibe	Einheit ohne Hülse, Mutter und Unterlegscheibe	Lager- einsatz	Guss- gruppe	Ab	messun	gen (m	ım)	Locha	bstand
mm	Zoll						L	Н	Н1	H2	J _{max}	J _{min}
20		NP1025-20K	H3 05	NP1025K	1025	3	139*	36,50	16,0	71,0	112,7	96,8
	3/4	NP1025-34K	HE305-3/4									
25		NP1030-25K	H306	NP1030K	1030	4	160,5	42,90	17,7	82,7	129,5	108,5
	15/16	NP103 0 - 15/16K	HE306-15/16								1417.530	
	1	NP1030-1K	HE306-1									
30		NP1035-30K	H3 07	NP1035K	1035	5	166,0	47,60	17,5	93,0	136,5	121,5
	11/8	NP1035-11/8K	HE307-11/8									
	13/16	NP1035-13/16K	HE307-13/16									
35		NP1040-35K	H308	NP1040K	1040	6	180,5	49,20	18,5	98,5	148,0	127,0
	11/4	NP1040-11/4K	HE308-11/4									
	13/8	NP1040-1%K	HE308-1%									
40		NP1045-40K	H309	NP1045K	1045	7	190,5	54,00	20,0	108,0	154,5	140,5
	17/16	NP1045-17/16K	HE309-17/16									
	11/2	NP1045-11/2K	HE309-11/2									
45		NP1050-45K	H310	NP1050K	1050	8	206,0	57,20	21,0	115,2	163,0	154,0
	1 ¹ 1⁄16	NP1050-111/16K	HE310-111/16									
	13/4	NP1050-1%K	HE310-1¾									
50		NP1055-50K	H311	NP1055K	1055	9	219,5	63,50	24,8	129,5	178,5	162,5
	1 ¹ 5⁄16	NP1055-115/16K	HE311-115/16									
	2	NP1055-2K	HE311-2									

	i	Abmessungen (mm		Tragzal	Tragzahlen		Gewicht (ca.)	
G	A	A1	85	d4	dynamisch Cr N	statisch Cor N	min¹	kg
10	36,5	24,5	29,0	38,0	14000	7880	6250	0,7
12	41,5	27,5	31,0	45,0	19500	11300	5300	1,3
12	44,5	30,5	35,0	52,0	25700	15300	4500	1,7
12	51,0	34,5	36,0	58,0	32500	19900	4000	2,1
12	54,0	35,0	39,0	65,0	32500	20500	3700	2,8
16	55,0	36,0	42,0	70,0	35000	23200	3400	3,2
16	60,0	39,5	45,0	75,0	43500	29200	3100	4,0

Self-Lube-Stehlager aus Gusseisen Reihe SL

Wellendu	ırchmesser		Kurz	zeichen		Lager- einsatz	Guss- gruppe	P	bmessun	gen (mn	n)	Lochal	bstand
mm	Zoll							L	Н	H1	H2	J _{max}	J _{min}
12		SL12		SL12EC		1017	1	119,0	26,97	11,0	54,0	91,5	85,5
15		SL15		SL15EC						78	- 2		15
16		SL16		SL16EC			ĺ					ĺ	
17		SL17		SL17EC									
	1/2	SL1/2		SL1/2EC								ĺ	
	5/8	SL5/8		SL%EC								İ	
20		SL20	SL20A	SL20EC	SL20DEC	1020	2	126,5	31,75	12,5	63,7	100,5	88,5
	3/4	SL3/4	SL3/4A	SL¾EC	SL¾DEC								
25		SL25	SL25A	SL25EC	SL25DEC	1025	3	139,0	33,32	12,8	67,8	110,2	98,2
	7/8	SL%		SL%EC	SL%DEC								
	15/16	SL15/16		SL15/16EC	SL15/16DEC							1	
	1	SL1	SL1A	SL1EC	SL1DEC								
30		SL30	SL3 0A	SL30EC	SL30DEC	1030	4	161,5	39,67	14,5	79,5	130,0	109,0
	11/8	SL11/8		SL1%EC	SL1%DEC								
	1₹16	SL13/16		SL1¾6EC	SL13/16DEC								
	11/4	SL1¼R	SL1¼AR	SL1¼ECR	SL1¼DECR		10.00						
35		SL35	SL35A	SL35EC	SL35DEC	1035	5	166,0	46,02	16,0	91,5	136,5	121,5
	11/4	SL11/4	SL1¼A	SL1¼EC	SL1¼DEC								
	13/8	SL1%		SL1%EC	SL1%DEC								
1000	17/16	SL17/16	0145000000	SL17/16EC	SL17/16DEC		-22.00	H181000000	07 010 000 000 000	5355755	20000000	372374	
40		SL40	SL40A	SL40EC	SL40DEC	1040	6	180,5	49,20	18,5	98,5	148,0	127,0
9000	11/2	SL11/2	SL1½A	SL1½EC	SL11/2DEC	4275020	62.9%		20020000000	0.000	200000000		
45		SL45	SL45A	SL45EC	SL45DEC	1045	7	197,5	52,37	18,4	106,4	161,5	141,5
	1%	SL1%		SL1%EC	SL1%DEC								
	111/16	SL111/16		SL111/16EC	SL111/16DEC								
E0.	13/4	SL13/4	SL1¾A	SL1%EC	SL1%DEC	40.50		2440		40.0	***	4	454.0
50	477	SL50	SL5 0A	SL50EC	SL50DEC	1050	8	214,0	55,55	19,3	114,0	177,0	151,0
	17/8	SL1%		SL1%EC	SL1%DEC								
	115/16	SL115/16		SL115/16EC	SL115/16DEC								
e.e.	2	SL2R			SL2DECR	4055		240.5	24.00	125.3	420.0	470.5	820.0
55		SL55			SL55DEC	1055	9	219,5	61,90	23,2	128,0	178,5	162,5
	2 21/8	SL2			SL2DEC								
	298 2¥16	SL21/8 SL23/16			SL2%DEC SL2%6DEC								
60	∠₹16	SL2716 SL60			SLE TIEDEC	1060	10	240,0	68,25	24,6	140.6	201.0	176.0
00	21/4	SL21/4			SL21/4DEC	1000	10	240,0	00,20	24,0	140,0	201,0	1/0,0
	23/8	SL23/8			SL2 %DEC								
	27/16	SL27/16			SL27/16DEC								
65	2716	SL65R			SEZ 716UEC	1065	10/65	250,0	68,25	24,6	142,6	205,0	176,0
03	21/2	SL21/2			SL21/2DEC	1000	10/03	230,0	00,23	24,0	142,0	203,0	170,0
65	Z12	SL272 SL65			SL65DEC	1075	11	286,0	82,55	28,0	165.5	241,5	200,5
70		SL70			SL70DEC	107.5	11	200,0	02,33	20,0	100,0	24 1,3	200,3
75 75		SL75			SL75DEC								
13	211/16	SL211/16			SL211/16DEC								
	23/4	SL23/4			SL234DEC								
	27/8	SL274 SL27/8			SL2%DEC								
	278 2 ¹⁵ / ₁₆	SI215/16			SI215/16DEC								

Lagereinsätze mit Schleuderscheiben der Seiten 89 und 90 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Nachsetzzeichen 'FS', z. B. SL35FS.


Lagereinsätze mit Dreifachdichtungen der Seiten 86 bis 88 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Vorsetzzeichen 'T', z. B. TSL35.



			7	Abmessur	gen (mm)				Tragza	hlen	Drehzahl- grenze	Gewicht (ca.)
G	A	A1	В	B1	B2	83	S	s1	s2	dynamisch Cr N	statisch Cor N	min ⁻¹	kg
10	30,5	20,5	27,38	\$.75°	28,63	57	11,58	6,53	100	9550	4800	7000	0,5
10	32,0	22,5	31,00	25,80	31,03	M2:72	47.75	7.52	4745	12800	6650	6700	07
10	36,0	24,5	34,10	27,30	31,03	43,73 44,43	12,73	7,53 7,53	17,13 17,53	14000	7880	6250	0,6
12	41,0	27,5	38,10	31,20	35,73	48,43	15,93	9,03	18,33	19500	11300	5300	1,3
12	44,5	30,5	42,90	34,90	38,93	51,13	17,53	9,53	18,83	25700	15300	4500	1,7
12	51,0	34,5	49,20	41,20	43,73	56,33	19,03	11,03	21,43	32500	19900	4000	2,1
12	54,0	35,0	49,20	41,20	43,73	56,33	19,04	11,04	21,43	32500	20500	3700	3,0
12	55,0	36,0	51,60	43,50	43,73	62,73	19,04	11,04	24,64	35000	23200	3400	3,4
16	60,0	39,5	55,60	27	17%	71,42	22,24	257	27,84	43500	29200	3100	4,0
16	70,0	46,0	65,10	2	7 <u>2</u> 8	77,84	25,44	22	31,04	48000	33000	2800	6,1
16	70,0	45,0	65,10	820	828	85,74	25,44	7825	34,14	57500	40000	2600	6,2
20	74,0	47,5	77,80	:W:	(E)	92,14	33,34	348	37,34	66000	49500	2300	11,6

Self-Lube-Stehlager aus Gusseisen Reihe MP

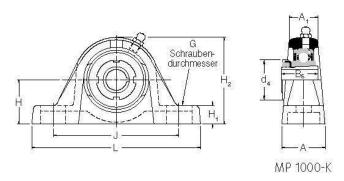
MP

Wellend	urchmesser	Kurzzeichen	Lager- einsatz	Guss- gruppe		Abmessun	gen (mm)	Lochal	bstand
mm	Zoll				L	Н	H1	H2	J _{max}	J _{min}
25		MP25	1030	1	160,5	44,45	19,3	84,3	127,5	108,5
	-1	MP1								
30		MP30	1035	2	166,0	47,60	17,5	93,0	136,5	121,5
	13/16	MP1¾6								
	11/4	MP11/4								
35		MP35	1040	3	203,2	53,98	23,0	107,5	160,0	135,0
	13/8	MP1%								
	17/16	MP17/16								
40		MP40	1045	4	222,2	58,72	22,5	116,7	172,5	145,0
	11/2	MP11/2								
45		MP45	1050	5	222,2	58,72	22,5	116,7	172,5	145,
	111/16	MP111/16								
	13/4	MP1¾								
50		MP50	1055	6	219,5	63,50	24,8	129,5	178,5	162,
	17/8	MP1%								
	1¹\$∕ ₁₆	MP115/16								
	2	MP2								
55		MP55	1060	7	249,5	69,85	26,2	142,2	201,0	179,
	2¾16	MP2¾6)						
	21/4	MP2¼								
60		MP60	1070	8	266,0	76,20	27,0	153,0	224,5	189,
65		MP65R								
	27/16	MP27/16								
	21/2	MP21/2								
65		MP65	1075	9	330,2	88,90	28,6	177,8	255,6	206,
70		MP70								
	211/16	MP211/16								
	23/4	MP2¾								
75		MP75	1080	10	330,2	88,90	31,8	184,2	255,6	228,
	2 ¹ 5⁄16	MP215/16								
	3	MP3		State						
80		MP80	1085	11	381,0	101,60	31,8	203,2	317,5	260,
	3₹16	MP3¾6								
	31/4	MP3¼	CHICAGA NA R	1010	200000000000000000000000000000000000000					
85		MP85	1090	12	381,0	101,60	33,3	209,6	319,1	246,
90		MP90								
	37/16	MP37/16								
	31/2	MP31/2	U 500000000	1977	1 000 as					
95		MP95	3095	13	431,8	127,00	33,3	254,0	371,5	301,
100		MP100								
	315/16	MP3 ¹⁵ /16								
	4	MP4								

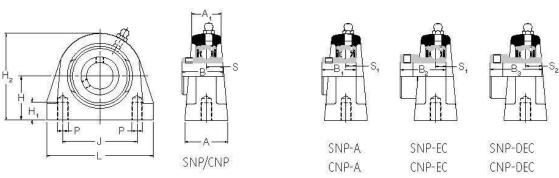
Bitte Verfügbarkeit prüfen

30

Lagereinsätze mit Schleuderscheiben der Seiten 89 und 90 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Nachsetzzeichen 'FS', z. B. MP40FS.


Lagereinsätze mit Dreifachdichtungen der Seiten 86 bis 88 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Vorsetzzeichen 'T', z. B. TMP40.

5.5 .5 .0 .0	27,5 38 30,5 42 40,5 45 39,5 49 39,5 51	8,10 15 2,90 17 9,20 15 9,20 15	5,93 7,53 9,03	namisch Cr N 19500 25700 32500 32500	11300 15300 19900	grenze min¹ 5300 4500 4500 3700	(ca.) kg 1.3 1.7 2.7
.5	30,5 42 40,5 49 39,5 49 39,5 51	2,90 17 9,20 19 9,20 19 1,60 19	7,53 9,03 9,04	19500 25700 32500 32500	15300	4500 4000	2,7
0.0	40,5 49 39,5 49 39,5 51	9,20 19 9,20 19 1,60 19	9,03	32500 32500	19900	4000	2,7
.0	39,5 49 39,5 51	9,20 19 1,60 19	9,04	32500	30.00.00	COUNTRIVE	
0,0	39,5 51	1,60 19			20500	3700	3,2
			9,04	35000			
,0	39,5 55	2.60 23	100		23200	3400	3,2
		J,00 22	2,24	43500	29200	3100	4,0
.5	46,00 65	5,10 25	5,44 4	18000	33000	2800	7,1
,0	47,0 74	4,60 30	0,24	61000	45000	2450	9,3
,9	66,7 77	7,80 33	3,34	56000	49500	2300	13,4
.9	66,7 82	2,60 33	3,34	71500	54500	2150	14,3
1,6	68,3 85	5,70 34	4,15	83000	64000	2000	18,2
Ļ1	79,4 98	5,00 39	9,74	96000	71500	1900	23,4
	98,4 11	7,48 49	9,31 1	57000	122000	1600	34,4
		.1 79,4 9x	.1 79,4 96,00 3	.1 79,4 96,00 39,74	.1 79,4 96,00 39,74 96000	.1 79,4 96,00 39,74 96000 71500	.1 79,4 96,00 39,74 96000 71500 1900


Self-Lube-Stehlager aus Gusseisen mit Spannhülsen Reihe MP1000-K

Wellend	urchmesser	Kurzzeichen	Nur Hülse, Mutter und Unterlegscheibe	Einheit ohne Hülse, Mutter und Unterlegscheibe	Lager- einsatz	Guss- gruppe	Al	bmessun	gen (m	m)	Lochal	bstand
mm	Zoll			-			L	Н	Н1	H2	J _{max}	J _{min}
25		MP1030-25K	H306	MP1030K	1030	1	160,5	44,45	19,3	87,4	127,5	108,5
	15/16	MP1030-15/16K	HE306-15/16									
	1	MP1030-1K	HE306-1									
30		MP1035-30K	H307	MP1035K	1035	2	166,0	47,60	17,5	93,0	136,5	121,5
	11//8	MP1035-1%K	HE307-1%									
	1₹16	MP1035-13/16K	HE307-1¾16									
35		MP1040-35K	H308	MP1040K	1040	3	203,2	53,98	23,0	106,4	160,0	135,0
	11/4	MP1040-11/4K	HE308-11/4									
	13/8	MP1040- 1%K	HE308-1%									
40		MP1045-40K	H309	MP1045K	1045	4	222,2	58,72	22,5	116,7	172,5	145,0
	17/16	MP1045-17/16K	HE309-17/16		- 5 Mc N.	- 29						
	11/2	MP1045-11/2K	HE309-11/2									
45		MP1050-45K	H310	MP1050K	1050	5	222,2	58,72	22,5	116,7	172,5	145,0
	111/16	MP1050-111/16K	HE310-111/16									
	13/4	MP1050-134K	HE310-2									
50		MP1055-50K	H311	MP1055K	1055	6	219,5	63,50	24,8	129,5	178,5	162,5
	1 ¹ 5⁄16	MP1055-115/16K	HE311-115/16									
	2	MP1055-2K	HE311-2									

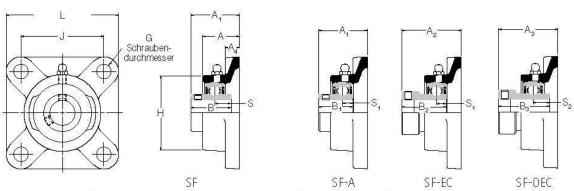
	ij	Abmessungen (mm)		Tragza	hlen	Orehzahl- grenze	Gewicht (ca.)
G	А	A1	85	d4	dynamisch Cr N	statisch Cor N	min ⁻¹	kg
12	41,5	27,5	31,00	45,00	19500	11300	5300	1,3
12	44,5	30,5	35,00	52,00	25700	15300	4500	1,7
12	57,0	40,5	36,00	58,00	32500	19900	4000	2,7
16	60,0	39,5	39,00	65,00	32500	20500	3700	3,2
16	60,0	39,5	42,00	70,00	35000	23200	3400	3,2
16	60,0	39,5	45,00	75,00	43500	29200	3100	4,0

Self-Lube-Stehlager aus Gusseisen mit kurzem Lagerfuß Reihe SNP (metrisches Gewinde), Reihe CNP (UNC-Gewinde)**

Wellend	urchmesser		Kurz	reichen		Lager- einsatz	Guss- gruppe	А	.bmess un	gen (mr	n)	Loch	bstand —n
mm	Zoll					To to be be the best of the	3.577	L	Н	H1	H2	J	SNP
20		SNP20	SNP20A	SNP20EC	SNP20DEC	1020	2	65,0	33,30	13,5	65,8	50,8	M8x1,25
	3/4	SNP¾	SNP3/44A	SNP3/4EC	SNP3/4DEC								
25		SNP25	SNP25A	SNP25EC	SNP25DEC	1025	3	70,0	36,50	13,5	71,5	50,8	M10x1,50
	7/8	SNP%		SNP%EC	SNP%DEC								
	15/16	SNP15/16		SNP15/16EC	SNP15/16DEC								
	1	SNP1	SNP1A	SNP1EC	SNP1DEC								
30	**	SNP30	SNP30A	SNP30EC	SNP30DEC	1030	4	96,0	42,90	16,5	83,9	76,2	M10x1,50
	11/8	SNP11/8		SNP1%EC	SNP1%DEC								
	13/16	SNP1¾6		SNP1%6EC	SNP1¾6DEC								
	11/4	SNP1¼R	SNP1¼AR	SNP1¼ECR	SNP1¼DECR								
35	900.5,00	SNP35	SNP35A	SNP35EC	SNP35DEC	1035	5	110,0	47,60	19,5	95,6	82,6	M10x1,50
	11/4	SNP11/4	SNP1¼A	SNP1¼EC	SNP11/4DEC								
	13/8	SNP1%		SNP1%EC	SNP1%DEC								
	17/16	SNP17/16		SNP17/16EC	SNP17/16DEC								
40		SNP40	SNP40A	SNP40EC	SNP40DEC	1040	6	118,0	49,20	19,5	101,7	88,9	M12x1,75
	11/2	SNP1½	SNP11/2A	SNP11/2EC	SNP1½DEC								
45		SNP45	SNP45A	SNP45EC	SNP45DEC	1045	7	127,0	54,00	19,5	110,0	95,3	M12x1,75
	15/8	SNP1%		SNP1%EC	SNP1%DEC							×	
	111/16	SNP111/16		SNP111/16EC	SNP111/16DEC								
	13/4	SNP1¾	SNP1¾A	SNP1%EC	SNP1¾DEC								
50		SNP50	SNP50A	SNP50EC	SNP50DEC	1050	8	135,0	57,20	23,5	115,0	101,6	M16x2,0
	17/8	SNP1%		SNP1%EC	SNP1%DEC							***	
	1 ¹ 5∕16	SNP115/16		SNP115/16EC	SNP115/16DEC								
	2	SNP2R											
55		SNP55			SNP55DEC	1055	9	154,0	63,50	26,5	130,0	118,0	M16x2,00
	2	SNP2			SNP2DEC								
	21/8	SNP21/8			SNP2%DEC								
	23/16	SNP23/16			SNP23/16DEC								
60		SNP60			SNP60DEC	1060	10	154,0	69,90	26,5	141,5	118,0	M16x2,00
	21/4	SNP21/4			SNP21/4DEC	0.000,000							
	23/8	SNP2%			SNP2%DEC								
	27/16	SNP27/16			SNP27/16DEC								

^{**}Die Lagerangaben dieser Reihe entsprechen denen der Reihe SNP, dies gilt nicht für die Gewinde

Lagereinsätze mit Schleuderscheiben der Seiten 89 und 90 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Nachsetzzeichen 'FS', z. B. SNP2SFS.

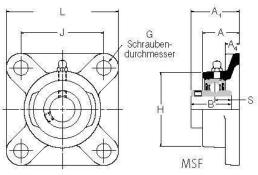

Lagereinsätze mit Dreifachdichtungen der Seiten 86 bis 88 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Vorsetzzeichen 'T', z. B. TSNP25.

р—			4	Abmessun	gen (mm		Tragza	Tragzahlen					
CNP	A	A1	В	B1	82	83	5	s1	s2	dynamisch Cr N	statisch Cor N	grenze min ⁻¹	(ca.) kg
%-16UNC	32,0	22,5	31,00	25,80	31,03	43,73	12,73	7,53	17,13	12800	6650	6700	0,9
%-16UNC	36,0	25,0	34,10	27,30	31,03	44,43	14,33	7,53	17,53	14000	7880	6250	1,2
7/16-14UNC	40,0	26,5	38,10	31,20	35,73	48,43	15,93	9,03	18,33	19500	11300	5300	1,8
⅓-13UNC	45,0	30,0	42,90	34,90	38,93	51,13	17,53	9,53	18,83	25700	15300	4500	2,4
⅓-13UNC	47,0	32,0	49,20	41,20	43,73	56,33	19,03	11,03	21,43	32500	19900	4000	2,8
½-13UNC	48,0	33,0	49,20	41,20	43,73	56,33	19,04	11,04	21,43	32500	20500	3700	3,5
%-11UNC	54,0	34,0	51,60	43,50	43,73	62,73	19,04	11,04	24,64	35000	23200	3400	3,3
%-11UNC	60,0	41,5	55,60	(#f)	Θ.	71,42	22,24		27,84	43500	29200	3100	4,0
%-11UNC	60,0	41,5	65,10	323	140	77,84	25,44	72E	31,04	48000	33000	2800	4,6

Self-Lube-Flanschlager aus Gusseisen Reihe SF

Wellendu	ırchmesser		Kurz	zeichen		Lager-	Guss-			Abmessun	gen (m	m)	
mm	Zoll					einsatz	gruppe	Ĺ	Н	j	G	A	A1
12		SF12		SF12EC		1017	1	76,2	52,5	54,00	10	24,6	32,87
15		SF15		SF15EC		1017		10,2	32,3	34,00	10	24,0	32,01
16		SF16		SF16EC									
17		SF17		SF17EC									
TZ:	1/2	SF1/2		SF ½EC									
	5/8	SF5/8		SF%EC									
20	>10	SF20	SF20A	SF20EC	SF20DEC	1020	2	85,7	60,3	63,50	10	27,8	37,26
Lo	3/4	SF3/4	SF3/4A	SF3/4EC	SF¾DEC	1020	-	02,1	00,5	05,50	10	21,50	31,10
25	***	SF25	SF25A	SF25EC	SF25DEC	1025	3	95,3	68,0	70,00	10	28,6	38,84
	7/8	SF7/8	312371	SF %EC	SF%DEC	1025	- 7	, 5,5	00,0	7 0,00	10	20,0	30,01
	15/16	SF15/16		SF 15/16EC	SF15/16DEC								
	1	SF1	SF1A	SF30EC	SF1DEC								
30		SF30	SF30A	SF1EC	SF30DEC	1030	4	108,0	82,6	82,50	10	29,8	42,21
	11/8	SF11/8		SF11/8EC	SF1%DEC			,				,-	
	1₹16	SF13/16		SF13/16EC	SF13/16DEC								
	11/4	SF1¼R	SF1¼AR	SF11/4 ECR	SF1¼DECR								
35	4.77	SF35	SF35A	SF35EC	SF35DEC	1035	5	117,5	95,3	92,00	12	31,4	46,41
15.51	11/4	SF11/4	SF1¼A	SF11/4EC	SF1¼DEC	1000	17.0	1112	2.77	72,00	160	-01	10211
	13/8	SF13/8	311144	SF1%EC	SF1%DEC								
	17/16	SF17/16		SF17/16EC	SF17/16DEC								
40	1,1.00	SF40	SF40A	SF40EC	SF40DEC	1040	6	130,2	101,6	101,50	12	34,9	54,18
	11/2	SF11/2	SF11/2A	SF11/2EC	SF1½DEC	10.10		15 0,2	10 1,0	10 ,50	12	5.07	5.0.10
45	./.	SF45	SF45A	SF45EC	SF45DEC	1045	7	136,5	111,1	105,00	16	35,3	54,18
	1%	SF1%	31.131.	SF1%EC	SF1%DEC	10.12		10.0,2	,.	102,00	,		21,10
	111/16	SF111/16		SF111/16EC	SF111/16DEC								
	13/4	SF13/4	SF1¾A	SF13/4EC	SF1¾DEC								
50		SF50	SF50A	SF50EC	SF50DEC	1050	8	142,9	115,9	111,00	16	39,7	60,53
	17/8	SF1%		SF1%EC	SF1%DEC	7/03/17/27	- 10	000072	20.000000	07/07/03/			VELVERANDOV.
	1 ¹ 5⁄16	SF115/16		SF115/16EC	SF115/16DEC								
	2	SF2R											
55		SF55			SF55DEC	1055	9	161,9	127,0	130,00	16	43,7	64,31
	2	SF2			SF2DEC								
	21/8	SF21/8			SF2%DEC								
	23/16	SF23/16			SF2¾16DEC								
60		SF60			SF60DEC	1060	10	174,5	138,1	143,00	16	47,6	73,69
	21/4	SF21/4			SF21/4 DEC	. GOLDENIN	0.037						
	23/8	SF2%			SF2%DEC								
	27/16	SF27/16			SF27/16DEC								
65		SF65R				1065	10/65	174,5	149,5	143,00	16	47,6	73,69
	21/2	SF21/2			SF2½DEC		- 2						
65		SF65			SF65DEC	1070	11	187,5	155,5	149,22	16	47,6	77,72
70		SF70			SF70DEC		2007.0						
	2%	SF25/8			SF2%DEC								
	211/16	SF211/16			SF211/16DEC								
75		SF75			SF75DEC	1075	12	196,5	158,5	152,40	20	51,3	80,90
	23/4	SF23/4			SF2¾DEC								
	21/8	SF21/8			SF2%DEC								
	215/16	SF215/16			SF215/16DEC								
	3	SF3											

Lagereinsätze mit Schleuderscheiben der Seiten 89 und 90 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Nachsetzzeichen 'FS', z. B. SF25FS.

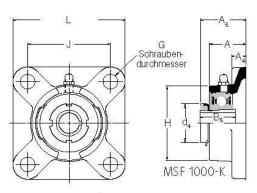

Lagereinsätze mit Dreifachdichtungen der Seiten 86 bis 88 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Vorsetzzeichen 'T', z. B. TSF25.

			ed.	Abmessur	gen (mm)				Tragzal	hlen	Drehzahl- grenze	Gewicht (ca.)
A2	А3	A4	В	B1	82	83	s	s 1	s2	dynamisch Cr N	statisch Cor N	min ⁻¹	kg
39,01	72	9,5	27,38	52/8	28,63	꼰	11,58	6,53	7/2	9550	4800	7000	0,5
42,42	45,54	11,1	31,00	25,80	31,03	43,73	12,73	7,53	17,13	12800	6650	6700	0,7
42,42	45,95	11,1	34,10	27,30	31,03	44,43	14,33	7,53	17,53	14000	7880	6250	1,0
46,66	50,90	12,7	38,10	31,20	35,73	48,43	15,93	9,03	18,33	19500	11300	5300	1,3
50,34	53,31	12,7	42,90	34,90	38,93	51,13	17,53	9,53	18,83	25700	15300	4500	1.7
56,52	58,90	12,7	49,20	41,20	43,73	56,33	19,03	11,03	21,43	32500	19900	4000	2,2
56,62	58,90	14,3	49,20	41,20	43,73	56,33	19,03	11,03	21,43	32500	20500	3700	2,6
60,60	66,07	14,3	51,60	43,50	43,73	62,73	19,04	11,04	24,64	35000	23200	3400	2,8
2	74,57	17,5	55,60	27	12%	71,42	22,24	3	27,84	43500	29200	3100	4,0
÷	80,77	17,5	65,10	(#)	(S)	77,84	25,44	¥	31,04	48000	33000	2800	4,7
3	80,77	18,0	65,10	27	128	85,74	25,44	25	34,14	57500	40000	2600	4,7
#	84,86	18,0	74,60	(=)	98	85,74	30,24	÷	34,14	61000	45000	2450	6,8
72	91,21	23,0	77,80	17/2	源後	92,14	33,34	2	37,34	66000	49500	2300	8,6

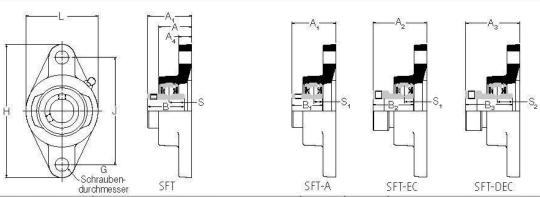
Self-Lube-Flanschlager aus Gusseisen Reihe MSF

Vellendu	rchmesser	Kurzzeichen	Lager- einsatz	Guss- gruppe	1	Abmessungen (mm)
mm	Zoll			5	L	н	J
25		MSF25	1030	1	108,0	82,6	82,50
	1	MSF1					
30		MSF30	1035	2	117,5	95,3	92,00
	13/16	MSF1¾16					
	11/4	MSF1¼					
35	Ulad SV	MSF35	1040	3	130,2	101,6	101,50
	13/8	MSF13/8					
	17/16	MSF17/16					
40		MSF40	1045	4	136,5	111,1	105,00
	11/2	MSF1½					
45		MSF45	1050	5	142,9	115,9	111,00
	111/16	MSF111/16	~~~				
	13/4	MSF1¾					
50		MSF50	1055	6	161,9	127,0	130,00
	17/8	MSF1%					
	115/16	MSF115/16					
	2	MSF2					
55		MSF55	1060	7	174,5	138,1	143,00
	2¾16	MSF23/16					
	21/4	MSF21/4					
60		MSF60	1070	8	187,6	155,5	149,22
	27/16	MSF27/16					
	21/2	MSF21/2					
65	7.17.70.07.	MSF65	1075	9	196,5	158,5	152,40
70		MSF70					
	211/16	MSF211/16					
	23/4	MSF2¾		AVAILE .			
75		MSF75	1080	10	196,5	173,5	152,40
	215/16	MSF215/16					
	3	MSF3					
80		MSF80	1085	11	213,5	184,0	171,45
	33/16	MSF33/16					
	31/4	MSF31/4	NO. NO.	5508			
85		MSF85	1090	12	213,5	196,5	171,45
90		MSF90					
	37/16	MSF37/16					
	31/2	MSF3½					
95		MSF95	3095	13	267,5	235,5	211,12
100		MSF100					
	315/16	MSF315/16					
	4	MSF4					

Lagereinsätze mit Schleuderscheiben der Seiten 89 und 90 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Nachsetzzeichen 'FS', z. B. MSF35FS.


Lagereinsätze mit Dreifachdichtungen der Seiten 86 bis 88 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Vorsetzzeichen 'T', z. B. TMSF35.

		Abmessun	gen (mm)			Tragza	hlen	Drehzahl- grenze	Gewich (ca.)
G	A	A1	A4	8	s	dynamisch Cr N	statisch Cor N	min ⁻¹	kg
10	29,8	42,21	12,7	38,10	15,93	19500	11300	5300	1,3
12	31,4	46,41	12,7	42,90	17,53	25700	15300	4500	1,7
12	34,9	54,18	12,7	49,20	19,03	32500	19900	4000	2,2
16	35,3	54,18	14,3	49,20	19,03	32500	20500	3700	2,6
16	39,7	60,53	14,3	51,60	19,04	35000	23200	3400	2,8
16	43,7	64,31	17,5	55,60	22,24	43500	29200	3100	4,0
16	47,6	73,69	17,5	65,10	25,44	48000	33000	2800	4,7
16	47,6	77,20	18,0	74,60	30,24	61000	45000	2450	6,8
20	51,3	80,90	23,0	77,80	33,34	66000	49500	2300	8,6
20	55,0	88,87	23,0	82,60	33,34	71500	54500	2150	9,3
20	54,3	89,64	26,0	85,70	34,15	83000	64000	2000	11,1
20	61,7	100,76	26,0	96,00	39,74	96000	71500	1900	13,2
24	83,5	126,95	32,0	117,48	49,31	157000	122000	1600	24,7


Self-Lube-Flanschlager aus Gusseisen mit Spannhülsen Reihe MSF 1000-K

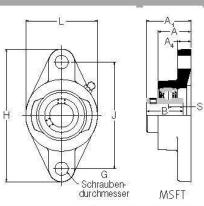
Wellendu	ırchmesser	Kurzzeichen	Nur Hülse, Mutter und Unterlegscheibe	Einheit ohne Hülse, Mutter und Unterlegscheibe	Lager- einsatz	Guss- gruppe	Ab	messungen (m	m)
mm	Zoll			-			L	н	J
20		MSF1025-20K	H305	MSF1025K	1025	SF3	95,3	68,0	70,0
	3/4	MSF1025-34K	HE3 053/4						
25		MSF1030-25K	H306	MSF1030K	1030	1	108,0	82,6	82,5
	15/16	MSF1030-15/16K	HE3 06-15/16						
	1	MSF1030-1K	HE306-1						
30		MSF1035-30K	H307	MSF1035K	1035	2	117,5	95,3	92,0
	11/8	MSF1035-1%K	HE3 07-11/8						
	13/16	MSF1035-1∛16K	HE3 07-1¾16						
35		MSF1040-35K	H308	MSF1040K	1040	3	130,2	101,6	101,5
	11/4	MSF1040-11/4K	HE3 08-11/4						
	13/8	MSF1040-1%K	HE3 08-1%						
40		MSF1045-40K	H309	MSF1045K	1045	4	136,5	111,1	105,0
	17/16	MSF1045-17/16K	HE3 09-17/16						
	11/2	MSF1045-11/2K	HE309-11/2						
45		MSF1050-45K	H310	MSF1050K	1050	5	142,9	115,9	111,0
	111/16	MSF1050-111/16K	HE310-111/16						
	13/4	MSF1050-1%K	HE310-13/4						
50		MSF1055-50K	H311	MSF1055K	1055	6	161,9	127,0	130,0
	1¹5⁄16	MSF1055-115/16K	HE311-115/16						
	2	MSF1055-2K	HE311-2						

		Abmessur	gen (mm)			Tragza	hlen	Drehzahl- grenze	Gewicht (ca.)
G	A	A4	A5	85	d4	dynamisch Cr N	statisch Cor N	min ⁻¹	kg
10	28,6	11,1	36,5	29,0	38,0	14000	7880	6250	1,0
10	29,8	12,7	38,0	31,0	45,0	19500	11300	5300	1,3
12	31,4	12,7	40,5	35,0	52,0	25700	15300	4500	1,7
12	34,9	12,7	45,0	36,0	58,0	32500	19900	4000	2,2
16	35,3	14,3	46,5	39,0	65,0	32500	20500	3700	2,6
16	39,7	14,3	52,0	42,0	70,0	35000	23200	3400	2,8
16	43,7	17,5	55,5	45,0	75,0	43500	29200	3100	4,0

Self-Lube-Flanschlager aus Gusseisen Reihe SFT

		chmesser	SFT			SFT-A		SFT-EC		SFT-DE	Σ.		
Wellendu	ırchmesser		Kurz	zeichen		Lager- einsatz	Guss- gruppe		į	Abmessun	gen (m	m)	
mm	Zoll						511-	L	Н	J	G	A	A1
12		SF T12		SFT12EC		1017	1	52,5	98,5	76,50	10	24,6	32,87
15		SFT15		SFT15EC				1					
16		SFT16		SFT16EC									
17		SFT17		SFT17A									
	1/2	SFT½		SFT1/2EC									
	5/8	SFT%		SFT%EC									
20		SFT20	SFT20A	SFT20EC	SFT20DEC	1020	2	60,3	111,9	90,00	10	27,8	37,26
	3/4	SFT3/4	SFT3/4A	SFT%EC	SFT%DEC								
25		SFT25	SFT25A	SFT25EC	SFT25DEC	1025	3	70,0	125,5	99,00	10	28,6	38,84
	7/8	SFT%		SFT%EC	SFT%DEC								
	¹⁵ ⁄16	SFT15/16		SFT15/16EC	SFT15/16DEC								
	1	SFT1	SFT1A	SFT1EC	SFT1DEC								
30		SFT30	SFT30A	SFT30EC	SFT3 ODEC	1030	4	82,6	141,3	116,50	10	29,8	42,21
	11//8	SFT11/8		SFT1%EC	SFT1%DEC								
	13/16	SFT13/16		SFT1¾6EC	SFT13/46DEC								
	11/4	SFT1¼R	SFT1¼AR	SFT1¼ECR	SFT11/4DECR								
35		SFT35	SFT35A	SFT35EC	SFT35DEC	1035	5	95,5	155,5	130,00	12	32,0	46,41
	11/4	SF T11/4	SFT1¼A	SFT1¼EC	SFT1¼DEC								
	13/8	SFT13/8		SFT1%EC	SFT1%DEC								
	17/16	SFT17/16		SFT17/16EC	SFT17/16DEC		2/6	**************************************					
40		SFT40	SFT40A	SFT40EC	SFT40DEC	1040	6	101,6	171,4	143,50	12	34,9	54,18
	11/2	SFT1½	SFT1½A	SFT11/2EC	SFT1½DEC	No. 100	5000						
45		SFT45	SFT45A	SFT45EC	SFT45DEC	1045	7	111,1	179,4	148,50	16	35,3	54,18
	1%	SFT1%		SFT1%EC	SFT1%DEC								
	111/16	SFT1111/16			SFT1111/16DEC								
	13/4	SFT13/4	SFT1¾A	SFT1¾EC	SFT1%DEC								
50		SF150	SFT50A	SFT50EC	SFT50DEC	1050	8	115,9	188,9	157,00	16	39,7	60,53
	17/8	SFT17/8		SFT1%EC	SFT1%DEC								
	1 ¹⁵ / ₁₆	SFT115/16		SFI1115/16EC	SFT115/16DEC								
	2	SFT2R					7100			18 2 18 10 10 10 10 10 10 10 10 10 10 10 10 10	0404	AND 1800	horas eran
55		SF155			SFT55DEC	1055	9	127,0	215,9	184,00	16	43,7	64,31
	2	SFT2			SFT2DEC								
	21/8	SFT21/8			SFT2%DEC			1					
	23/16	SFT23/16			SFT2%dEC	40.40	40	470.4	225.5	202.00	4.2	47 -	
60	24	SFT60			SFT60DEC	1060	10	138,1	235,0	202,00	16	47,6	73,69
	21/4	SFT21/4			SFT21/4DEC								
	23/8	SFT2%			SFT2%DEC								
	27/16	SFT27/16			SFT27/16DEC								

Lagereinsätze mit Schleuderscheiben der Seiten 89 und 90 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Nachsetzzeichen 'FS', z. B. SFT25FS.

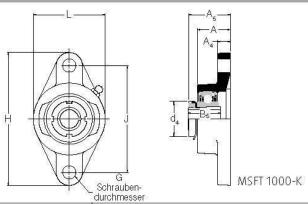

Lagereinsätze mit Dreifachdichtungen der Seiten 86 bis 88 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Vorsetzzeichen 'T', z. B. TSFT25.

	Abmessungen (mm)									Tragza	hlen	Drehzahl- grenze	Gewicht (ca.)
A2	А3	А4	В	B1	82	B3	S	s1	s2	dynamisch Cr N	statisch Cor N	min ⁻¹	kg
39,01	(1113)	9,5	27,38	Ä	28,63	3843	11,58	6,53	Ħ	9550	4800	7000	0,4
42,42	45,54	11,1	31,00	25,80	31,03	43,73	12,73	7,53	17,13	12800	6650	6700	0,6
42,42	45,95	11,1	34,10	27,30	31,03	44,43	14,33	7,53	17,53	14000	7880	6520	0,9
46,66	50,09	12,7	38,10	31,20	35,73	48,43	15,93	9,03	18,33	19500	11300	5300	1,1
50,34	53,34	12,7	42,90	34,90	38,93	51,13	17,53	9,53	18,83	25700	15300	4500	14
56,62	58,90	12,7	49,20	41,20	43,73	56,33	19,03	11,03	21,43	32500	19900	4000	1,9
56,62	58,90	14,3	49,20	41,20	43,73	56,33	19,04	11,03	21,43	32500	20500	3700	2,2
60,60	66,07	14,3	51,60	43,50	43,73	62,73	19,04	11,04	24,64	35000	23200	3400	2,5
8 7 0	74,57	17,5	55,60	퀹	<u> 977</u> 0	71,42	22,24	Æ	27,84	43500	29200	3100	3,5
-	80,77	17,5	65,10	5	Æ	77,84	25,44	ā	31,04	48000	33000	2800	4,3

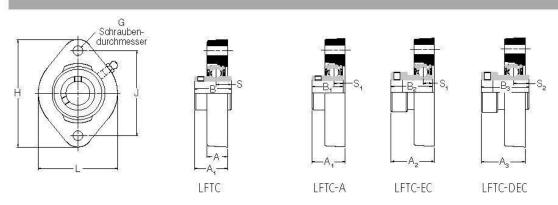
Self-Lube-Flanschlager aus Gusseisen Reihe MSFT

Wellendu	urchmesser	Kurzzeichen	Lager- einsatz	Guss- gruppe	i	Abmessungen (mm)
mm	Zoll			groppe	L	н	J
25		MSFT25	1030	1	82,6	141,3	116,50
	1	MSFT1					
30		MSFT30	1035	2	95,5	155,5	130,00
	13/16	MSFT13/16	V. (5.55,255)				
	11/4	MSFT1¼					
35		MSFT35	1040	3	101,6	171,4	143,50
	13/8	MSFT1%					
	17/16	MSF T17/16					
40		MSFT40	1045	4	111,1	179,4	148,50
	11/2	MSFT11/2					
45		MSFT45	1050	5	115,9	188,9	157,00
	111/16	MSF T1111/16					
	13/4	MSF T13/4					
50		MSFT50	1055	6	127,0	215,9	184,00
	17/8	MSF T17/8					
	1 ¹⁵ / ₁₆	MSF T115/16					
	2	MSFT2					
55		MSFT55	1060	7	138,1	235,0	202,00
	23/16	MSFT23/16					

Lagereinsätze mit Schleuderscheiben der Seiten 89 und 90 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Nachsetzzeichen 'FS', z. B. MSFT40FS.


Lagereinsätze mit Dreifachdichtungen der Seiten 86 bis 88 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Vorsetzzeichen 'T', z. B. TMSFT40.

		Abmessun	gen (mm)				Drehzahl- grenze	Gewicht (ca.)	
G	A	A1	А4	B	s	dynamisch Cr N	statisch Cor N	min ⁻¹	kg
10	29,8	42,21	12,7	38,10	15,93	19500	11300	5300	1,1
12	32,0	46,41	12,7	42,90	17,53	25700	15300	4500	1,4
12	34,9	54,18	12,7	49,20	19,03	32500	19900	4000	1,9
16	35,3	54,18	14,3	49,20	19,04	32500	20500	3700	2,2
16	39,7	60,53	14,3	51,60	19,04	35000	23200	3400	2,5
16	43,7	64,31	17,5	55,60	22,24	43500	29200	3100	3,5
16	47,6	73,69	17,5	65,10	25,44	48000	33000	2800	4,3


Self-Lube-Flanschlager aus Gusseisen mit Spannhülsen Reihe MSFT 1000-K

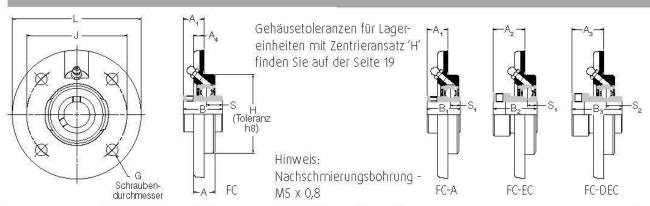
Wellend	ırchmesser	Kurzzeichen	Nur Hülse, Mutter und Unterlegscheibe	Einheit ohne Hülse, Mutter und Unterlegscheibe	Lager- einsatz	Grabbe Grass-	Ab	messungen (m	m)
mm	Zoll			· · · · · · · · · · · · · · · · · · ·			L	н	J
20		MSFT1025-20K	H3 05	MSFT1025K	1025	SFT3	68,3	123,8	99,0
	3/4	MSFT1025-3/4K	HE305-3/4						
25		MSFT1030-25K	H306	MSFT1030K	1030	1	82,6	141,3	116,5
	15∕16	MSFT1030-15/16K	HE306-15/16						
	1	MSFT1030-1K	HE306-1						
30		MSFT1035-30K	H307	MSFT1035K	1035	2	95,5	155,5	130,0
	11/6	MSFT1035-11/8 K	HE307-11/8						
	13/16	MSFT1035-13/16K	HE307-13/16						
35		MSFT1040-35K	H308	MSFT1040K	1040	3	101,6	171,4	143,5
	11/4	MSFT1040-11/4K	HE308-11/4						
	13/8	MSFT1040-1%K	HE308-1%						
40		MSFT1045-40K	H309	MSFT1045K	1045	4	111,1	179,4	148,5
	17/16	MSFT1045-17/16K	HE309-17/16						
	11/2	MSFT1045-11/2K	HE309-11/2						
45		MSFT1050-45K	H310	MSFT1050K	1050	5	115,9	188,9	157,0
	111/16	MSFT1050-111/16K	HE310-111/16						
	1¾	MSFT1050-1%K	HE310-13/4						
50		MSFT1055-50K	H311	MSFT1055K	1055	6	127,0	215,9	184,0
	1 ¹⁵ / ₁₆	MSFT1055-115/16K	HE311-115/16						
	2	MSFT1055-2K	HE311-2						

		Abmessur	igen (mm)			Tragzahlen		Drehzahl- grenze	Gewicht (ca.)
6	A	А4	A5	B 5	d4	dynamisch Cr N	statisch Cor N	min ⁻¹	kg
10	28,6	11,1	36,5	29,0	38,0	14000	7880	6250	0,9
10	29,8	12,7	38,0	31,0	45,0	19500	11300	5300	1,1
12	32,0	12,7	40,5	35,0	52,0	25700	15300	4500	1,4
12	34,9	12,7	45,0	36,0	58,0	32500	19900	4000	1,9
16	35,3	14,3	46,5	39,0	65,0	32500	20500	3700	2,2
16	39,7	14,3	52,0	42,0	70,0	35000	23200	3400	2,5
16	43,7	17,5	55,5	45,0	75,0	43500	29200	3100	3,5

Self-Lube-Flanschlager aus Gusseisen Reihe LFTC

Wellendu	urchmesser		Kurz	zzeichen		Lager- einsatz	Guss- gruppe		Abm	essungen ((mm)	
mm	Zoll						31-22-	ŗ	н	J	G	A
12		LFTC12		LFTC12EC		1017	1	58,5	81,0	63,5	6,0	15,0
15		LFTC15		LFTC15EC								
16		LFTC16		LFTC16EC								
17		LFTC17		LFTC17EC								
	1/2	LFTC1/2		LFTC1/2EC			5					
	5/8	LFTC%		LFTC%EC								
20		LFTC20	LFTC20A	LFTC20EC	LFTC20DEC	1020	2	66,5	90,5	71,5	8,0	17,0
	3/4	LFTC3/4	LFTC3/4A	LFTC%EC	LFTC3/4DEC							
25		LFTC25	LFTC25A	LFTC25EC	LFTC25DEC	1025	3	71,0	96,0	76,0	8,0	17,5
	7/8	LFTC%		LFTC%EC	LFTC%DEC							
	¹⁵ ⁄16	LFTC15/16		LFTC15/16EC	LFTC15/16DEC							
	1	LFTC1	LFTC1A	LFTC1EC	LFTC1DEC							
30		LFTC30	LFTC30A	LFTC30EC	LFTC30DEC	1030	4	84,0	112,0	90,5	10,0	20,5
	11/8	LFTC11/8		LFTC1%EC	LFTC1%DEC							
	13/16	LFTC13/16		LFTC1¾6EC	LFTC13/16DEC							
	11/4	LFTC1¼	LFTC1¼A	LFTC1¼EC	LFTC1¼DEC							
35		LFTC35	LFTC 35A	LFTC35EC	LFTC35DEC	1035	5	93,0	125,0	100,0	10,0	22,0
	11/4	LFTC1¼L	LFTC1¼AL	LFTC1¼ECL	LFTC1¼DECL							
	13/8	LFTC1%		LFTC1%EC	LFTC1%DEC							
	17/16	LFTC17/16		LFTC17/16EC	LFTC17/16DEC							

Lagereinsätze mit Schleuderscheiben der Seiten 89 und 90 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Nachsetzzeichen 'FS', z. B. LFTC % FS.

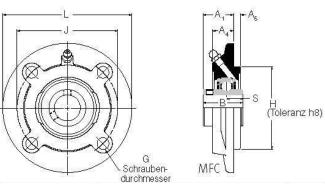

Lagereinsätze mit Dreifachdichtungen der Seiten 86 bis 88 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Vorsetzzeichen 'T', z. B. TLFTC 1/8.

				Abm	essungen	(mm)				Tragza	hlen	Drehzahl- grenze	Gewicht (ca.)
A1	A2	А3	В	B1	82	B3	S	s 1	s 2	dynamisch Cr N	statisch Cor N	min ⁻¹	kg
24,27	30,43	-	27,38	::=::	28,63	×	11,58	6,53	H	9550	4800	7000	0,3
27,76	32,92	36,04	31,00	25,80	31,03	43,73	12,73	7,53	17,13	12800	6650	6700	0,4
29,24	32,82	36,35	34,00	27,30	31,03	44,43	14,33	7,53	17,53	14000	7880	6250	0,5
33,62	38,07	41,50	38,10	31,20	35,73	48,43	15,93	9,03	18,33	19500	11300	5300	0,8
37,80	41,74	44,71	42,90	34,90	38,93	51,13	17,53	9,53	18,83	25700	15300	4500	1,1
										77			

Self-Lube-Flanschlager mit Zentriereinsatz aus Gusseisen Reihe FC

Wellendu	ırchmesser		Kurz	zeichen		Lager- einsatz	Guss- gruppe		ì	Abmessur	igen (m	m)	
mm	Zoll					1921SERIOLARIOS II		L	Н	J	G	A	A1
20		FC20	FC20A	FC20EC	FC20DEC	1020	2	100,0	62,0	78,0	8	17,0	16,29
	3/4	FC¾	FC3/4A	FC3/4EC	FC3/4DEC								
25	200	FC25	FC25A	FC25EC	FC25DEC	1025	3	115,0	70,0	90,0	8	19,0	17,34
	7/8	FC%		FC%EC	FC%DEC								
	¹⁵ /16	FC15/16		FC15/16EC	FC15/16DEC								
	1	FC1	FC1A	FC1EC	FC1DEC								
30		FC30	FC30A	FC30EC	FC30DEC	1030	4	125,0	80,0	100,0	10	20,5	20,22
	11/8	FC11/8		FC1%C	FC1%DEC								
	13/16	FC13/16		FC1¾16EC	FC1¾6DEC								
	11/4	FC1¼R	FC1¼AR	FC11/4ECR	FC11/4DECR								
35		FC35	FC35A	FC35EC	FC35DEC	1035	5	135,0	90,0	110,0	10	20,5	24,40
	11/4	FC11/4	FC1¼A	FC11/4EC	FC11/4DEC								
	13/8	FC13/8		FC1%EC	FC1%DEC								
	17/16	FC17/16		FC17/16EC	FC17/16DEC								
40		FC40	FC40A	FC40EC	FC40DEC	1040	6	145,0	100,0	120,0	10	23,0	29,18
	11/2	FC11/2	FC11/2A	FC11/2EC	FC11/2DEC								
45		FC45	FC45A	FC45EC	FC45DEC	1045	7	155,0	105,0	130,0	12	25,0	28,18
	15/8	FC15/s		FC1%EC	FC1%DEC								
	111/16	FC111/16		FC111/16EC	FC111/16DEC								
	13/4	FC13/4	FC13/4A	FC1¾EC	FC1%DEC								
50		FC50	FC50A	FC50EC	FC50DEC	1050	8	165,0	110,0	135,0	12	25,0	31,52
	17/8	FC1%		FC1%EC	FC1%DEC								
	115/16	FC115/16		FC115/16EC	FC115/16DEC								
	2	FC2R											
55		FC55			FC55DEC	1055	9	185,0	125,0	150,0	16	27,5	33,30
	2	FC2			FC2DEC								
	21/8	FC21/8			FC2%DEC								
	2¾16	FC23/16			FC2¾6DEC								
60		FC60			FC60DEC	1060	10	195,0	135,0	160,0	16	16 29,0	38,65
	21/4	FC21/4			FC21/4DEC								
	23/8	FC2%			FC2%DEC								
	27/16	FC27/16			FC27/16DEC								

Lagereinsätze mit Schleuderscheiben der Seiten 89 und 90 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Nachsetzzeichen 'FS', z. B. FC40FS.


Lagereinsätze mit Dreifachdichtungen der Seiten 86 bis 88 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Vorsetzzeichen 'T', z. B. TFC40.

			i	Abmessur	gen (mm)				Tragza	hlen	Drehzahl- grenze	Gewicht (ca.)
A2	А3	A4	8	B1	82	83	s	s 1	s2	dynamisch Cr N	statisch Cor N	min ⁻¹	kg
21,45	24,57	8,00	31,00	25,80	31,03	43,73	12,73	7,53	17,13	12800	6650	6700	0,7
20,86	24,41	9,00	34,10	27,30	31,03	44,43	14,33	7,53	17,53	14000	7880	6250	0,9
24,64	28,10	9,50	38,10	31,20	35,73	48,43	15,93	9,03	18,33	19500	11300	5300	1,1
28,33	31,29	10,00	42,90	34,90	38,93	51,13	17,53	9,53	18,83	25700	15300	4500	1,5
31,59	33,88	11,50	49,20	41,20	43,73	56,33	19,03	11,03	21,43	32500	19900	4000	1,8
30,59	32,88	12,00	49,20	41,20	43,73	56,33	19,04	11,03	21,43	32500	20500	3700	2,2
31,63	37,14	13,00	51,60	43,50	43,73	62,73	19,04	11,04	24,64	35000	23200	3400	2,8
	43,72	15,00	55,60	#	7 4	71,42	22,24	Δ.	27,84	43500	29200	3100	4,0
19 2 (45,89	16,00	65,10	*	120	77,84	25,44	=	31,04	48000	33000	2800	4,7

Self-Lube-Flanschlager mit Zentriereinsatz aus Gusseisen Reihe MFC

Gehäusetoleranzen für Lagereinheiten mit Zentrieransatz 'H' finden Sie auf der Seite 19

Wellendurchmesser		Kurzzeichen	Lager- einsatz	Guss- gruppe	Abmessungen (mm)		
mm	Zoll				L	Н	J
25		MFC25	1030	1	111,1	76,2	92,1
	1	MFC1					
	11/4	MFC1¼R					
30		MFC30	1035	2	127,0	85,7	104,8
	13/16	MFC13/16					
	11/4	MFC1¼					
35		MFC35	1040	3	133,4	92,1	111,1
40		MFC40					
	13/8	MFC1%		i i			
	17/16	MFC17/16					
	11/2	MFC11/2	ĺ	i i			
45		MFC45	1050	4	155,6	108,0	130,2
	111/16	MFC111/16					
	13/4	MFC1¾					
	2	MFC2R					
50		MFC50	1055	5	161,9	114,3	136,5
	1∛8	MFC1%					
	115/16	MFC115/16					
	2	MFC2					
55		MFC55	1060	6	181,0	127,0	152,4
	23/16	MFC23/16					
	21/4	MFC21/4					
60		MFC60	1070	7	193,7	139,7	165,1
65		MFC65R					
	27/16	MFC27/16					
	21/2	MFC21/2					
65		MFC65	1075	8	222,2	161,9	190,5
70		MFC70					
	211/16	MFC211/16					
	23/4	MFC2¾					
75		MFC75	1080	9	222,2	161,9	190,5
80		MFC80					
	215/16	MFC215/16					
	3	MFC3					
	31/4	MFC3¼					
85		MFC85	1090	10	260,4	187,3	219,1
90		MFC90					
	37/16	MFC37/16					
	31/2	MFC31/2					
95		MFC95	3095	11	298,4	228,6	260,4
100		MFC100					
	315/16	MFC3 ¹⁵ /16					
	4	MFC4					

Bitte Verfügbarkeit prüfen

52

Lagereinsätze mit Schleuderscheiben der Seiten 89 und 90 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Nachsetzzeichen 'FS', z. B. MFC30FS.

Lagereinsätze mit Dreifachdichtungen der Seiten 86 bis 88 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Vorsetzzeichen 'T', z. B. TMFC30.

		Abmessun	gen (mm)			Tragza	hlen	Drehzahl- grenze	Gewicht (ca.)
G	A1	A4	A5	8	s	dynamisch Cr N	statisch Cor N	min ⁻¹	kg
8	33,32	21,0	6,4	38,10	15,93	19500	11300	5300	1,4
10	33,32	19,0	6,4	42,90	17,53	25700	15300	4500	1,5
10	38,10	19,0	6,4	49,20	19,03	32500	19900	4000	1,9
10	39,67	19,0	6,4	51,60	19,04	35000	23200	3400	2,7
10	39, 67	19,0	6,4	55,60	22,24	43500	29200	3100	3,0
12	42,85	15,9	9,5	65,10	25,44	48000	33000	2800	3,4
12	46,02	15,9	12,7	74,60	30,24	61000	45000	2450	4,5
16	50,80	21,0	12,7	77,80	33,34	66000	49500	2300	5,9
16	50,80	16,7	12,7	82,60	33,34	71500	54500	2150	5,4
20	67,46	29,4	12,7	96,00	39,74	96000	71500	1900	9,8
20	88,90	46,0	12,7	117,48	49,31	157000	122000	1600	17,7

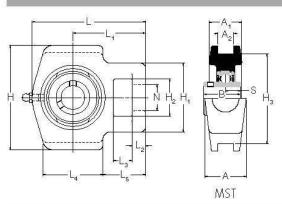
Self-Lube-Spannlager aus Gusseisen Reihe ST

				ST		ST-A		ST-EC		ST-D	EC			
Wellendu	ırchmesser		Kurz	zeichen		Lager- einsatz	Guss- gruppe			Abmes	ssunger	(mm)		
mm	Zoll						1000	L	L1	L2	B	L4	L5	Н
20		ST20	ST20A	ST20EC	ST20DEC	1020	2	96,5	62,0	11,5	16,0	50,5	36,5	88,5
	3/4	ST3/4	ST3/4A	ST3/4EC	ST3/4DEC		33000							
25		ST25	ST25A	ST25EC	ST25DEC	1025	3	98,0	62,0	11,5	16,0	50,5	36,5	88,5
	7/8	ST1/8		ST%EC	ST%DEC									
	15/16	ST15/16		ST15/16EC	ST15/16DEC									
	1	ST1	ST1A	ST1EC	ST1DEC									
30		ST30	ST30A	ST3 OEC	ST30DEC	1030	4	115,5	71,7	12,5	16,5	64,5	43,0	101,5
	11/8	ST11/8		ST1%EC	ST1%DEC			10,000						
	13/16	ST13/16		ST1¾6EC	ST13/16DEC									
	11/4	ST1¼R	ST1¼AR	ST11/4ECR	ST1%DECR									
35		ST35	ST35A	ST35EC	ST35DEC	1035	5	124,0	75,5	12,5	16,5	64,5	43,0	101,5
	11/4	ST11/4	ST1¼A	ST11/4EC	ST1¼DEC									
	13/8	ST13/8		ST1%EC	ST1%DEC									
	17/16	ST17/16		ST17/16EC	ST17/16DEC									
40		ST40	ST40A	ST40EC	ST40DEC	1040	6	143,5	89,2	15,5	20,5	81,5	50,5	118,0
	11/2	ST11/2	ST11/2A	ST11/2EC	ST11/2DEC									
45		ST45	ST45A	ST45EC	ST45DEC	1045	7	147,0	89,2	15,5	20,5	81,5	50,5	118,0
	15/8	ST1%		ST1%EC	ST1%DEC									
	111/16	ST111/16		ST111/16EC	ST111/16DEC									
	13/4	ST13/4	ST13/4	ST13/4EC	ST1%DEC									
50		ST50	ST50	ST5 OEC	ST50DEC	1050	8	151,0	90,5	15,5	20,5	81,5	50,5	118,0
	17∕8	ST1%		ST1%EC	ST1%DEC	-50000000	1555.01							
	1 ¹ 5⁄16	ST115/16		ST115/16EC	ST115/16DEC									
	2	ST2R												
55		ST55			ST55DEC	1055	9	182,0	114,0	19,0	32,0	97,5	70,0	146,0
	2	ST2			ST2DEC									
	21/8	ST21/8			ST2%DEC									
	2¾16	ST23/16			ST23/16DEC									
60		ST60			ST60DEC	1060	10	192,0	119,0	19,0	32,0	97,5	70,0	146,0
	21/4	ST21/4			ST21/4DEC									
	23/8	ST23/8			ST2%DEC									
	27/16	ST27/16			ST27/16DEC									
65		ST65			ST65DEC	1070	11	222,5	137,5	21,5	32,0	120,5	77,0	166,5
70		ST70			ST70DEC									
	21/2	ST21/2			ST21/2DEC									
	211/16	ST211/16			ST211/16DEC									
75		ST75			ST75DEC	1075	12	222,5	137,5	21,5	32,0	120,5	77,0	166,5
	23/4	ST23/4			ST2%DEC									
	27/8	ST27/8			ST2%DEC									
	2 ¹⁵ /16	ST215/16			ST215/16DEC									
80		ST80				1080	13	231,5	139,5	20,5	32,0	125,0	74,0	184,0
	3	ST3												
	3₹16	ST33/16				5000000								
85		ST85				1085	14	260,5	162,0	28,5	38,0	140,0	90,5	198,5
	31/4	ST31/4												
	33/8	ST33/8												
? <u></u>	31/16	ST37/16												

Bitte Verfügbarkeit prüfen

54

Lagereinsätze mit Schleuderscheiben der Seiten 89 und 90 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Nachsetzzeichen 'FS', z. B. ST4SFS.


Lagereinsätze mit Dreifachdichtungen der Seiten 86 bis 88 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Vorsetzzeichen 'T', z. B. TST45.

					Ab	messur	igen (n	nm)						Tragza	hlen	Drehzahl- grenze	Gewicht (ca.)
H1	H2	Н3	N	A	A1	A2	В	81	82	B3	s	s 1	s2	dynamisch Cr N	statisch Cor N	min ⁻¹	kg
58,5	32,0	76,0	22,5	36,0	27,5	13,50	31,00	25,80	31,03	43,73	12,73	7,53	17,13	12800	6650	6700	0,8
58,5	32,0	76,0	22,5	36,0	27,5	13,50	34,10	27,30	31,03	44,43	14,33	7,53	17,53	14000	7880	6250	1,0
64,5	37,5	89,0	22,5	36,5	30,0	13,50	38,10	31,20	35,73	48,43	15,93	9,03	18,33	19500	11300	5300	1,6
64,5	37,5	89,0	22,5	36,5	30,0	13,50	42,90	34,90	38,93	51,13	17,53	9,53	18,83	25700	15300	4500	1,6
82,5	49,5	101,0	29,0	49,5	37,0	17,50	49,20	41,20	43,73	56,33	19,03	11,03	21,43	32500	19900	4000	2,7
82,5	49,5	101,0	29,0	49,5	37,0	17,50	49,20	41,20	43,73	56,33	19,04	11,03	21,43	32500	20500	3700	2,8
82,5	49,5	101,0	29,0	49,5	37,0	17,50	51,60	43,50	43,73	62,73	19,04	11,03	24,64	35000	23200	3400	2,8
101,0	64,0	130,0	35,0	63,5	46,5	27,00	55,60	-	₹	71,42	22,24	÷	27,84	43500	29200	3100	4,2
101,0	64,0	130,0	35,0	63,5	46,5	27,00	65,10	87	-	77,84	25,44	₹.	31,04	48000	33000	2800	5,4
113,0	70,0	150,8	42,0	70,0	50,5	27,00	74,60	\ \	<u>.</u>	85,74	30,24	£	34,14	61000	45000	2450	7,9
113,0	70,0	150,8	42,0	70,0	50,5	27,00	77,80	22	¥	92,14	33,34	×	37,34	66000	49500	2300	8,4
113,0	70,0	165,1	42,0	70,0	54,0	27,00	82,60	.=	÷	7	33,34	-	-	71500	54500	2150	9,0
124,0	73,0	173,0	47,5	79,5	68,5	46,05	85,70	2 4 :	-	100	34,15	×	90	83000	64000	2000	13,7

Self-Lube-Spannlager aus Gusseisen Reihe MST

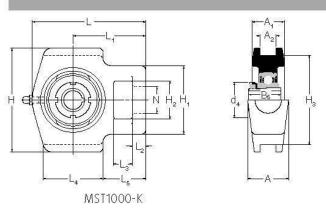
Wellend	urchmesser	Kurzzeichen	Lager- einsatz	Guss- gruppe		i	Abmessur	gen (mm)	
mm	Zoll			J. JPP	L	L1	12	В	L4	L5
25		MST25	1030	1	115,5	71,7	12,5	16,5	64,5	43,0
	4	MST1								
30		MST30	1035	2	124,0	75,5	12,5	16,5	64,5	43,0
	13/16	MST13/16	0.000	3310						
	11/4	88								
35		MST35	1040	3	143,5	89,2	15,5	20,5	81,5	50,5
	13/8	MST1%								
	17/16	MST17/16								
40		MST40	1045	4	147,0	89,2	15,5	20,5	81,5	50,5
	11/2	MST11/2								
45		MST45	1050	5	151,0	90,5	15,5	20,5	81,5	50,5
	111/16	MST111/16								
	13/4	MST1¾								
50		MST50	1055	6	182,0	114,0	19,0	32,0	97,5	70,0
	11//8	MST1%								
	1 ¹⁵ / ₁₆	MST115/16								
	2	22								
55	751721	MST55	1060	7	192,0	119,0	19,0	32,0	97,5	70,0
	23/16	MST2³/16								
	21/4	22								
60		MST60	1070	8	222,5	137,5	21,5	32,0	120,5	77,0
	27/16	MST27/16								
	21/2	22								
65		MST65	1075	9	222,5	137,5	21,5	32,0	120,5	77,0
70		MST70								
	211/16	MST211/16								
	23/4	**								
75		MST75	1080	10	231,5	139,5	20,5	32,0	125,0	74,0
	2 ¹ 5⁄16	MST215/16								
	3	22								
80		MST80	1085	11	260,5	162,0	28,5	38,0	140,0	90,5
	33/16	MST33/16								
	31/4	88								
85		MST85	1090	12	270,0	165,0	28,5	38,0	152,5	90,0
90		MST90								
	37/16	MST37/16								
	31/2	MST31/2								
95		MST95	3095	13	317,5	190,5	32,0	38,0	175,0	103,0
100	2000	MST100								
	3 ¹ 5⁄16	MST315/16								
	4	MST4								

Bitte Verfügbarkeit prüfen

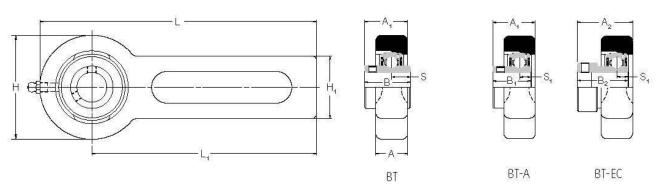
56

 $^{^{**}}$ Diese Bohrungsdurchmesser finden Sie bei der Auswahl der Serie ST (siehe Seite 54)

Lagereinsätze mit Schleuderscheiben der Seiten 89 und 90 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Nachsetzzeichen 'FS', z. B. MST3SFS.


Lagereinsätze mit Dreifachdichtungen der Seiten 86 bis 88 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Vorsetzzeichen 'T', z. B. TMST35.

			1	Abmessun	gen (mm)				Tragza	hlen	Orehzahl- grenze	Gewicht (ca.)
Н	H1	H2	НЗ	N	А	A1	A2	В	S	dynamisch Cr N	statisch Cor N	min ⁻¹	kg
101,5	64,5	37,5	89,0	22,5	36,5	30,0	13,50	38,10	15,93	19500	11300	5300	1,6
101,5	64,5	37,5	89,0	22,5	36,5	30,0	13,50	42,90	17,53	25700	15300	4500 	1,6
118,0	82,5	49,5	101,0	29,0	49,5	37,0	17,50	49,20	19,03	32500	19900	4000	2,7
118,0	82,5	49,5	101,0	29,0	49,5	37,0	17,50	49,20	19,04	32500	20500	3700	2,8
118,0	82,5	49,5	101,0	29,0	49,5	37,0	17,50	51,60	19,04	35000	23200	3400	2,8
146,0	101,0	64,0	130,0	35,0	63,5	46,5	27,00	55,60	22,24	43500	29200	3100	4,2
146,0	101,0	64,0	130,0	35,0	63,5	46,5	27,00	65,10	25,44	48000	33000	2800	5,4
166,5	113,0	70,0	150,8	42,0	70,0	50,5	27,00	74,60	30,24	61000	45000	2450	7,9
166,5	113,0	70,0	150,8	42,0	70,0	50,5	27,00	77,80	33,34	66000	49500	2300	8,4
184,0	113,0	70,0	165,1	42,0	70,0	54,0	27,00	82,60	33,34	71500	54500	2150	9,0
198,5	124,0	73,0	173,0	47,5	79,5	68,5	46,05	85,70	34,15	83000	64000	2000	13,7
216,0	127,0	73,0	190,5	47,5	79,5	68,5	46,05	96,00	39,74	96000	71500	1900	16,8
260,5	152,5	85,5	235,0	54,5	98,5	82,5	55,55	117,48	49,31	157000	122000	1600	22,2

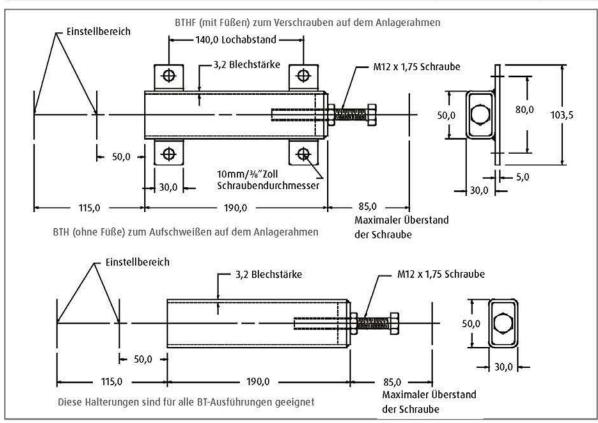

Self-Lube-Spannlager aus Gusseisen mit Spannhülsen Reihe MST 1000-K

	llen- messer	Kurzzeichen	Nur Hülse, Mutter und Unterlegscheibe	Einheit ohne Hülse, Mutter und Unter- legscheibe	Lager- einsatz	Guss- gruppe		A	bmessu	ngen (mi	n)	
mm	Zoll						L	L1	L2	13	L4	L5
20		MST1025-20K	H305	MST1025K	1025	ST3	98,0	62,0	11,5	16,0	50,5	36,5
	3/4	MST1025-34K	HE305-3/4			1						
25		MST1030-25K	H306	MST1030K	1030	1	115,5	71,7	12,5	16,5	64,5	43,0
	15/16	MST1030-15/16K	HE306-15/16									
	1	MST1030-1K	HE306-1									
30		MST1035-30K	H307	MST1035K	1035	2	124,0	75,5	12,5	16,5	64,5	43,0
	11/8	MST1035-11/kK	HE307-11/8									
	13/16	MST1035-1¾6K	HE307-13/16									
35		MST1040-35K	H308	MST1040K	1040	3	143,5	89,2	15,5	20,5	81,5	50,5
	11/4	MST1040-11/4K	HE308-11/4									
	13/8	MST1040-1%K	HE308-1%									
40		MST1045-40K	H309	MST1045K	1045	4	147,0	89,2	15,5	20,5	81,5	50,5
	17/16	MST1045-17/16K	HE309-17/16									
	11/2	MST1045-11/2K	HE309-11/2									
45		MST1050-45K	H310	MST1050K	1050	5	151,0	90,5	15,5	20,5	81,5	50,5
	111/16	MST1050-111/16K	HE310-111/16									
	13/4	MST1050-1%K	HE310-13/4									
50		MST1055-50K	H311	MST1055K	1055	6	182,0	114,0	19,0	32,0	97,5	70,0
	1 ¹ 5⁄ ₁₆	MST1055-115/16K	HE3011-115/16									
	2	MST1055-2K	HE3011-2									

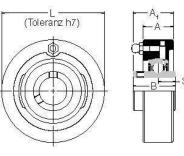
	Abmessungen (mm)										hlen	Drehzahl- grenze	Gewicht (ca.)
н	Н1	H2	НЗ	N	A	A1	A2	B5	d4	dynamisch Cr N	statisch Cor N	min ⁻¹	kg
88,5	58,5	32,0	76,0	22,5	36,0	27,5	13,50	29,0	38,0	14000	7880	6250	1,0
101,5	64,5	37,5	89,0	22,5	36,5	30,0	13,50	31,0	45,0	19500	11300	5300	1,6
101,5	64,5	37,5	89,0	22,5	36,5	30,0	13,50	35,0	52,0	25700	15300	4500	1,6
118,0	82,5	49,5	101,0	29,0	49,5	37,0	17,50	36,0	58,0	32500	19900	4000	2,7
118,0	82,5	49,5	101,0	29,0	49,5	37,0	17,50	39,0	65,0	32500	20500	3700	2,8
118,0	82,5	49,5	101,0	29,0	49,5	37,0	17,50	42,0	70,0	35000	23200	3400	2,8
146,0	101,0	64,0	130,0	35,0	63,5	46,5	27,00	45,0	75,0	43500	29200	3100	4,2

Self-Lube-Transportbandspanner aus Gusseisen Reihe BT

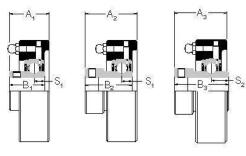
Wellendu	urchmesser	Kurzzeich	en		Lager- einsatz	Guss- gruppe		Abmessur	gen (mm)	
mm	Zoll			Н	H1	L	L1			
25		BT25	BT25A	BT25EC	1025	3	78,0	42,5	264,0	225,0
	7/8	BT%		BT%EC						
	¹ 5∕ ₁₆	BT15/16		BT1\$16EC						
	1	BT1	BT1A	BT1EC						
30		BT30L			1035	5	98,0	42,5	274,0	225,0
35		BT35	BT35A	BT35EC						
	13/16	BT13/16L								
	11/4	BT11/4	BT1¼A	BT1¼EC2						
	13/8	BT1%		BT1%EC						
	17/16	BT17/16		BT17/16EC						


Lagereinsätze mit Schleuderscheiben der Seiten 89 und 90 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Nachsetzzeichen 'FS', z. B. BT35FS.

Lagereinsätze mit Dreifachdichtungen der Seiten 86 bis 88 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Vorsetzzeichen 'T', z. B. TBT35.



			Abmessur		Tragza	hlen	Drehzahl- grenze	Gewicht (ca.)			
A	A1	A2	В	B1	B2	s	s1	dynamisch Cr N	statisch Cor N	min ⁻¹	kg
22,0	30,57	34,20	34,10	27,30	31,03	14,33	7,53	14000	7880	6250	1,8
22,0	36,13	40,20	42,90	34,90	38,93	17,53	9,53	25700	15300	4500	2,3



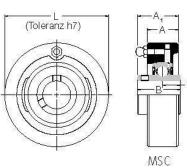
SELF-LUBE LAGEREINHEITEN 61

Self-Lube-Hülsenlager aus Gusseisen Reihe SLC

Gehäusetoleranzen für Durchmesser 'L' finden Sie auf der Seite 19

	SLC							SLC-A	SLC-EC		SLC-DEC
Wellend	urchmesser		Kurz	zeichen		Lager- einsatz	Guss- gruppe		Abmessur	gen (mm)	
mm	Zoll							L	Α	A1	A2
12		SLC12		SLC12EC		1017	1	68,287	22,22	24,21	30,35
15		SLC15		SLC15EC			ĺ				
16		SLC16		SLC16EC							
17		SLC17		SLC17EC							
	1/2	SLC1/2		SLC½EC							
	5/8	SLC5/8		SLC%EC							
20		SLC20	SLC20A	SLC20EC	SLC20DEC	1020	2	74,367	22,22	29,39	34,54
	3/4	SLC¾	SLC3/4A	SLC%EC	SLC34DEC						
25		SLC25	SLC25A	SLC25EC	SLC25 DEC	1025	3	79,400	26,19	32,94	36,52
	7/8	SLC%		SLC%EC	SLC%DEC						
	15/16	SLC15/16		SLC15/16EC	SLC15/16DEC						
	1	SLC1	SLC1A	SLC1EC	SLC1DEC						
30		SLC30	SLC30A	SLC3 0EC	SLC30DEC	1030	4	88,925	27,78	36,12	40,56
	11/8	SLC11/8		SLC1%EC	SLC1%DEC						
	1₹16	SLC1¾6		SLC13/16EC	SLC1¾6DEC						
	11/4	SLC1¼R	SLC1¼AR	SLC1¼ECR	SLC1¼DECR						
35		SLC35	SLC35A	SLC35EC	SLC35DEC	1035	5	98,450	30,96	40,87	44,81
	11/4	SLC1¼	SLC1¼A	SLC1¼EC	SLC1¼DEC						
	13/8	SLC1%		SLC1%EC	SLC1%DEC						
	17/16	SLC17/16		SLC17/16EC	SLC17/16DEC						
40		SLC40	SLC40A	SLC40EC	SLC40DEC	1040	6	106,387	37,31	48,84	51,28
	11/2	SLC1½	SLC1½A	SLC11/2EC	SLC1½DEC	200000000					
45		SLC45	SLC45A	SLC45EC	SLC45DEC	1045	7	111,150	36,51	48,44	50,88
	1%	SLC1%		SLC1%EC	SLC1%DEC						
	111/16	SLC111/16			SLC111/16DEC						
	13/4	SLC1¾	SLC1¾A	SLC1%EC	SLC1¾DEC						
50		SLC50	SLC50A	SLC5 OEC	SLC50DEC	1050	8	115,913	37,31	51,18	51,28
	17/8	SLC1%		SLC1%EC	SLC1%DEC						
	1 ¹ 5⁄16	SLC115/16		SLC115/16EC	SLC115/16DEC						
	2	SLC2R									
55		SLC55			SLC55DEC	1055	9	125,437	40,48	53,57	2
	2	SLC2			SLC2DEC						
	21/8	SLC21/8			SLC2%DEC						
17 m 201	2¾16	SLC2¾16			SLC23/16DEC				772.5 EVEN.		
60		SLC60			SLC60DEC	1060	10	149,250	41,28	60,30	75
	21/4	SLC2¼			SLC2¼DEC						
	23/8	SLC23/8			SLC2%DEC						
6/9/2019	27/16	SLC27/16			SLC27/16DEC	130000	10000000	100000000000000000000000000000000000000	97979 SP720	700 E 100 E	
65	V=	SLC65			******	1065	10/65	149,250	41,28	60,30	ā
	21/2	SLC2½			SLC21/2DEC						

Lagereinsätze mit Schleuderscheiben der Seiten 89 und 90 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Nachsetzzeichen 'FS', z. B. SLC25FS.


Lagereinsätze mit Dreifachdichtungen der Seiten 86 bis 88 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Vorsetzzeichen 'T', z. B. TSLC25.

			Abmessun	gen (mm)				Tragza	hlen	Orehzahl- grenze	Gewicht (ca.)
А3	В	81	82	83	s	s 1	s2	dynamisch Cr N	statisch Cor N	min ⁻¹	kg
75	27,38	75	28,63	75	11,58	6,53	75	9550	4800	7000	0,6
37,67	31,00	25,80	31,03	43,73	12,73	7,53	17,13	12800	6650	6700	0,7
40,06	34,10	27,30	31,03	44,43	14,33	7,53	17,53	14000	7880	6250	0,8
43,99	38,10	31,20	35,73	48,43	15,93	9,03	18,33	19500	11300	5300	1,1
47,78	42,90	34,90	38,93	51,13	17,53	9,53	18,83	25700	15300	4500	1,4
53,57	49,20	41,20	43,73	56,33	19,03	11,03	21,43	32500	19900	4000	2,0
53,16	49,20	41,20	43,73	56,33	19,04	11,04	21,43	32500	20500	3700	2,1
56,72	51,60	43,50	43,73	62,73	19,04	11,04	24,64	35000	23200	3400	2,3
63,83	55,60	3	5	71,42	22,24	24	27,82	43500	29200	3100	2,9
67,39	65,10		=	77,84	25,44	-	31,04	48000	33000	2800	4,4
67,39	65,10	-	=	85,74	25,44	E E	34,14	57500	40000	2600	4,5

Self-Lube-Hülsenlager aus Gusseisen Reihe MSC

Gehäusetoleranzen für Durchmesser 'L' finden Sie auf der Seite 19

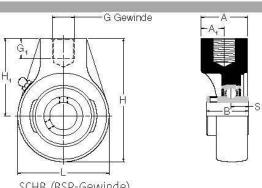
Wellend	urchmesser	Kurzzeichen	Lager- einsatz	Guss- gruppe	Abmessun	gen (mm)
mm	Zoll		Cili Silva	groppe	L	A .
25		MSC25	1030	21	88,925	27,78
30		22	1,000		· man Francisco	1000 F 1000 00
	1	MSC1				
35		22	1035	2	98,450	30,96
	1₹16	MSC1¾s				
	11/4	22				
40		22	1040	3	106,387	37,31
	13/8	MSC1%	1000000			
	17/16	MSC17/16				
45		建 章	1045	4	111,150	36,51
	11/2	MSC11/2				
50	5/0/A	2.2	1050	5	115,913	37,31
	111/16	MSC111/16				
	13/4	MSC1¾				
55	With Edition	22	1055	6	125,437	40,48
	17/8	MSC1%				
	1 ¹ ∮⁄16	MSC115/16				
	2	se.				
60		22	1060	7	149,250	41,28
	23/16	MSC2¾16				
	21/4	22				
65		MSC65	1070	8	158,775	50,80
70		MCS70				
	27/16	MSC27/16				
	21/2	MSC21/2				
75	700000E	MSC75	1075	9	168,300	50,80
	211/16	MSC211/16				
	23/4	MSC2¾				
80	AY 650, 541	MSC80	1080	10	177,825	55,56
	215/16	MSC215/16				
	3	MSC3				
85	ALFID	MSC85	1085	11	188,937	63,50
	33/16	MSC33/16				
	31/4	MSC31/4				
90	7/2/2/201 THAPES 27	MSC90	1090	12	207,987	63,50
	37/16	MSC37/18				
	31/2	MSC31/2				
95		MSC95	3095	13	241,325	76,20
100		MSC100				
	3 ¹ 5⁄ ₁₆	MSC315/16				
	4	MSC4				

Bitte Verfügbarkeit prüfen

64

 $^{^{**}}$ Diese Bohrungsdurchmesser finden Sie bei der Auswahl der Serie SLC (siehe Seite 62)

Lagereinsätze mit Schleuderscheiben der Seiten 89 und 90 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Nachsetzzeichen 'FS', z. B. MSC 1 ¾16 FS.


Lagereinsätze mit Dreifachdichtungen der Seiten 86 bis 88 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Vorsetzzeichen 'T', z. B. TMSC 1 ¾6.

	Abmessungen (mm)		Tragza	hlen	Drehzahl- grenze	Gewicht (ca.)
A1	В	S	dynamisch Cr N	statisch Cor N	min ⁻¹	kg
36,12	38,10	15,93	19500	11300	5300	1,1
40,87	42,90	17,53	25700	15300	4500	1,4
48,84	49,20	19,03	32500	19900	4000	2,0
48,44	49,20	19,04	32500	20500	3700	2,1
51,18	51,60	19,04	35000	23200	3400	2,3
53,57	55,60	22,24	43500	29200	3100	2,9
60,30	65,10	25,44	48000	33000	2800	4,4
69,80	74,60	30, 24	61000	45000	2450	5,3
69,80	77,80	33,34	66000	49500	2300	6,2
76,99	82,60	33,34	71500	54500	2150	7,9
83,29	85,70	34,15	83000	64000	2000	9,3
88,06	96,00	39,74	96000	71500	1900	12,7
106,38	117,48	49,31	157000	122000	1600	20,4

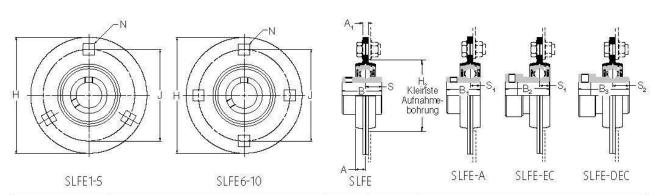
Self-Lube-Hängelager aus Gusseisen Reihe SCHB (BSP-Gewinde), Reihe SCH (metrisches Gewinde)**

SCHB	(BSP-Gewinde)
SCH (metrisches Gewinde)

Vellend	urchmesser	Kurzze	ichen	Lager- einsatz	Guss- gruppe		Abmessung	leu (ww)	
mm	Zoll			100000000000000000000000000000000000000		G (BSP)	G (metrisch)	61 (mm)	L
20		SCHB20	SCH20	1020	0	1/2	M16 x 2,00	19,0	67,0
	3/4	SCHB¾	SCH3/4						
25		SCHB25	SCH25	1030	2/0	1/2	M20 x 2,50	16,0	89,0
30		SCHB30	SCH30						
	7/8	SCHB%	SCH%						
	1	SCHB1	SCH1						
	11/8	SCHB11/8	SCH11/8						
35		SCHB35	SCH35	1035	1	3/4	M24 x 3,00	19,0	97,0
	1∛16	SCHB1¾6	SCH13/16						
	11/4	SCHB11/4	SCH11/4						
	13/8	SCHB1%	SCH1%						
40		SCHB40	SCH40	1040	2	3/4	M24 x 3,00	19,0	107,0
	17/16	SCHB17/16	SCH17/16						
	11/2	SCHB1½	SCH11/2						
45		SCHB45	SCH45	1050	3	7	M24 x 3,00	21,0	121,0
50		SCHB50	SCH50						
	111/16	SCHB111/16							
	13/4	SCHB1¾	SCH1¾						
	17/8	SCHB1%	SCH1%						
	1 ¹⁵ / ₁₆	SCHB115/16							
	2	SCHB2	SCH2						
55		SCHB55	SCH55	1060	4	11/4	M42 x 4,50	29,0	146,5
60		SCHB60	SCH60						
	23/16	SCHB2¾6	SCH23/16						
	21/4	SCHB21/4	SCH21/4						
	23/8	SCHB2%	SCH2¾						
	27/16	SCHB27/16	SCH27/16						
	21/2	SCHB21/2	SCH21/2	1065	4/65	11/4	M42 x 4,50	29,0	143,0
65		SCHB65	SCH65	1075	5	11/2	M48 x 5,00	32,0	165,0
70		SCHB70	SCH70						
75		SCHB75	SCH75						
	211/16	SCHB211/16							
	23/4	SHCB2¾	SHC2¾						
	21/8	SCHB2%	SCH27/a						
	215/16	SCHB215/16							
80		SCHB80	SCH80	1080	6	11/2	M48 x 5,00	32,0	174,5
	3	SCHB3	SCH3						
	33/16	SCHB3¾16	SCH33/16						

 $^{^{**}}$ Die Lagerangaben dieser Serie entsprechen denen der Serie SCHB, jedoch nicht für die Gewinde

Lagereinsätze mit Schleuderscheiben der Seiten 89 und 90 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Nachsetzzeichen 'FS', z. B. SCHB3SFS.


Lagereinsätze mit Dreifachdichtungen der Seiten 86 bis 88 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Vorsetzzeichen 'T', z. B. TSCHB35.

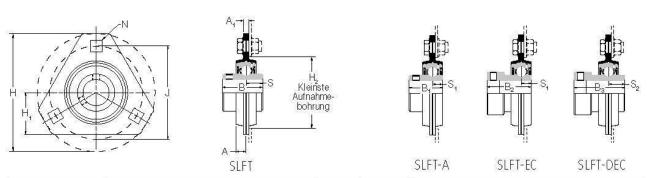
		Abmessur	ngen (mm)			Tragzal	hlen	Drehzahl- grenze	Gewich (ca.)
Н	Н1	А	A1	В	s	dynamisch Cr N	statisch Cor N	min ⁻¹	kg
91,6	57,2	34,0	18,26	30,96	12,75	12800	6650	6700	0,8
107,5	61,9	33,5	22,22	38,10	15,93	19500	11300	5300	1,2 1,2
119,0	69,8	39,5	25,40	42,88	17,53	25700	15300	4500	1,5
127,5	73,0	39,5	27,79	49,23	19,10	32500	19900	4000	1,6
144,0	82,6	47,5	27,79	51,59	19,10	35000	23200	3400	2,2
175,0	101,6	58,5	30,94	65,07	25,45	48000	33000	2800	3,5
200	idod e	100.5	20.04	VE 07	×3676	57500	40000	2200	24
173,5 200,6	101,6 117,5	58,5 70,0	30,94 34,94	65,07 77,77	25,45 33,37	57500 66000	40000 49500	2600 2300	3,4 6,8
211,5	123,8	71,5	41, 29	82,55	33,37	71500	54500	2150	8,1

Self-Lube-Flanschlager aus Stahlblech (Gehäuse verzinkt) Reihe SLFE**

Wellendu	ırchmesser		Kurz	zzeichen		Lager- einsatz	Gehäuse- gruppe		Abmessur	gen (mm)	
mm	Zoll						31-66-	Н	H2	J	N
12	SWANNES	SLFE12		SLFE12EC		1017	1	81,0	49,0	63,5	7,1
15		SLFE15		SLFE15EC			ĺ				
16		SLFE16		SLFE16EC							
17		SLFE17		SLFE17A							
	1/2	SLFE1/2		SLFE1/2EC							
	5/8	SLFE%		SLFE%EC		,					
20		SLFE20	SLFE20A	SLFE20EC	SLFE20DEC	1020	2	90,5	55,0	71,5	8,7
	3/4	SLFE¾	SLFE¾A	SLFE¾EC	SLFE¾DEC						
25		SLFE25	SLFE25A	SLFE25EC	SLFE25DEC	1025	3	95,2	60,0	76,0	8,7
	7/8	SLFE%		SLFE %EC	SLFE%DEC						
	15/16	SLFE15/16		SLFE15/16EC	SLFE15/16DEC						
	1	SLFE1	SLFE1A	SLFE1EC	SLFE1DEC						
30		SLFE30	SLFE30A	SLFE30EC	SLFE30DEC	1030	4	112,7	71,0	90,5	10,5
	11/8	SLFE11/8		SLFE1%EC	SLFE1%DEC						
	1∛16	SLFE13/16		SLFE13/16EC	SLFE1%&DEC						
	11/4	SLFE11/4	SLFE11/4A	SLFE11/4EC	SLFE11/4DEC						
	11/4	SLFE11/4L	SLFE11/4AL	SLFE11/4ECL	SLFE11/4DECL		1035	5	122,2	81,0	100,0
	35	SLFE35	SLFE35A	SLFE35EC	SLFE35DEC						
	13/8	SLFE1%		SLFE1%EC	SLFE1%DEC						
	17/16	SLFE17/16		SLFE17/16EC	SLFE17/16DEC						
40		SLFE40	SLFE40A	SLFE40EC	SLFE40DEC	1040	6	147,8	91,0	119,0	13,5
	11/2	SLFE11/2	SLFE11/2A	SLFE11/2EC	SLFE11/2DEC						
45		SLFE45	SLFE45A	SLFE45EC	SLFE45DEC	1045	7	149,2	97,0	120,5	13,5
	15/8	SLFE1%		SLFE1%EC	SLFE1%DEC						
	111/16	SLFE111/16		SLFE111/16EC	SLFE111/16DEC						
	13/4	SLFE1¾	SLFE1%A	SLFE1%EC	SLFE134DEC						
50		SLFE50	SLFE50A	SLFE50EC	SLFE5 ODEC	1050	8	155,6	102,0	127,0	13,5
	17/8	SLFE1%		SLFE1%EC	SLFE1%DEC						
	115/16	SLFE115/16		SLFE115/16EC	SLFE115/16DEC						
	2	SLFE2R									
55		SLFE55			SLFE55DEC	1055	9	166,6	113,0	138,0	13,5
	2	SLFE2			SLFE2DEC						
	21/8	SLFE21/8			SLFE21/sDEC						
	23/16	SLFE23/16			SLFE23/16DEC						
60		SLFE60			SLFE60DEC	1060	10	176,2	122,0	147,6	13,5
	21/4	SLFE21/4			SLFE21/4DEC						
	27/16	SLFE27/16			SLFE27/16DEC						

Bitte Verfügbarkeit prüfen Eine modifizierte Ausführung dieser Einheiten ist verfügbar, wenn eine Schutzkappe (Protector) eingebaut werden soll. Nähere Angaben dazu auf Seite 91 **Die Gehäuse der Gruppen 6 bis 10 verfügen über 4 Schraubenbohrungen. Hinweis: Diese Einheiten können nicht nachgeschmiert werden

Lagereinsätze mit Schleuderscheiben der Seiten 89 und 90 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Nachsetzzeichen 'FS', z. B. SLFE25FS.


Lagereinsätze mit Dreifachdichtungen der Seiten 86 bis 88 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Vorsetzzeichen 'T', z. B. TSLFE25.

			Abm	essungen ((mm)				zulässige radiale Gehäusebelastung	Orehzahl- grenze	Gewicht (ca.)
Α	A1	8	B1	82	B3	s	s1	s2	N	min-1	kg
6,7	4,0	27,38	2	28,63	(2)	11,58	6,53		2670	3000	0,2
		24.00	25.00		42.72	20 H4		7g=ya=8	200	2000	
7,7	4,0	31,00	25,80	31,03	43,73	12,73	7,53	17,13	3110	3000	0,3
8,7	4,0	34,10	27,30	31,03	44,43	14,33	7,53	17,53	3560	2500	0,4
9,0	5,0	38,10	31,20	35,73	48,43	15,93	9,03	18,33	4890	2500	0,7
10,5	10,0	5,0	42,90	34,90	38,93	51,13	17,53	9,53	18,83	6250	2000
10,0	7,0	49,20	41,20	43,73	56,33	19,03	11,03	21,43	7550	2000	1,5
10,0	7,0	49,20	41,20	43,73	56,33	19,04	11,04	21,43	7550	2000	1,6
10,5	8,0	51,60	43,50	43,73	62,73	19,04	11,04	24,64	8450	1500	1,8
10,7	8,0	55,60	¥	-	71,42	22,24	681	27,84	10200	1500	2,2
11,9	8,0	65,10	7.	=	77,84	25,44	-	31,04	11300	1500	2,5

Self-Lube-Flanschlager aus Stahlblech (Gehäuse verzinkt) Reihe SLFT**

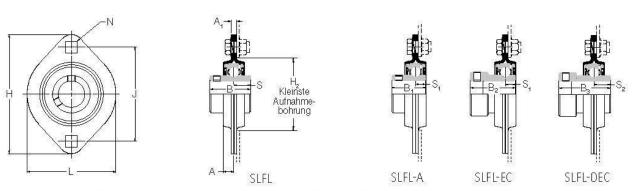
Wellendu	urchmesser		Kurz	zeichen		Lager- einsatz	Gehäuse- gruppe	Abmessungen (mm)				
mm	Zoll					102100010010101010	0	н	H1	H2	J	N
25		SLFT25	SLFT25A	SLFT25EC	SLFT25DEC	1025	3	95,2	34,2	60,0	76,0	8,7
	7/8	SLFT%		SLFT%EC	SLFT%DEC							
	15/16	SLFT15/16		SLFT15/16EC	SLFT15/16DEC							
	1	SLFT1	SLFT1A	SLFT1EC	SLFT1DEC							
30		SLFT30	SLFT30A	SLFT30EC	SLFT30DEC	1030	4	112,7	40,2	71,0	90,5	10,5
	11/8	SLFT11/8		SLFT11/sEC	SLFT1%DEC							
	1¾16	SLFT13/16		SLFT13/16EC	SLFT13/16DEC							
	11/4	SLFT11/4	SLFT11/4A	SLFT11/4EC	SLFT11/4DEC							
35		SLFT35	SLFT35A	SLFT35EC	SLFT35DEC	1035	5	122,2	44,2	81,0	100,0	10,5
	11/4	SLFT11/4L	SLFT1¼AL	SLFT11/4ECL	SLFT11/4DECL							
	13/8	SLFT1%		SLFT35EC	SLFT35DEC							
	17/16	SLFT17/16		SLFT17/16EC	SLFT17/16DEC							

Bitte Verfügbarkeit prüfen

Eine modifizierte Ausführung dieser Einheiten ist verfügbar, wenn eine Schutzkappe (Protector) eingebaut werden soll. Nähere Angaben dazu auf Seite 91

 $^{^{**}}$ Hinweis: Diese Einheiten können nicht nachgeschmiert werden

Lagereinsätze mit Schleuderscheiben der Seiten 89 und 90 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Nachsetzzeichen 'FS', z. B. SLFT35FS.


Lagereinsätze mit Dreifachdichtungen der Seiten 86 bis 88 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Vorsetzzeichen 'T', z. B. TSLFT35.

			Abm	essungen (mm)				zulässige radiale Gehäusebelastung	Drehzahl- grenze	Gewicht (ca.)
A	A1	В	B1	B2	83	s	s 1	s2	N	min ⁻¹	kg
8,7	4,0	34,11	27,35	30,92	44,40	14,33	7,56	17,49	3560	2500	0,3
9,0	5,0	38,10	31,21	35,68	48,42	15,93	9,03	18,33	4890	2500	0,5
10,0	5,0	42,88	34,90	38,88	51,18	17,53	9,55	18,89	6250	2000	0,7

Self-Lube-Flanschlager aus Stahlblech (Gehäuse verzinkt) Reihe SLFL**

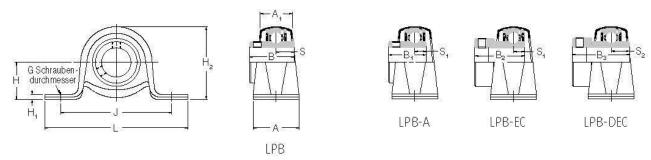
Wellendu	urchmesser		Kur	zzeichen		Lager- einsatz	Gehäuse- gruppe	Abmessungen (mm)				
mm	Zoll						10-0 m 10-10 m 10-11	L	н	H2	J	N
12		SLFL12		SLFL12EC		1017	1	58,7	81,0	49,0	63,5	7.1
15		SLFL15		SLFL15EC			ĺ					
16		SLFL16		SLFL16EC								
17		SLFL17		SLFL17EC								
	1/2	SLFL½		SLFL1/2EC								
	5/8	SLFL%		SLFL%EC								
20		SLFL20	SLFL20A	SLFL20EC	SLFL20DEC	1020	2	66,7	90,5	55,0	71,5	8,7
	3/4	SLFL¾	SLFL¾A	SLFL¾EC	SLFL34DEC							
25		SLFL25	SLFL25A	SLFL25EC	SLFL25DEC	1025	3	71,0	95,3	60,0	76,0	8,7
	7/8	SLFL%		SLFL%EC	SLFL%DEC							
	¹⁵ / ₁₆	SLFL15/16		SLFL ¹⁵ /16EC	SLFL15/16DEC							
	1	SLFL1	SLFL1A	SLFL1EC	SLFL1DEC							
30		SLFL30	SLFL3 0A	SLFL30EC	SLFL30DEC	1030	4	84,1	112,7	71,0	90,5	10,5
	11/8	SLFL11/8		SLFL1%EC	SLFL1%DEC							
	1₹16	SLFL13/16		SLFL13/16EC	SLFL1%&DEC							
	11/4	SLFL11/4	SLFL1¼A	SLFL11/4EC	SLFL11/4DEC							

Bitte Verfügbarkeit prüfen

Eine modifizierte Ausführung dieser Einheiten ist verfügbar, wenn eine Schutzkappe (Protector) eingebaut werden soll. Nähere Angaben dazu auf Seite 91

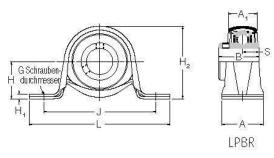
^{**}Hinweis: Diese Einheiten können nicht nachgeschmiert werden

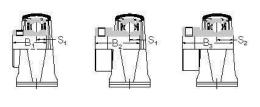
Lagereinsätze mit Schleuderscheiben der Seiten 89 und 90 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Nachsetzzeichen 'FS', z. B. SLFL1FS.


Lagereinsätze mit Dreifachdichtungen der Seiten 86 bis 88 können in diese Gehäuse eingebaut werden. Die Lagerbezeichnung dieser Einheit hat das Vorsetzzeichen 'T', z. B. TSLFL1.

			Abm	essungen ((mm)				zulässige radiale Gehäusebelastung	Orehzahl- grenze	Gewich (ca.)
A	A1	В	81	B2	B3	s	s 1	s2	N	min-1	kg
6,7	4,0	27,38	3	28,54	9 <u>2</u> 9	11,55	6,55	22	2670	3000	0,2
7,7	4,0	30,96	25,77	30,92	43,62	12,73	7,56	17,13	3110	3000	0,3
8,7	4,0	34,11	27,35	30,92	44,40	14,33	7,56	17,49	3560	2500	0,3
9,0	5,0	38,10	31,21	35,68	48,42	15,93	9,04	18,32	4890	2500	0,5

Self-Lube-Stehlager aus Stahlblech (Gehäuse verzinkt) Reihe LPB**




Wellend	urchmesser		Kura	zeichen		Lager- einsatz	Gehäuse- gruppe		Abm	Abmessungen (mm) H H1 H2 22,2 2,4 43,2 68			
mm	Zoll							L	н	H1	H2	J	
12		LPB12		LPB12EC		1017	1	85,7	22,2	2,4	43,2	68,0	
15		LPB15		LPB15EC									
16		LPB16		LPB16EC									
17		LPB17		LPB17EC									
	1/2	LPB1/2		LPB1/2EC									
	5/8	LPB%		LPB%EC									
20		LPB20	LPB20A	LPB20EC	LPB20DEC	1020	2	98,4	25,4	2,4	49,9	76,0	
	3/4	LPB3/4	LPB3/4A	LPB¾EC	LPB¾DEC								
25		LPB25	LPB25A	LPB25EC	LPB25DEC	1025	3	108,0	28,6	2,8	55,8	86,0	
	7/8	LPB%		LPB%EC	LPB%DEC								
	15/16	LPB15/16		LPB15/16EC	LPB15/16DEC								
	1	LPB1	LPB1A	LPB1EC	LPB1DEC								
30		LPB30	LPB30A	LPB30EC	LPB30DEC	1030	4	117,5	33,3	3,6	65,7	95,0	
	11/8	LPB11/8		LPB1%EC	LPB1%DEC								
	1₹16	LPB13/16		LPB13/46EC	LPB1¾6DEC								
	11/4	LPB1¼	LPB1¼A	LPB1¼EC	LPB11/4DEC								
35		LPB35	LPB35A	LPB35EC	LPB35DEC	1035	5	128,6	39,7	4,4	77,5	106,0	
	11/4	LPB11/4L	LPB11/4AL	LPB1¼ECL	LPB11/4DECL								
	13/8	LPB1%		LPB1%EC	LPB1%DEC								
	17/16	LPB17/16		LPB17/16EC	LPB17/16DEC								

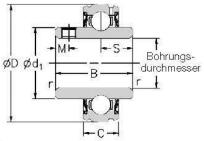
 $^{^{**}}$ Hinweis: Diese Einheiten können nicht nachgeschmiert werden

			Abmo	essungen	(mm)				zulässige radiale Gehäusebelastung	Drehzahl- grenze	Gewicht (ca.)
А	A1	8	B1	82	83	s	s 1	s 2	. N	min ⁻¹	kg
25,4	15,9	27,38	520	28,54	<u>2</u>	11,55	6,55	(밥)	1330	3000	0,2
31,7	21,6	30,96	25,77	30,92	43,62	12,73	7,56	17,13	1570	3000	0,2
31,7	21,6	34,11	27,35	30,92	44,40	14,33	7,56	17,49	1780	2500	0,3
37,5	25,5	38,10	31,21	35,68	48,42	15,93	9,04	18,32	2670	2500	0,5
41,0	28,4	42,88	34,90	38,88	51,18	17,53	9,55	18,89	3560	2000	0,9
	25,4 31,7 31,7 37,5	25,4 15,9 31,7 21,6 31,7 21,6 37,5 25,5	25,4 15,9 27,38 31,7 21,6 30,96 31,7 21,6 34,11 37,5 25,5 38,10	A A1 B B1 25,4 15,9 27,38 - 31,7 21,6 30,96 25,77 31,7 21,6 34,11 27,35 37,5 25,5 38,10 31,21	A A1 B B1 B2 25,4 15,9 27,38 - 28,54 31,7 21,6 30,96 25,77 30,92 31,7 21,6 34,11 27,35 30,92 37,5 25,5 38,10 31,21 35,68	25,4 15,9 27,38 - 28,54 - 31,7 21,6 30,96 25,77 30,92 43,62 31,7 21,6 34,11 27,35 30,92 44,40 37,5 25,5 38,10 31,21 35,68 48,42	A A1 B B1 B2 B3 s 25,4 15,9 27,38 - 28,54 - 11,55 31,7 21,6 30,96 25,77 30,92 43,62 12,73 31,7 21,6 34,11 27,35 30,92 44,40 14,33 37,5 25,5 38,10 31,21 35,68 48,42 15,93	A A1 B B1 B2 B3 s s1 25,4 15,9 27,38 - 28,54 - 11,55 6,55 31,7 21,6 30,96 25,77 30,92 43,62 12,73 7,56 31,7 21,6 34,11 27,35 30,92 44,40 14,33 7,56 37,5 25,5 38,10 31,21 35,68 48,42 15,93 9,04	A A1 B B1 B2 B3 s s1 s2 25,4 15,9 27,38 - 28,54 - 11,55 6,55 - 31,7 21,6 30,96 25,77 30,92 43,62 12,73 7,56 17,13 31,7 21,6 34,11 27,35 30,92 44,40 14,33 7,56 17,49 37,5 25,5 38,10 31,21 35,68 48,42 15,93 9,04 18,32	A A1 B B1 B2 B3 s s1 s2 N 25,4 15,9 27,38 - 28,54 - 11,55 6,55 - 1330 31,7 21,6 30,96 25,77 30,92 43,62 12,73 7,56 17,13 1570 31,7 21,6 34,11 27,35 30,92 44,40 14,33 7,56 17,49 1780 37,5 25,5 38,10 31,21 35,68 48,42 15,93 9,04 18,32 2670	A A1 B B1 B2 B3 s s1 s2 N min¹ 25,4 15,9 27,38 - 28,54 - 11,55 6,55 - 1330 3000 31,7 21,6 30,96 25,77 30,92 43,62 12,73 7,56 17,13 1570 3000 31,7 21,6 34,11 27,35 30,92 44,40 14,33 7,56 17,49 1780 2500 37,5 25,5 38,10 31,21 35,68 48,42 15,93 9,04 18,32 2670 2500

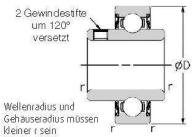
Self-Lube-Stehlager aus Stahlblech (Gummihülse, Gehäuse verzinkt) Reihe LPBR**

_PBR-A	LPBR-EC	LPBR-DEC
36 (70)0000 750	(E) TOWASTON	

Wellend	urchmesser		Kui	zzeichen		Lager- einsatz	Gehäuse- gruppe		Abm	18,6 2,8 55,8 8 <i>6</i>			
mm	Zoll					0.0001000000000000000000000000000000000		L	н	H1	H2	J	
12		LPBR12		LPBR12EC		1017	2	98,4	25,4	2,4	49,9	76,0	
15		LPBR15		LPBR15EC									
16		LPBR16		LPBR16EC									
17		LPBR17		LPBR17EC									
	1/2	LPBR1/2		LPBR1/2EC									
	5/8	LPBR%		LPBR%EC									
20		LPBR20	LPBR20A	LPBR20EC	LPBR20DEC	1020	3	108,0	28,6	2,8	55,8	86,0	
	3/4	LPBR3/4	LPBR¾A	LPBR3/4EC	LPBR34DEC								
25		LPBR25	LPBR25A	LPBR25EC	LPBR25DEC	1025	4	117,5	33,3	3,6	65,7	95,0	
	7/8	LPBR%		LPBR%EC	LPBR%DEC								
	15/16	LPBR15/16		LPBR15/16EC	LPBR15/16DEC								
	1	LPBR1	LPBR1A	LPBR1EC	LPBR1DEC								
30		LPBR30	LPBR30A	LPBR30EC	LPBR30DEC	1030	5	128,6	39,7	4,4	77,5	106,0	
	11/8	LPBR1/8		LPBR1%EC	LPBR1%DEC								
	1¾16	LPBR3/16		LPBR13/16EC	LPBR1%&DEC								
	11/4	LPBR11/4	LPBR1¼A	LPBR11/4EC	LPBR11/4DEC								


 $^{^{**}}$ Hinweis: Diese Einheiten können nicht nachgeschmiert werden

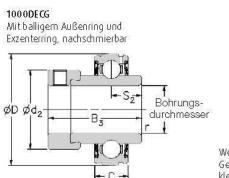
				Abm	essungen	(mm)				zulässige radiale Gehäusebelastung	Drehzahl- grenze	Gewicht (ca.)
G	А	A1	В	81	82	83	5	s 1	s 2	N	min-1	kg
8	31,7	21,6	27,38	1776	28,54	((⊒()	11,55	6,55	≅	890	3000	0,2
10	31,7	21,6	30,96	25,77	30,92	43,62	12,73	7,56	17,13	1110	3000	0,3
10	37,5	25,5	34,11	27,35	30,92	44,40	14,33	7,56	17,49	1330	2500	0,5
10	41,0	28,4	38,10	31,21	35,68	48,42	15,93	9,04	18,32	1560	2500	0,9



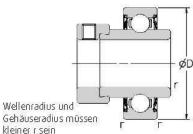
Self-Lube-Lagereinsätze Reihen 1000G und 1100

1000G Mit balligem Außenring und Gewindestiften, nachschmierbar

Mit zylindrischem Außenring und Gewindestiften



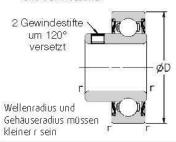
	 -	C		KI	einerr	sein		1	816					
Wellendu	urchmesser	Kurzze	ichen		1	Abmess	ungen	(mm)			Tragza	hlen	Drehzahl- grenze	Gewicht (ca.)
mm	Zoll	Reihe 1000G	Reihe 1100	D	C	В	s	d1	M	r	dynamisch Cr N	statisch Cor N	min-1	kg
12		1017-12G	1117-12	40,000	12,00	27,38	11,58	24,80	5,00	0,60	9550	4800	7000	0,09
15		1017-15G	1117-15											
16		1017-16G	1117-16											
17		1017-17G	1117-17											
	1/2	1017-1/2G	1117-1/2											
	5/8	1017-%G	11175/8				40.00						V=0.0	
20		1020-20G	1120-20	47,000	14,00	31,00	12,73	28,30	5,00	1,00	12800	6650	6700	0,13
25	3/4	1020-34G	1120-3/4	F2 000	45.00	24.40		24.00	F 0.0	400	44000	7000	4250	0.47
25	.760	1025-256	1125-25	52,000	15,00	34,10	14,33	34,00	5,00	1,00	14000	7880	6250	0,17
	7/8	1025-%G	1125-%											
	¹⁵ /16	1025-15/16G	1125-15/16											
37	1	1025-16	1125-1	(3,000	11.00	20.40	15.00	40.20	F 00	100	10500	11200	E300	A 27
25		1030-25G	1130-25	62,000	16,00	38,10	15,93	40,30	5,00	1,00	19500	11300	5300	0,37
30	d	1030-306	1130-30											
	1 1⅓	1030-1G 1030-1%G	1130-1 1130-1%											
		1030-178G	1130-178											
	13/16 11/4	1030-1916G	1130-1716											
30	174	1030-174G	1135-174	72,000	17.00	42.00	17.53	46.00	6.50	1.00	25700	15300	4500	0,51
35		1035-356	1135-35	12,000	12,00	42,70	11,00	40,70	0,30	1,00	23700	15500	4300	0,31
ردو.	13/16	1035-336 1035-1¾16G	1135-33								1			
	11/4	1035-1¼G	1135-1/4											-
	15/16	1035-15/16G	1135-15/16											
	13/8	1035-13/6G	1135-1%											
	17/16	1035-17/16G	1135-17/16											
35	77.00	1040-35G	1140-35	80,000	18.00	49.20	19.03	52.40	8.00	1.00	32500	19900	4000	0,64
40		1040-40G	1140-40	- X	S		- 6	76		6				
	13/8	1040-1%G	1140-1%											
	17/16	1040-17/16G	1140-17/16											
	11/2	1040-11/2G	1140-11/2											i i
40		1045-40G	1145-40	85,000	19,00	49,20	19,04	57,40	8,00	1,00	32500	20500	3700	0,73
45		1045-45 G	1145-45											
	11/2	1045-11/2G	1145-11/2											
	15/8	1045-1%G	1145-1%											
	111/16	1045-111/16G	1145-111/16											
	13/4	1045-1¾G	1145-134											
45		1050-45G	1150-45	90,000	20,00	51,60	19,04	62,40	10,00	1,00	35000	23200	3400	0,91
50		1050-50G	1150-50											
	111/16	1050-111/16G	1150-111/16											
	13/4	1050-1¾G	1150-134											
	17/8	1050-1%G	1150-1%											
	115/16	1050-115/16G	1150-115/16											
<i>F</i>	2	1050-2G	1150-2	100.000	24.00	TT CO	22.24	10.00	10.00	1.50	42500	20200	2400	117
50 55		1055-50G 1055-55G	1155-50 1155-55	100,000	21,00	55,60	22,24	68,90	10,00	1,50	43500	29200	3100	1,12
22	17/.													
	17/8 115/16	1055-1%G 1055-11%G	1155-1% 1155-11%											
	2	1055-11-916G	1155-11-916 1155-2											
	21/8	1055-21%G	1155-21/8											
	23/16	1055-23/16G	1155-23/16											
	E/10	1000 Z 7100	1133 Z 710								I.			I.


2⅓6 | 10 Bitte Verfügbarkeit prüfen 78

Wellend	urchmesser	Kurzze	eichen		ı	lbmess	ungen	(mm)	i i		Tragza	hlen	Drehzahl- grenze	Gewicht (ca.)
mm	Zoll	Reihe 1000G	Reihe 1100	D	C	В	5	d1	M	ſ	dynamisch Cr N	statisch Cor N	min-1	kg
55		1060-55G	1160-55	110,000	22,00	65,10	25,44	76,00	10,00	1,50	48000	33000	2800	1,47
60	345975R	1060-60G	1160-60											
	23/16	1060-2¾6G	1160-23/16											
	21/4	1060-2¼G	1160-21/4											
	23/8	1060-2%G	1160-2%											
	27/16	1060-27/16G	1160-27/16	420.000	22.00	4540	25.44	02.50	40.00	4.50	57500	40000	2400	2.02
60		1065-60G	1165-60	120,000	23,00	65,10	25,44	82,50	10,00	1,50	57500	40000	2600	2,02
65	Aur.	1065-65G	1165-65											
	21/2	1065-21/2G	1165-21/2	425.000	24.00	74.70	20.24	0000	42.00	4.50	×40.00	A.E.O.O.O.	2450	2.27
60		1070-60G	1170-60	125,000	24,00	/4,60	30,24	89,00	12,00	1,50	61000	45000	2450	2,27
65		1070-65G	1170-65	-										
70	27/2	1070-70G	1170-70	-										
	27/16	1070-27/16G	1170-27/16	-										
	21/2	1070-21/2G	1170-21/2	-										
	25/8	1070-2%G	1170-2%	-										
25	211/16	1070-211/16G		120.000	75.00	7700	22.24	04.00	12.00	1.50	77000	40500	2200	2.74
65		1075-65G	1175-65	130,000	25,00	11,80	33,34	94,00	12,00	1,50	66000	49500	2300	2,61
70 75		1075-70G 1075-75G	1175-70 1175-75								-			
10	211/16	1075-756 1075-211/16G												
	21/16	1075-234G	1175-2 34											
	27/8	1075-2%G	1175-274											
	278 2 ¹⁵ /16	1075-2786 1075-215/16G												
	3	1075-2 9160 1075-3 G	1175-3											
75	2	1080-75G	1180-75	140,000	26.00	92.40	22.24	100.00	12.00	2.00	71500	54500	2150	3,23
80		1080-73G	1180-80	140,000	20,00	02,00	33,34	100,00	12,00	2,00	71500	34300	2150	3,23
00	215/16	1080-215/16G		1										
	3	1080-3G	1180-3	1										
	3₹16	1080-33/16G	1180-33/16											
	31/4	1080-374G	1180-31/4											
80	274	1085-80G	1185-80	150.000	28.00	85.70	3/115	10710	12.00	2.00	83000	64000	2000	3.74
85		1085-85G	1185-85	130,000	20,00	05,10	בוקדע	107,10	12,00	2,00	05000	01000	2000	2,17
05	3₹/16	1085-3¾6G	1185-33/16											
	31/4	1085-31/4G	1185-31/4											
	33/8	1085-33/4G	1185-3%											
	37/16	1085-37/16G	1185-37/16											
85	5.10	1090-85G	1190-85	160,000	30.00	96.00	39.74	111.50	15 00	2.00	96000	71500	1900	4,99
90		1090-90G	1190-90	1.53,550	,00	,		,	,00	_,00			1	- vee
	37/16	1090-37/16G		1										
	31/2	1090-31/2G	1190-31/2											
95	7,500,50	3095-95G	maded at the state of the state	200,000	45,00	117,48	49,31	127,10	16,00	2,50	157000	122000	1600	9,53
100		3095-100G		8				- 2	76	- A				8
	315/16	3095-315/16G												
	4	3095-4G												

Self-Lube-Lagereinsätze Reihen 1000DECG und 1100DEC

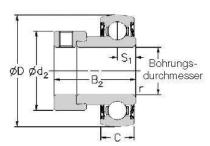
110 ODECMit zylindrischem Außenring und Exzenterring

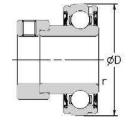

		C	klein	er r sein		5.0	93						
Wellendu	ırchmesser	Kurzze	eichen		Abn	nessung	en (mn	n)		Tragza	hlen	Drehzahl- grenze	Gewich (ca.)
mm	Zoll	Reihe 1000DECG	Reihe 1100DEC	D	c	B3	s2	d2	ſ	dynamisch Cr N	statisch Cor N	min ⁻¹	kg
20		1020-20DECG	1120-20DEC	47,000	14,00	43,73	17,13	33,30	1,00	12800	6650	6700	0,20
	3/4	1020-34DECG	1120-34 DEC										24
25		1025-25DECG	1125-25DEC	52,000	15,00	44,43	17,53	38,10	1,00	14000	7880	6250	0,26
	7/8	1025-%DECG	1125-%DEC										
	15/16	1025-15/16DECG	1125-15/16DEC										
	1	1025-1DECG	1125-1DEC										
30		1030-30DECG	1130-30DEC	62,000	16,00	48,43	18,33	44,50	1,00	19500	11300	5300	0,53
	11/8	1030-11%DECG	1130-1%DEC										
	13/16	1030-1¾16DECG	1130-1¾6DEC										
	11/4	1030-11/4DECG	1130-1¼DEC										
35	7227	1035-35DECG	1135-35 DEC	72,000	17,00	51,13	18,83	55,60	1,00	25700	15300	4500	0,70
	11/4	1035-1¼DECG	1135-11/4DEC										
	13/8	1035-1%DECG	1135-1%DEC										
4.0	17/16	1035-17/16DECG	1135-17/16DEC		40.00	E 2 55	24.42	40.20	4.00	22500	40000	4000	0.00
40	0.5497	1040-40DECG	1140-40DEC	80,000	18,00	56,33	21,43	60,30	1,00	32500	19900	4000	0,82
45	11/2	1040-1½DECG	1140-1½DEC	05.000	40.00	E (24.42	4D F0	4.00	22500	20500	2700	* * * *
45	407	1045-45DECG	1145-450EC	85,000	19,00	56,33	21,43	63,50	1,00	32500	20500	3700	1,08
	15/8	1045-1%DECG	1145-1%DEC										
	111/16	1045-111/46DECG	1145-111/46DEC										
50	13/4	1045-1¾DECG	1145-1¾DEC	00000	20.00	23.75	54.44	×0.00	4.00	25000	22200	3400	4.40
50	477	1050-50DECG	1150-50DEC	90,000	20,00	62,73	24,64	69,90	1,00	35000	23200	3400	1,19
	17/8	1050-1%DECG	1150-1%DEC										
rr	115/16	1050-115/16DECG	4.000.000.000.000.000.000.000.000.000	100.000	24.00	74.43	27.04	77.70	1.50	43500	20200	2400	1.40
55		1055-55DECG	1155-55 DEC	100,000	21,00	71,42	27,84	76,20	1,50	43500	29200	3100	1,40
	2	1055-20ECG	1155-2DEC										
	21⁄8 2₹/16	1055-2%DECG	1155-2%DEC										
60	∠#16	1055-2¾6DECG 1060-60DECG	1155-2∛₁₅DEC 1160-60DEC	110 000	22.00	77.04	31.04	04.20	1.50	48000	33000	2800	177
00	21/4	1060-800ECG	1160-60DEC	110,000	22,00	11,84	31,04	84,20	1,50	48000	33000	2800	1,72
	23/8	1060-2 %DECG	1160-2%DEC										-
	27/16	1060-27/16DECG	1160-2%DEC										
	21/2	1065-21/2DECG	1165-21/2DEC	120,000	23.00	85,74	34,14	92,00	1,50	57500	40000	2600	2,21
65	272	1070-65DECG	1170-65DEC	125,000	110000000000000000000000000000000000000	85,74	34,14	97,00	1.50	61000	45000	2450	2,56
70		1070-030ECG	1170-030EC	123,000	24,00	03,14	-A, IA	27,00	1,50	01000	45000	2450	2,30
EV.	21/2	1070-21/2DECG	1170-21/2DEC										
	2%	1070-2%DECG	1170-2 % DEC										
	211/16	1070-211/16DECG											
65	20010	1075-65DECG	1175-65DEC	130,000	25.00	92,14	37,34	102,00	1.50	66000	49500	2300	2,94
70		1075-70 DECG	1175-70DEC	120,000	22,00	24,17	21,24	102,00	,,,,,	00000	72500	2500	L,7-1
75		1075-75DECG	1175-75DEC										
11.00	211/16	1075-211/16DECG	1175-211/46DEC										
	23/4	1075-234DECG	1175-234DEC										
	27/8	1075-2%DECG	1175-2%DEC										
	215/16		1175-215/16DEC										

Self-Lube-Lagereinsätze Reihen 1200G und 1300

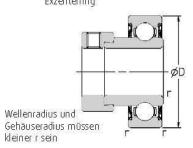
Mit balligem Außenring und Gewindestiften, nachschmierbar

1200G


1300 Mit zylindrischem Außenring und Gewindestiften

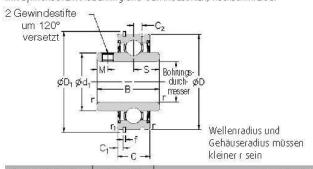

Wellendo	urchmesser	Kurzze	eichen		А	bmess	ungen	(mm)			Tragza	hlen	Drehzahl- grenze	Gewicht (ca.)
mm	Zoll	Reihe 1200G	Reihe 1300	D	c	B1	s 1	d1	M	r	dynamisch Cr N	statisch Cor N	min ⁻¹	kg
20		1220-20G	1320-20	47,000	14,00	25,80	7,53	28,30	5,00	1,00	12800	6650	6700	0,10
	3/4	1220-3/4G	1320-3/4											
25		1225-256	1325-25	52,000	15,00	27,30	7,53	34,00	5,00	1,00	14000	7880	6250	0,13
	1	1225-1G	1325-1											
30		1230-30G	1330-30	62,000	16,00	31,20	9,03	40,30	5,00	1,00	19500	11300	5300	0,32
	11/4	1230-11/4G	1330-11/4											
35		1235-35G	1335-35	72,000	17,00	34,90	9,53	46,90	6,50	1,00	25700	15300	4500	0,43
	11/4	1235-1¼G	1335-11/4											
40		1240-40G	1340-40	80,000	18,00	41,20	11,03	52,40	8,00	1,00	32500	19900	4000	0,54
	11/2	1240-11/2G	1340-11/2											
45		1245-45 G	1345-45	85,000	19,00	41,20	11,04	57,40	8,00	1,00	32500	20500	3700	0,61
	13/4	1245-1¾G	1345-13/4											
50		1250-50G	1350-50	90,000	20,00	43,50	11,04	62,40	10,00	1,00	35000	23200	3400	0,76

Self-Lube-Lagereinsätze Reihen 1200EC und 1200ECG Reihe 1300EC


1200ECMit balligem Außenring und Exzenterring

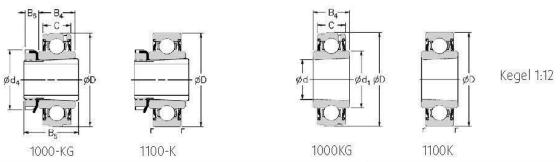
1200ECGMit balligem Außenring und Exzenterring, nachschmierbar

1300EC Mit zylindrischem Außenring und Exzenterring



Wellendu	ırchmesser		Kurzzeichen		0	Abme	ssung	jen (i	mm)		Tragzal	hlen	Drehzahl- grenze	Gewicht (ca.)
mm	Zoll	Reihe 1200EC	Reihe 1200ECG	Reihe 1300EC	D	C	B2	s 1	d2	r	dynamisch Cr N	statisch Cor N	min ⁻¹	kg
12		1217-12EC	1217-12ECG	1317-12EC	40,000	12,00	28,63	6,53	28,60	0,60	9550	4800	7000	0,15
15		1217-15EC	1217-15ECG	1317-15EC										
16		1217-16EC	1217-16ECG	1317-16EC										
17		1217-17EC	1217-17ECG	1317-17EC										
	1/2	1217-1/2EC	1217-1/2ECG	1317-1/2EC										
	5/8	1217-%EC	1217-%ECG	1317-%EC										
20		1220-20EC	1220-20ECG	1320-20EC	47,000	14,00	31,03	7,53	33,30	1,00	12800	6650	6700	0,16
	3/4	1220-34EC	1220-34ECG	1320-34EC										
25		1225-25EC	1225-25ECG	1325-25EC	52,000	15,00	31,03	7,53	38,10	1,00	14000	7880	6250	0,23
	7/8	1225-%EC	1225-7 ₈ ECG	1325-%EC										
	15/16	1225-15/16EC	1225-15/16ECG	1325-15/16EC										
	1	1225-1EC	1225-1ECG	1325-1EC										
30		1230-30EC	1230-30ECG	1330-30EC	62,000	16,00	35,73	9,03	44,50	1,00	19500	11300	5300	0,40
	11/8	1230-1%EC	1230-11%ECG	1330-1%EC										
	13/16	1230-1∛16EC	1230-1¾6ECG	1330-1¾₁6EC										
	11/4	1230-1¼EC	1230-1¼ECG	1330-1¼EC										
35		1235-35EC	1235-35ECG	1335-35EC	72,000	17,00	38,93	9,53	55,60	1,00	25700	15300	4500	0,58
	11/4	1235-1¼EC	1235-1¼ECG	1335-1¼EC										
	13/8	1235-1%EC	1235-1%ECG	1335-1%EC										
	17/16	1235-17/16EC	1235-17/16ECG	1335-17/16EC										
40		1240-40EC	1240-40ECG	1340-40EC	80,000	18,00	43,73	11,03	60,30	1,00	32500	19900	4000	0,73
	11/2	1240-11/2EC	1240-1½ECG	1340-1½EC										
45		1245-45EC	1245-45ECG	1345-45EC	85,000	19,00	43,73	11,03	63,50	1,00	32500	20500	3700	0,87
	1%	1245-1%EC	1245-1%ECG	1345-1%EC										
	111/16	1245-111/16EC	1245-111/16ECG	1345-111/16EC										
	13/4	1245-13/4EC	1245-13/4ECG	1345-1¾EC										
50		1250-50EC	1250-50ECG	1350-50EC	90,000	20,00	43,73	11,04	69,90	1,00	35000	23200	3400	0,98
	17/8	1250-1%EC	1250-1%ECG	1350-1%EC										
	1 ¹ 5⁄16	1250-115/16EC	1250-115/16ECG	1350-115/16EC										
	2	1250-2EC	1250-2ECG	1350-2EC										

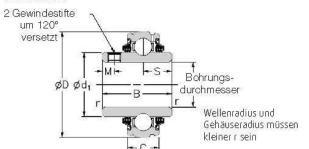
Self-Lube-Lagereinsätze komplett mit Sprengring Reihe 1100CG


1100CG

Mit zylindrischem Außenring und Gewindestiften, nachschmierbar

Wellend	urchmesser	Kurzzeichen				Д	bmes	sunge	n (mr	n)					Tragzal	hlen	Drehzahl- grenze	Gewicht (ca.)
mm	Zoll	Reihe 1100CG	D	D1	C	C1	Q	В	s	d1	f	M	r	r1	dynamisch Cr N	statisch Cor N	min ⁻¹	kg
20		1120-20CG	47,000	52,68	15,88	2,39	4,17	31,00	12,73	28,30	1,12	5,00	1,00	0,50	12800	6650	6700	0,23
	3/4	1120-3/4CG																
25		1125-25 CG	52,000	57,81	19,05	2,39	4,39	34,10	14,33	34,00	1,12	5,00	1,00	0,50	14000	7880	6250	0,31
	7/8	1125-%CG																
	15/16	1125-15/16CG																
	1	1125-1CG																
30		1130-30CG	62,000	67,69	22,22	3,18	5,10	38,10	15,93	40,30	1,70	5,00	1,00	0,50	19500	11300	5300	0,42
	11/8	1130-1%CG																
	1₹16	1130-1¾6CG																
35		1135-35CG	72,000	78,51	23,81	3,18	5,61	42,90	17,53	46,90	1,70	6,50	1,00	1,00	25700	15300	4500	0,61
	11/4	1135-1¼CG																
	13/8	1135-1%CG																
	17/8	1135-17/16CG																
40		1140-40CG	80,000	86,51	27,78	3,18	6,22	49,20	19,03	52,40	1,70	8,00	1,00	1,00	32500	19900	4000	0,91
	11/2	1140-1½CG																
45		1145-45CG	85,000	91,51	27,78	3,18	6,52	49,20	19,04	57,40	1,70	8,00	1,00	1,00	32500	20500	3700	1,05
	1%	1145-1%CG																
	111/16	1145-111/16CG																
	13/4	1145-1¾CG																
	17/8	1150-1%CG	90,000	96,49	28,58	3,18	6,72	51,59	19,10	62,40	2,46	10,00	1,00	1,00	35000	23200	3400	1,10
	1 ¹⁵ /16	1150-115/16CG																
55		1155-55CG	100,00	106,50	30,16	3,18	7,43	55,60	22,20	68,90	2,46	10,00	1,00	1,00	43500	29200	3100	1,50
	2	1155-2CG																
	23/16	1155-2¾6CG	4															

Self-Lube-Lagereinsätze mit Spannhülsen Reihen 1000-KG und 1100-K

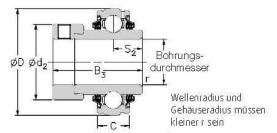

Wellend	urchmesser	Kurzzeichen		Hülse, Mutter und Unterleg- scheibe	Haupte ohne Mut und Fee	Hülse, Iter	Al	omessungen (mr	n)
mm	Zoll	Reihe 1000-KG	Reihe 1100-K		1000KG	1100K	D	C	84
20		1025-20KG	1125-20K	H3 05	1025KG	1125K	52,000	15,00	19,00
	3/4	1025-3/4KG	1125-34K	HE305-3/4					
25		1030-25KG	1130-25K	H306	1030KG	1130K	62,000	16,00	20,00
	15/16	1030-15/16KG	1130-15/16K	HE306-15/16					
	1	1030-1KG	1130-1K	HE306-1					
30		1035-30KG	1135-30K	H3 07	1035KG	1135K	72,000	17,00	21,00
	11/8	1035-11/8KG	1135-11/sK	HE307-11/8					
	13/16	1035-1¾6KG	1135-1¾₁₅K	HE307-13/16					
35		1040-35KG	1140-35K	H308	1040KG	1140K	80,000	18,00	22,00
	11/4	1040-1¼KG	1140-1¼K	HE308-11/4					
	13/8	1040-1%KG	1140-1%K	HE308-1%					
40		1045-40KG	1145-40K	H309	1045KG	1145K	85,000	19,00	23,00
	17/16	1045-17/16KG	1145-17/16K	HE309-17/16					
	11/2	1045-11/2KG	1145-11/2K	HE309-11/2					
45		1050-45KG	1150-45K	H310	1050KG	1150K	90,000	20,00	24,00
	111/16	1050-111/16KG	1150-111/16K	HE310-111/16					
	13/4	1050-134KG	1150-1¾K	HE310-13/4					
50		1055-50KG	1155-50K	H311	1055KG	1155K	100,000	21,00	25,00
	1 ¹ 5⁄16	1055-115/16KG	1155-115/16K	HE311-115/16					
	2	1055-2KG	1155-2K	HE311-2					

		Abmessun	gen (mm)			Tragza	hlen	Orehzahl- grenze	Gewich (ca.)
85	В6	d	d1	d4	r	dynamisch Cr N	statisch Cor N	min ⁻¹	kg
29,00	8,00	25,000	34,00	38,00	1,00	14000	7880	6250	0,20
31,00	8,00	30,000	40,30	45,00	1,00	19500	11300	5300	0,30
35,00	9,00	35,000	46,90	52,00	1,00	25700	15300	4500	0,42
36,00	10,00	40,000	52,40	58,00	1,00	32500	19900	4000	0,54
39,00	11,00	45,000	57,40	65,00	1,00	32500	20500	3700	0,64
42,00	12,00	50,000	62,40	70,00	1,00	35000	23200	3400	0,75
45,00	12,00	55,000	68,90	75,00	1,50	43500	29200	3100	0,95

Self-Lube-Lagereinsätze mit Dreifachdichtung Reihe T1000G

T1000G

Mit balligem Außenring und Gewindestiften, nachschmierbar

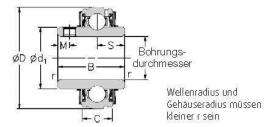

		CI								30			66
Wellendu	rchmesser	Kurzzeichen			Abmess	ungen (mm)			Tragza		Drehzahl- grenze	Gewicht (ca.)
mm	Zoll		D	C	В	s	d1	M	r	dynamisch Cr N	statisch Cor N	min ⁻¹	kg
25		T1025-25G	52,000	15,00	34,10	14,33	34,00	5,00	1,00	14000	7880	1000	0,17
	7/8	T1025-%G											
	15/16	T1025-15/16G											
	1	T1025-1G											
25		T1030-25G	62,000	18,00	38,10	15,93	40,30	5,00	1,00	19500	11300	850	0,37
30		T1030-30G											
	7/8	T1030-%G											
	1	T1030-1G											
	11//8	T1030-1%G											
	13/16	T1030-1¾6G											
	11/4	T1030-1¼G										20010000000	THE PARTY CONT.
30		T1035-30G	72,000	19,00	42,90	17,53	46,90	6,50	1,00	25700	15300	750	0,51
35		T1035-35G											
	13/16	T1035-1¾6G											
	11/4	T1035-1¼G											
	13/8	T1035-1%G											
	17/16	T1035-17/16G											
35		T1040-35G	80,000	21,00	49,20	19,03	52,40	8,00	1,00	32500	19900	650	0,64
40	ani	T1040-40G											
	13/8	T1040-1%G											
	17/16	T1040-17/16G											
100	11/2	T1040-1½G	05.000	22:00	40.00	10.01	57.40	0.00	4.00	22500	20500	700	0.70
40		T1045-40G	85,000	22,00	49,20	19,04	57,40	8,00	1,00	32500	20500	600	0,73
45	417	T1045-45G											
	1½ 1%	T1045-1½G T1045-1%G											
	111/16	T1045-1-78G											
	13/4	T1045-1-716G											
45	1-74	T1050-45G	90,000	23,00	51,60	19,04	62,40	10,00	1,00	35000	23200	550	0,91
50		T1050-50G	70,000	23,00	31,00	12,04	02,40	10,00	100	33000	23200	330	0,21
50	111/16	T1050-111/46G											
	13/4	T1050-13/4G											
	17/8	T1050-1%G											
	115/16	T1050-115/16G											
	2	T1050-2G											
50	-	T1055-50G	100,000	25,00	55,60	22,24	68,90	10,00	1,50	43500	29200	500	1,12
55		T1055-55G	,5 5,000	22,00	22,00		,,,,	1,5/0 0	,,=0	.5500	22.200	2.0.0	5378148
25550	17/8	I1055-1%G											
	115/16	T1055-115/16G											
	2	T1055-2G											
	21/8	T1055-21/8G											
	2¾16	T1055-2¾6G											

Wellendurchmesser		Kurzzeichen			Abme	ssungen	Tragzahlen		Orehzahl- grenze	Gewicht (ca.)			
mm	Zoll		D	C	8	s	d1	M	r	dynamisch Cr N	statisch Cor N	No. of Contract of	kg
55		T1060-55G	110,000	25,00	65,10	25,44	76,00	10,00	1,50	48000	33000	450	1,50
60		T1060-60G											
	2₹16	T1060-2∛16G											
	21/4	T1060-21/4G											
	23/8	T1060-2%G											
	27/16	T1060-27/16G											
60		T1070-60G	125,000	28,00	74,60	30,24	89,00	12,00	1,50	61000	45000	400	2,30
65		T1070-65G											
70		T1070-70G											
	27/16	T1070-27/16G											
	21/2	T1070-21/2G											
	25/8	T1070-2%G											
	211/16	T1070-211/16G											
75		T1080-75G	140,000	30,00	82,60	33,34	100,00	12,00	2,00	71500	54500	345	3,27
80		T1080-80G											
	215/16	T1080-215/16G											
	3	T1080-3G											

Self-Lube-Lagereinsätze mit Dreifachdichtung Reihe T1000DECG

T1000DECG

Mit balligem Außenring und Exzenterring, nachschmierbar

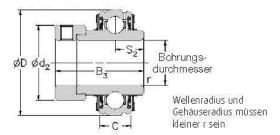


Wellendurchmesser		Kurzzeichen		,	Abmessun	igen (mm	Tragzahlen		Drehzahl- grenze	Gewicht (ca.)		
mm	Zoll		D	c	B3	s2	d2	ř	dynamisch Cr N	statisch Cor N	min ⁻¹	kg
25		T1025-25DECG	52,000	15,00	44,43	17,53	38,10	1,00	14000	7880	1000	0,26
	7/8	T1025-%DECG										
	¹ 5⁄ ₁₆	T1025-15/16DECG										
	1	T1025-1DECG										
30		T1030-30DECG	62,000	18,00	48,43	18,33	44,50	1,00	19500	11300	850	0,53
	11/8	T1030-1%DECG										
	13/16	T1030-1∛16DECG										
	11/4	T1030-11/4DECG										
35		T1035-35DECG	72,000	19,00	51,13	18,83	55,60	1,00	25700	15300	750	0,70
	11/4	T1035-1¼DECG										
	13/8	T1035-1%DECG										
	17/16	T1035-17/16DECG										
40		T1040-40DECG	80,000	21,00	56,33	21,43	60,30	1,00	32500	19900	650	0,82
	11/2	T1040-11/2DECG										
45		T1045-45DECG	85,000	22,00	56,33	21,43	63,50	1,00	32500	20500	600	1,08
	15/8	T1045-1%DECG										
	111/16	I1045-111/16DECG										
	13/4	T1045-1¾DECG										
50		T1050-50DECG	90,000	23,00	62,73	24,64	69,90	1,00	35000	23200	550	1,19
	17/8	T1050-1%DECG										
	1 ¹ ≸16	11050-115/16DECG										
55		T1055-55DECG	100,000	25,00	71,42	27,84	76,20	1,50	43500	29200	500	1,40
	2	T1055-2DECG										
	21/8	T1055-21%DECG										
	2¾16	T1055-23/16DECG										
60		T1060-60DECG	110,000	25,00	77,84	31,04	84,20	1,50	48000	33000	450	1,81
	21/4	T1060-21/4 DECG										
	27/16	T1060-27/16DECG										
65		T1070-65 DECG	125,000	28,00	85,74	34,14	97,00	1,50	61000	45000	400	2,49
70		T1070-70DECG										

Self-Lube-Lagereinsätze mit Schleuderscheiben Reihe 1000GFS

1000GFS

Mit balligem Außenring und Gewindestiften, nachschmierbar

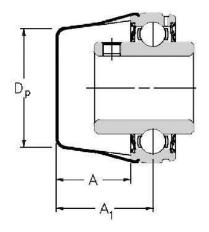

Wellend	urchmesser	Kurzzeichen			Abme:	ssungen	(mm)			Tragza	hlen	Drehzahl- grenze	Gewicht (ca.)
mm	Zoll		D	c	В	s	d1	M	ř	dynamisch Cr N	statisch Cor N	grenze (ca min¹ kg 6250 0,1 5300 0,3 4500 0,5 4500 0,5 6250 0,7	kg
25		1025-25GFS	52,000	15,00	34,10	14,33	34,00	5,00	1,00	14000	7880	6250	0,17
	7∕8	1025-%GFS	100										
	15/16	1025-15/16GFS											
25	1	1025-1GFS	V2.000	4100	20.40	**	10.20	F.00	100	40500	442.00	53.00	0.77
25		1030-25GFS	62,000	16,00	38,10	15,93	40,30	5,00	1,00	19500	11300	5300	0,37
30	7/8	1030-30GFS 1030-%GFS											
	78 1	1030-78GFS											
	11/6	1030-10F3											
	13/16	1030-13/16GFS											
	11/4	1030-1¼GFS											
30		1035-30GFS	72,000	17,00	42,90	17,53	46,90	6,50	1,00	25700	15300	4500	0,51
35		1035-35GFS		- Linkston		- Linda No		108.000	Autoria				3400000000
	13/16	1035-1¾6GFS											-
	11/4	1035-1¼GFS										J.	
	15/16	1035-15/16GFS											
	13/8	1035-1%GFS											
120120	17/16	1035-17/16GFS			1/2/2/2/2/	10000221	1027(5990)	Unorch	10000		72220		120.00
35		1040-35GFS	80,000	18,00	49,20	19,03	52,40	8,00	1,00	32500	19900	4000	0,64
40	497	1040-40GFS											
	13/8	1040-1%GFS											
	1½ 1½	1040-11/16GFS 1040-11/2GFS											
40	192	1045-40GFS	85,000	19.00	49,20	19.04	57,40	8.00	1.00	32500	20500	3700	0,73
45		1045-45GFS	65,000	13,00	47,20	12,04	37,40	0,00	1,00	32300	20300	3700.	0,13
77	11/2	1045-1½GFS											
	15/8	1045-1%GFS											
	111/16	1045-111/16GFS											
	13/4	1045-134GFS											
45		1050-45GFS	90,000	20,00	51,60	19,04	62,40	10,00	1,00	35000	23200	3400	0,91
50	25 34 27 1	1050-50GFS											
	111/16	1050-111/16GFS											
	13/4	1050-1%GFS											
	17/8	1050-1%GFS											
	115/16	1050-115/16GFS											
50	2	1050-2GFS	100000	24.00	FF (0	22.24	10.00	10.00	1.50	13500	20200	2400	443
50 55		1055-50GFS	100,000	21,00	55,60	22,24	68,90	10,00	1,50	43500	29200	3100	1,12
22	17/8	1055-55GFS 1055-1%GFS											
	178 115/16	1055-178GFS											
	2	1055-2GFS											
	21/8	1055-21/4GFS											-
	23/16	1055-23/16GFS											
55		1060-55GFS	110,000	22,00	65,10	25,44	76,00	10,00	1,50	48000	33000	2800	1,47
60		1060-60GFS			- 0	0,	0.5	*	- 0				
	23/16	1060-23/46GFS											
	21/4	1060-21/4GFS											
	23/8	1060-2%GFS											
	27/16	1060-27/16GFS											

Bitte Verfügbarkeit prüfen

SELF-LUBE LAGEREINHEITEN 89

Self-Lube-Lagereinsätze mit Schleuderscheiben Reihe 1000DECGFS

100 ODECGFSMit balligem Außenring und Exzenterring, nachschmierbar



Wellendurchmesser	Kurzzeichen		А	bmessung	jen (mm)			Tragza	hlen	Drehzahl- grenze	Gewicht (ca.)
mm Zoll		D	C	83	\$2	d2	r	dynamisch Cr N	statisch Cor N	min ⁻¹	kg
25	1025-25DECGFS	52,000	15,00	44,43	17,53	38,10	1,00	14000	7880	6250	0,26
7/8	1025-%DECGFS							,			
15/16	1025-15/16DECGFS										
1	1025-1DECGFS										
30	1030-30 DECGFS	62,000	16,00	48,43	18,33	44,50	1,00	19500	11300	5300	0,53
1	1030-1%DECGFS										
1₹16	1030-13/16DECGFS										
11/4	1030-1¼DECGFS										
35	1035-35DECGFS	72,000	17,00	51,13	18,83	55,60	1,00	25700	15300	4500	0,70
11/4	1035-11/4DECGFS										
15/16	1035-15/16DECGFS										
13/8	1035-1%DECGFS										
17/16	1035-17/16DECGFS										
40	1040-40 DECGFS	80,000	18,00	56,33	21,43	60,30	1,00	32500	19900	4000	0,82
11/2	1040-11/2DECGFS										
45	1045-45DECGFS	85,000	19,00	56,33	21,43	63,50	1,00	32500	20500	3700	1,08
15/8	1045-1%DECGFS										
111/16	1045-111/16DECGFS										
13/4	1045-13/4DECGFS										
50	1050-50DECGFS	90,000	20,00	62,73	24,64	69,90	1,00	35000	23200	3400	1,19
1∛s	1050-1%DECGFS										2316
115/16	1050-115/16DECGFS										
55	1055-55 DECGFS	100,000	21,00	71,42	27,84	76,20	1,50	43500	29200	3100	1,40
2	1055-20ECGFS										
21/8	1055-2 1/8 DECGES										
23/16	1055-2 3/40ECGFS										
60	1060-60DECGFS	110,000	22,00	77,84	31,04	84,20	1,50	48000	33000	2800	1,72
21/4	1060-21/4DECGFS							51,000,000,000			
2%	1060-2%DECGFS										
27/16	1060-27/16DECGFS							†			

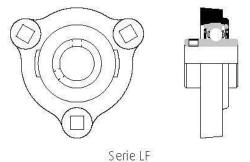
Bitte Verfügbarkeit prüfen

Self-Lube Schutzkappe (Protector)

Kurzzeichen	Abr	Abmessungen (mm)							
	Dp	A	A1	7.002					
20P	37,0	23,0	30,0	1020					
25P	42,5	23,0	30,5	1025					
30P=2	50,5	36,0	44,0	1030					
35P=2	60,5	38,5	47,0	1035					
40P=1	67,5	42,0	51,0	1040					
45P	72,0	30,0	39,5	1045					
50P=1	76,0	46,0	56,0	1050					
55P	85,0	37,5	48,0	1055					
60P	94,0	40,5	51,5	1060					

Die unten stehende Tabelle zeigt die montierbaren Lagereinheiten, die mit einer Schutzkappe (Protector) ausgerüstet werden können, sowie die jeweilige Schutzkappe (Protector) an.

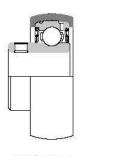
Bohrungs- durchmesser	Self-Lul	be-Einheit											
	NP	SFT	SNP	LFTC	FC	ST	BT	SLFEP	SLFTP	MFC	SCHB	NP-K	MP
	NP-A	SFT-A	SNP-A	LFTC-A	FC-A	ST-A	BT-A	SLFEP-A	SLFTP-A		SCH	MP-K	MSF
	NP-EC	SFT-EC	SNP-EC	LFTC-EC	FC-EC	ST-EC	BT-EC	SLFEP-EC	SLFTP-EC			MSF-K	MSFT
	NP-DEC	SFT-DEC	SNP-DEC	LFTC-DEC	FC-DEC	ST-DEC		SLFEP-DEC	SLFTP-DEC			MSFT-K	MST
	SL	SLC	CNP	SLFLP								MST-K	MSC
	SL-A	SLC-A	CNP-A	SLFLP-A									
	SL-EC	SLC-EC	CNP-EC	SLFLP-EC									
	SL-DEC	SLC-DEC	CNP-DEC	SLFLP-DEC									
	SF												
	SF-A												
	SF-EC												
	SF-DEC												
20, ¾	20P	20P	20P	20P	20P	20P	2	20P	677	8	20P	25P	17/0
25, 7/8, 15/16, 1	25P	25P	25P	25P	25P	25P	25P	25P	25P	30P=2	30P=2	30P=2	30P=2
30, 11/9	30P=2	30P=2	30P=2	30P=2	30P=2	30P=2	=	30P=2	30P=2	35P=2	30P=2	35P=2	35P=2
13/16	30P=2	30P=2	30P=2	30P=2	30P=2	30P=2	-	30P=2	30P=2	35P=2	35P=2	35P=2	35P=2
11/4	35P=2	35P=2	35P=2	30P=2	35P=2	35P=2	35P=2	30P=2	30P=2	35P=2	35P=2	40P=1	35P=2
35, 1%	35P=2	35P=2	35P=2	35P=2	35P=2	35P=2	35P=2	35P=2	35P=2	40P=1	35P=2	40P=1	40P=1
17/16	35P=2	35P=2	35P=2	35P=2	35P=2	35P=2	35P=2	35P=2	35P=2	40P=1	40P=1	45P	40P=1
40, 11/2	40P=1	40P=1	40P=1	÷	40P=1	40P=1	#	40P=1*	A rt i	40P=1	40P=1	45P	45P
45, 1%	45P	45P	45P	2	45P	45P	22	45P*	\$ 21 \$	50P=1	50P=1	50P=1	50P=1
1 11/16, 13/4	45P	45P	45P	2	45P	45P	4	45P*	2	50P=1	50P=1	50P=1	50P=1
50, 17/8, 115/16	50P=1	50P=1	3	3 8	50P=1	50P=1	2	50P=1*	6077	55P	50P=1	55P	55P
2	55P	55P	=	75	55P	55P	7.	55P*		55P	50P=1	55P	55P
55, 21/8, 23/16	55P	55P	=	=	55P	55P	=	55P*	((=)	60P	60P	1 0 0	60P
21/4	60P	60P	ü	÷	60P	60P	ω.	60P*	14	60P	60P	-	60P
60, 23/8, 27/16	60P	60P	2	2	60P	60P	2	60P*	R43	2	60P	844	(49)

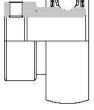

Hinweis 1: Die passende Schutzkappe wird durch die Lagereinsatzgruppe bestimmt. Hinweis 2: Wenn ein Stahlblechgehäuse der Serien SLFL, SLFE oder SLFT mit einer Schutzkappe geliefert wird, weist die Lagerbezeichnung den Buchstaben P auf, z. B. SLFEP-25EC.

SELF-LUBE LAGEREINHEITEN 91

Zusatzprodukte

Serie LF, Serie LFG


Eine Baureihe von Dreiloch-Einheiten mit einem Gehäuse aus Gusseisen mit Kugelgraphit, erhältlich mit Bohrungsdurchmessern von 25 mm bis 35 mm und 1" bis 17/16". Einheiten der Serie LF sind nicht nachschmierbar. Einheiten der Serie LFG verfügen über einen M5-Schmiernippel.



Serie AR-A, Serie AR-EC

Bei der Serie AR handelt es sich um das Lager und die Gummihülse der LPBR-Einheit (Seite 76 und 77). Als Serie für Anwender erhältlich, die eigene Gehäuse verwenden.

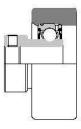
Bohrungsdurchmesser: 12 mm bis 30 mm und $\frac{1}{2}$ " bis $\frac{11}{4}$ ".

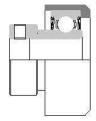
Serie AR-A

Serie AR-EC

Serie SRM-EC

Einheiten mit Gummigehäuse mit Einsätzen vom Typ 1120 oder 1125. Erhältlich mit den Bohrungsdurchmessern 20 mm, $^{3}/_{4}$ ", 25mm, $^{7}/_{8}$ " und 1" mit Exzenterring oder Gewindestift.

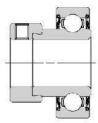

Serie SRM-EC


Serie SRC-EC

Diese Einheiten mit Gummigehäuse sind für Klimaanlagen geeignet. Erhältlich sind jeweils zwei Gehäuse mit einem Außendurchmesser von 64,5 mm und Bohrungsdurchmessern von 20 mm bis 25 mm und $^{3}/_{4}"$ bis 1".

Sondertypen SRC

Bohrungsdurchmesser: 20 mm und ³/₄". Mit Exzenterring erhältlich (SRC11004 bzw. SRC11005).

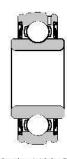


Serie SRC-EC

Sonderserie SRC

Extra leichte Serie 2300-EC

Bei der Serie 2300-EC handelt es sich um eine extra leichte Serie, die auf der 6000 Lagerreihe basiert. Erhältlich mit den Bohrungsdurchmessern 20 mm bis 30 mm und $^3/_4$ " bis $^{13}/_{16}$ ".


Extra leichte Serie 2300-EC

Serie 1600-G, Serie 1600-HG

Eine Baureihe von Rillenkugellagern mit breitem Innenring und balligem Außenring mit runden oder Sechskantbohrungen.

Diese Lager sind nachschmierbar und mit runden Bohrungen mit einem Durchmesser von 20 mm bis 75 mm und $^3/_4$ " bis $2^{15}/_{16}$ " sowie mit Sechskantbohrungen mit $^7/_8$ " SW bis $^{11}/_2$ " SW und 22 mm SW bis 38 mm SW erhältlich. Runde Bohrungen ermöglichen eine feste Passung auf der Welle.

Diese Lager sind mit Self-Lube Standardkäfigen und -dichtungen ausgerüstet.

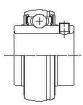
Serie 1600-G

Serie 1600-HG

Serie 1700, Serie 1700-H

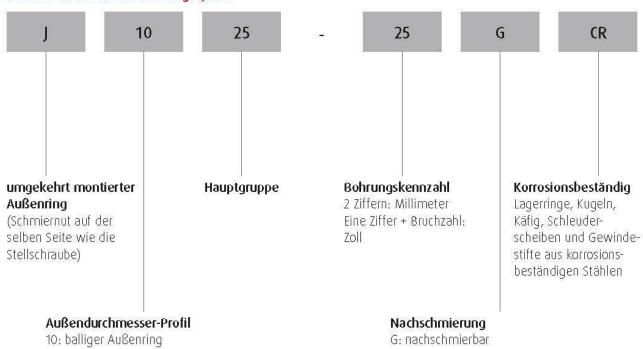
Wie 1600-G und 1600-HG, jedoch mit zylindrischem Außenring. Diese Baureihe ist nicht nachschmierbar. Auch hier ermöglichen runde Bohrungen eine feste Passung auf der Welle.

Serie 1700


Serie 1700-H

Silver-Lube Lagereinheiten

Silver-Lube-Einheit


Typ Einsatz

Typ Gehäuse

	Seite	100	
	102	PNP	
	104	PSF	
000	106	PSFT	
	108	PST	

Silver-Lube-Einsatz Bezeichnungssystem

96

Silver-Lube-Produktreihe

Einleitung

Bei der Silver-Lube-Serie handelt es sich um korrosionsbeständige Lager, die speziell für den Einsatz in Industrien geeignet sind, in denen häufiges Druckspülen erforderlich ist, optimale Hygienezustände gefordert werden und eine hohe chemische Beständigkeit in einem großen Temperaturbereich wichtig ist.

Die Lagereinheiten sind als Stehlager, Flanschlager (mit zwei oder vier Befestigungslöchern) oder Spannlager erhältlich und zudem in der Lage, anfängliche Ausrichtungsfehler durch Montagefehler auszugleichen. In der Praxis haben sich die Lagereinheiten selbst unter schwierigsten Bedingungen als höchst verlässlich erwiesen. Für eine lange Lebensdauer ohne Ausfälle ist Nachschmieren möglich, wodurch der Wartungs-aufwand verringert und die Produktivität erhöht wird und gleichzeitig die Hygienestandards eingehalten werden können.

Die Silver-Lube-Gehäuse werden aus thermoplastischem PBT-Harz gefertigt. Sie sind beständig gegen Reinigungsmittel und viele andere Chemikalien und darüber hinaus korrosionsbeständig. Die Gehäuse verfügen weder über eine Beschichtung noch über einen Anstrich, sodass Abblätterungen und Abplatzungen vermieden werden. Außerdem verfügen sie über glatte Oberflächen für gründliche Spülungen.

Silver-Lube-Lagereinsätze werden aus rostfreiem Stahl gefertigt, mit effektiven und funktionstüchtigen Dichtungen ausgestattet und standardmäßig mit einem aluminiumbasierten, hochtemperaturerprobten, lebens-mittelgeeigneten Schmierfett befüllt.

Gehäusefestigkeit

Die Gehäusetragfähigkeit variiert je nach dem Belastungsbereich des jeweiligen Anwendungsfalls, die intermittierend, konstant oder veränderlich auf das Gehäuse wirken kann. Die maximalen Gehäuselasten werden in den Tabellen 1, 2, 3 und 4 angegeben. Diese Lasten dürfen ohne vorherige Beratung durch NSK nicht überschritten werden.

Die aufgeführten maximalen Gehäuselastkapazitäten schließen mögliche Reduzierungen dieser Werte durch Faktoren wie Chemikalien, Wasser, Dampf, Hitze, ultraviolettes Licht oder eine Kombination dieser genannten Faktoren nicht mit ein. Falls diese Faktoren in einer der Anwendungen auftreten, muss der Konstrukteur oder der Endverbraucher die Wirkung dieser Faktoren mit einbe-ziehen und die angegebenen maximalen Gehäuselasten entsprechend reduzieren.

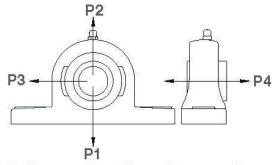
Um eine maximale Gehäusetragfähigkeit zu erhalten, wird empfohlen, zusätzlich zu den Befestigungsschrauben Unterlegscheiben zu verwenden. Die Tabellen 1, 2 und 3 geben zudem maximale Anzugsdrehmomente für die Befestigungsschrauben an.

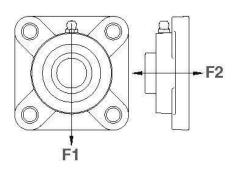
Erzeugung statischer Elektrizität

Unter bestimmten Anwendungsbedingungen können Silver-Lube-Lagereinheiten statische Elektrizität erzeugen. Silver-Lube-Lager sollten daher nicht in explosiven oder entzündlichen Umgebungen eingesetzt werden. Falls Sie dennoch Silver-Lube-Lagereinheiten in explosiven oder entzündlichen Anwendungen einsetzen möchten, müssen diese geerdet werden.

Gehäusefestigkeit

Reihe PNP




Tabelle 1 PNP Silver-Lube-Stehlager – Gehäusetragfähigkeit

Kurz	Maximale Gehäusebelastung (N) bei 20°C												
zeichen	P1			P2			Р3			P4			Anzugs- moment (Nm)
	Intermit- tierende Belas- tung	Kon- stante Belas- tung	Veränder- liche Belastung										
PNP20CR	3500	1700	800	2800	1400	800	2600	1300	700	1300	700	400	18
PNP34CR	3500	1700	800	2800	1400	800	2600	1300	700	1300	700	400	18
PNP25CR	4000	2000	1000	3100	1500	800	2600	1300	700	1700	900	500	25
PNP1CR	4000	2000	1000	3100	1500	800	2600	1300	700	1700	900	500	25
PNP30CR	5000	2500	1200	3500	1800	1000	4000	2000	1100	2600	1300	700	30
PNP1¾6CR	5000	2500	1200	3500	1800	1000	4000	2000	1100	2600	1300	700	30
PNP1¼RCR	5000	2500	1200	3500	1800	1000	4000	2000	1100	2600	1300	700	30
PNP35CR	6000	3000	1500	4300	2100	1200	4100	2100	1100	3200	1600	900	35
PNP1¼CR	6000	3000	1500	4300	2100	1200	4100	2100	1100	3200	1600	900	35
PNP17/16CR	6000	3000	1500	4300	2100	1200	4100	2100	1100	3200	1600	900	35
PNP40CR	10700	5300	2900	8000	4000	2200	6800	3400	1900	5200	2600	1400	40
PNP11/2CR	10700	5300	2900	8000	4000	2200	6800	3400	1900	5200	2600	1400	40

Tabelle 2 PSF Silver-Lube-Flansch, vierloch – Gehäusetragfähigkeit

Kurzzeichen	N	Maximale Gehäusebelastung (N) bei 20°C										
		F1			F2							
	Intermit- tierende Belas- tung	Kon- stante Belas- tung	Veränder- liche Belastung	Intermit- tierende Belas- tung	Kon- stante Belas- tung	Veränder- liche Belastung						
PSF20CR	3100	1600	900	1300	700	400	18					
PSF¾CR	3100	1600	900	1300	700	400	18					
PSF25CR	3500	1700	1000	1300	700	400	25					
PSF1CR	3500	1700	1000	1300	700	400	25					
PSF30CR	4600	2300	1300	2200	1100	600	30					
PSF1¾6CR	4600	2300	1300	2200	1100	600	30					
PSF1¼RCR	4600	2300	1300	2200	1100	600	30					
PSF35CR	6200	3100	1700	2600	1300	700	35					
PSF1¼CR	6200	3100	1700	2600	1300	700	35					
PSF17/16CR	6200	3100	1700	2600	1300	700	35					
PSF40CR	6200	3100	1700	4000	2000	1100	40					
PSF1½CR	6200	3100	1700	4000	2000	1100	40					

Reihe PSF

98

Reihe PSFT

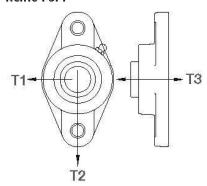


Tabelle 3 PSFT Silver-Lube-Flansch, zweiloch – Gehäusetragfähigkeit

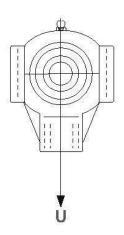

Kurz- zeichen	Maximale Gehäusebelastung (N) bei 20°C												
Zeichen	T1				Т2			Т3					
	Intermit- tierende Belastung	Konstante Belastung	Veränder- liche Belastung	Intermit- tierende Belastung	Konstante Belastung	Veränder- liche Belastung	Intermit- tierende Belastung	Konstante Belastung	Veränder- liche Belastung				
PSFT20CR	4400	2200	1200	1900	900	500	1300	700	400	18			
PSFT¾CR	4400	2200	1200	1900	900	500	1300	700	400	18			
PSFT25CR	4400	2200	1200	3000	1500	800	1400	700	400	25			
PSFT1CR	4400	2200	1200	3000	1500	800	1400	700	400	25			
PSFT30CR	5900	2900	1600	3300	1600	900	2000	1000	500	30			
PSFT1¾6CR	5900	2900	1600	3300	1600	900	2000	1000	500	30			
PSFT1¼RCR	5900	2900	1600	3300	1600	900	2000	1000	500	30			
PSFT35CR	6400	3200	1700	3900	2000	1100	2800	1400	800	35			
PSFT1¼CR	6400	3200	1700	3900	2000	1100	2800	1400	800	35			
PSFT17/16CR	6400	3200	1700	3900	2000	1100	2800	1400	800	35			
PSFT40CR	9000	4500	2500	3900	2000	1100	3300	1600	900	40			
PSFT1½CR	9000	4500	2500	3900	2000	1100	3300	1600	900	40			

Tabelle 4 PST Silver-Lube-Spannlager – Gehäusetragfähigkeit

Kurzzeichen	Max	imale Gehäusebelastung ((N) bei 20°C
	V Intermittierende Belastung	U Konstante Belastung	U Veränderliche Belastung
PST20CR	5700	2800	1600
PST¾CR	5700	2800	1600
PST25CR	5400	2700	1500
PST1CR	5400	2700	1500
PST30CR	8100	4000	2300
PST1¾16CR	8100	4000	2300
PST1¼RCR	8100	4000	2300
PST35CR	7800	3900	2200
PST1¼CR	7800	3900	2200
PST17/16CR	7800	3900	2200
PST40CR	8100	4000	2300
PST1½CR	8100	4000	2300

Beachten Sie, dass es für Spannlager keine maximalen Anzugsmomente gibt.

Reihe PST

SELF-LUBE LAGEREINHEITEN 99

Silver-Lube-Lagereinsätze

Silver-Lube-Lagereinsätze verfügen über Ringe und Kugeln aus martensitischem rostfreien Stahl sowie über einen Käfig, Schleuderscheiben und Gewindestifte aus austenitischem rostfreien Stahl.

Außerdem ist die Silikondichtung haltbar und Temperaturbeständig.

Das Schmierfett in diesem Produkt ist ein aluminiumbasiertes Schmierfett für Lebensmittelanwendungen mit der NSF-Klasse H1. Für den Fall, dass eine Nachschmierung notwendig sein sollte, ist diese Schmierfettart für die Nachschmierung als erste Option zu wählen.

Falls kein aluminiumbasiertes Schmierfett für Lebensmittelanwendungen erhältlich ist, muss sichergestellt werden, dass das Fett NSF H1 klassifiziert ist und wenn möglich mit dem ursprünglichen Fett chemisch kompatibel ist. Falls die chemische Kompatibilität nicht sichergestellt werden kann, wird empfohlen, dass das ursprüngliche Schmierfett vor der Nachschmierung vollständig aus dem System gespült wird. Wenden Sie sich gegebenenfalls an NSK.

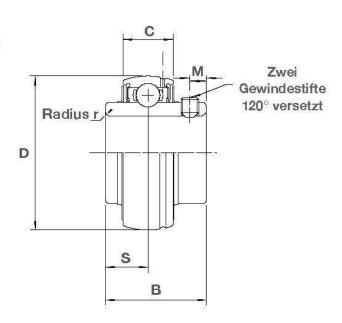


Tabelle 5 Bezeichnung, Abmessung und Masse der Lagereinsätze

Einheiten: mm

Kurzzeichen	Bohrungs- ø	D	c	В	S	ř	M	ς (N)	C _{or} (N)	Masse (Kg)
J1020-20GCR	20	47	17	31,0	12,7	0,5	5,0	9910	5350	0,16
J1020-¾GCR	3/411	47	17	31,0	12,7	0,5	5,0	9910	5350	0,16
J1025-25GCR	25	52	17	34,1	14,3	0,5	5,0	10820	6300	0,20
J1025-1GCR	100	52	17	34,1	14,3	0,5	5,0	10820	6300	0,20
J1030-30GCR	30	62	19	38,1	15,9	0,5	5,0	15000	9050	0,32
J1030-1¾6GCR	13/1611	62	19	38,1	15,9	0,5	5,0	15000	9050	0,32
J1030-1¼GCR	11/4"	62	19	38,1	15,9	0,5	5,0	15000	9050	0,32
J1035-35GCR	35	72	20	42,9	17,5	1,0	6,5	19820	12300	0,48
J1035-11/4GCR	11/4"	72	20	42,9	17,5	1,0	6,5	19820	12300	0,48
J1035-17/16GCR	17/1611	72	20	42,9	17,5	1,0	6,5	19820	12300	0,48
J1040-40GCR	40	80	21	49,2	19,0	1,0	8,0	22540	14300	0,64
J1040-11/2GCR	11/2"	80	21	49,2	19,0	1,0	8,0	22540	14300	0,64

Wellentoleranzbereiche und Drehzahlen

Die höchstzulässige Drehzahl des Lagereinsatzes hängt vom Toleranzbereich der Welle ab. Wenn Sie Anwendungen mit höheren Drehzahlen wünschen, empfehlen wir einen Wellentoleranzwert nach ISO h7. Ein Wellentoleranzwert nach ISO h9 kann auch für Anwendungen mit geringen Drehzahlen verwendet werden. Weitere Informationen in Tabelle 6.

Tabelle 6 Wellentoleranzen und Drehzahlen

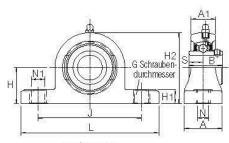
Lagereinsatz	Drehzahlgrenze (min¹)	Wellentoleranzwert ISO h7 (0.001 mm) max.	Wellentoleranzwert ISO h7 (0.001 mm) min.	Drehzahlgrenze (min¹)	Wellentoleranzwert IS 0 h9 (0.001 mm) max.	Wellentoleranzwert ISO h9 (0.001 mm) min.
J1020	2900	0	-21	1490	0	-52
J1025	2600	0	-21	1300	0	-52
J1030	2180	0	-21	1090	Ö	-52
J1035	1870	0	-25	940	0	-62
J1040	1650	0	-25	830	0	-62

100

Materialien und Anzugsmomente

Materialien

	Teile	Materialien
	Lagerringe	Martensitischer rostfreier Stahl (entspricht SUS440C)
	Kugel	Martensitischer rostfreier Stahl (entspricht SUS440C)
Lager	Schleuderscheibe	Austenitischer rostfreier Stahl (entspricht SUS302)
	Dichtung	Silikon
	Gewindestift	Austenitischer rostfreier Stahl (entspricht SUS304)
	Käfig	Austenitischer rostfreier Stahl (entspricht SUS302)
Lagergehäuse		Thermoplastsicher Kunststoff PBT


Anzugsmomente für Gewindestifte

Die Gewindestifte für Silver-Lube-Lagereinsätze werden aus rostfreiem Stahl gefertigt und können brechen, falls sie zu fest angezogen werden. Die Grenzwerte der in Tabelle 7 aufgelisteten Anzugsmomente sollten nicht überschritten werden.

Tabelle 7 Empfohlene Anzugsmomente für Gewindestifte

Kurzzeichen	Bezeichnung der Gewindestifte	Höchstwerte für Anzugsmomente (Nm)
J1020-20GCR	M6 X 6.0	4
J1020-34GCR	M6 X 6.0	4
J1025-25GCR	M6 X 6.0	4
J1025-1GCR	M6 X 6.0	4
J1030-30GCR	M6 X 6.0	4
J1030-1¾6GCR	M6 X 6.0	4
J1030-11/4GCR	M6 X 6.0	4
J1035-35GCR	M8 X 8.0	8
J1035-1¼GCR	M8 X 8.0	8
J1035-17/16GCR	M8 X 8.0	8
J1040-40GCR	M8 X 8.0	8
J1040-11/2GCR	M8 X 8.0	8

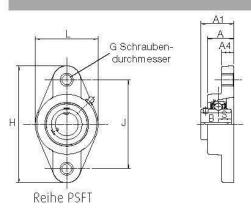
PNP Silver-Lube Stehlager



Reihe PNP

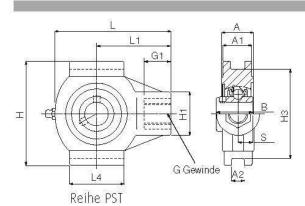
Wellendurchmesser		Kurzzeichen	Lagereinsatz	Gehäuse- gruppe		Ab	messungen (m	nm)	
mm	Zoll				L	н	H1	H2	J
20		PNP20CR	J1020	2	127,2	33,3	14,2	65,9	94,9
	3/4	PNP3/4CR	J1020	2	127,2	33,3	14,2	65,9	94,9
25		PNP25CR	J1025	3	140,2	36,5	14,5	71,9	104,9
	1	PNP1CR	J1025	3	140,2	36,5	14,5	71,9	104,9
30		PNP30CR	J1030	4	162,2	42,9	17,8	83,9	118,9
	13/16	PNP1¾6CR	J1030	4	162,2	42,9	17,8	83,9	118,9
	11/4	PNP1¼RCR	J1030	4	162,2	42,9	17,8	83,9	118,9
35		PNP35CR	J1035	5	167,2	47,6	18,0	94,9	126,9
	11/4	PNP1¼CR	J1035	5	167,2	47,6	18,0	94,9	126,9
	17/16	PNP17/16CR	J1035	5	167,2	47,6	18,0	94,9	126,9
40		PNP40 CR	J1040	6	184,2	49,2	19,5	98,9	136,8
	11/2	PNP1½CR	J1040	6	184,2	49,2	19,5	98,9	136,8

Abmessungen (mm)						Masse kg	
N	N1	G	А	A1	В	S	
11,0	14,2	M10	37,8	22,5	31,0	12,7	0,27
11,0	14,2	M10	37,8	22,5	31,0	12,7	0,27
11,0	14,2	M10	37,8	24,5	34,0	14,3	0,39
11,0	14,2	M10	37,8	24,5	34,0	14,3	0,39
14,0	18,2	M12	45,8	27,0	38,1	15,9	0,52
14,0	18,2	M12	45,8	27,0	38,1	15,9	0,52
14,0	18,2	M12	45,8	27,0	38,1	15,9	0,52
14,0	18,2	M12	47,8	32,5	42,9	17,5	0,72
14,0	18,2	M12	47,8	32,5	42,9	17,5	0,72
14,0	18,2	M12	47,8	32,5	42,9	17,5	0,72
14,0	18,2	M12	53,8	36,0	49,2	19,0	0,99
14,0	18,2	M12	53,8	36,0	49,2	19,0	0,99


PSF Silver-Lube vierloch - Flanschlager

Wellendurchmesser		Kurzzeichen	Lagereinsatz	Gehäuse- gruppe		Abmessungen (mm)	
mm	Zoll				L	J	G
20		PSF20CR	J1020	2	86,5	63,5	M10
	3/4	PSF3/4CR	J1020	2	86,5	63,5	M10
25		PSF25CR	J1025	3	95,0	70,0	M10
	1	PSF1CR	J1025	3	95,0	70,0	M10
30		PSF30CR	J1030	4	107,5	83,0	M12
	13/16	PSF1¾6CR	J1030	4	107,5	83,0	M12
	111/4	PSF1¼RCR	J1030	4	107,5	83,0	M12
35		PSF35CR	J1035	5	117,5	92,0	M12
	11/4	PSF1¼CR	J1035	5	117,5	92,0	M12
	17/16	PSF17/16CR	J1035	5	117,5	92,0	M12
40		PSF40CR	J1040	6	130,5	102,0	M12
	11/2	PSF1½CR	J1040	6	130,5	102,0	M12

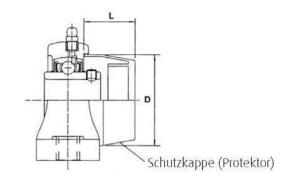
	Abmessungen (mm)					
А	A1	А4	8	S	kg	
27,8	36,3	13,4	31,0	12,7	0,28	
27,8	36,3	13,4	31,0	12,7	0,28	
27,9	36,7	14,3	34,0	14,3	0,34	
27,9	36,7	14,3	34,0	14,3	0,34	
31,5	41,4	14,3	38,1	15,9	0,50	
31,5	41,4	14,3	38,1	15,9	0,50	
31,5	41,4	14,3	38,1	15,9	0,50	
34,8	46,9	15,5	42,9	17,5	0,74	
34,8	46,9	15,5	42,9	17,5	0,74	
34,8	46,9	15,5	42,9	17,5	0,74	
37,5	53,2	17,1	49,2	19,0	0,98	
37,5	53,2	17,1	49,2	19,0	0,98	


PSFT Silver-Lube zweiloch - Flanschlager

Wellendurchmesser		Kurzzeichen	Lagereinsatz	Gehäuse- gruppe		Abmessungen (mm)	
mm	Zoll				L	н	J.
20		PSFT20CR	J1020	2	64,1	113,3	90,0
	3/4	PSFT¾CR	J1020	2	64,1	113,3	90,0
25		PSFT25CR	J1025	3	68,4	130,3	99,0
	1	PSFT1CR	J1025	3	68,4	130,3	99,0
30		PSFT30CR	J1030	4	80,1	148,3	117,0
	13/16	PSFT1¾16CR	J1030	4	80,1	148,3	117,0
	11/4	PSFT1¼RCR	J1030	4	80,1	148,3	117,0
35		PSFT35CR	J1035	5	90,1	163,3	130,0
	11/4	PSFT1¼CR	J1035	5	90,1	163,3	130,0
	17/16	PSFT17/16CR	J1035	5	90,1	163,3	130,0
40		PSFT40CR	J1040	6	100,1	175,3	144,0
	11/2	PSFT1½CR	J1040	6	100,1	175,3	144,0

	Abmessungen (mm)				Masse kg	
G	A	A1	A4	8	S	
M10	26,5	33,7	11,4	31,0	12,7	0,24
M10	26,5	33,7	11,4	31,0	12,7	0,24
M10	29,1	36,7	13,4	34,0	14,3	0,30
M10	29,1	36,7	13,4	34,0	14,3	0,30
M10	30,5	41,2	13,4	38,1	15,9	0,44
M10	30,5	41,2	13,4	38,1	15,9	0,44
M10	30,5	41,2	13,4	38,1	15,9	0,44
M12	32,8	43,4	16,1	42,9	17,5	0,64
M12	32,8	43,4	16,1	42,9	17,5	0,64
M12	32,8	43,4	16,1	42,9	17,5	0,64
M12	37,5	51,7	20,0	49,2	19,0	0,89
M12	37,5	51,7	20,0	49,2	19,0	0,89

PST Silver-Lube Spannkopflager



Wellendu	ırchmesser	Kurzzeichen	Lagereinsatz	Gehäuse- gruppe		Ab	messungen (m	nm)	
mm	Zoll				L	L1	L4	н	H1
20		PST20CR	J1020	2	99,0	64,0	47,0	0,88	35,0
	3/4	PST%CR	J1020	2	99,0	64,0	47,0	0,88	35,0
25		PST25CR	J1025	3	99,0	64,0	47,0	0,88	35,0
	1	PST1CR	J1025	3	99,0	64,0	47,0	0,88	35,0
30		PST30CR	J1030	4	125,0	76,0	63,0	102,0	40,0
	13/16	PST1¾6CR	J1030	4	125,0	76,0	63,0	102,0	40,0
	11/4	PST1¼RCR	J1030	4	125,0	76,0	63,0	102,0	40,0
35		PST35CR	J1035	5	125,0	76,0	63,0	102,0	40,0
	11/4	PST1¼CR	J1035	5	125,0	76,0	63,0	102,0	40,0
	17/16	PST17/16CR	J1035	5	125,0	76,0	63,0	102,0	40,0
40		PST40CR	J1040	6	140,0	85,0	80,0	114,0	40,0
	11/2	PST1½CR	J1040	6	140,0	85,0	80,0	114,0	40,0

Abmessungen (mm)						Masse kg		
НЗ	G	G1	A	A1	A2	В	s	.
75,8	M16X2,00	22,5	27,5	24,5	12,2	31,0	12,7	0,32
75,8	M16X2,00	22,5	27,5	24,5	12,2	31,0	12,7	0,32
75,8	M16X2,00	22,5	27,5	24,5	12,2	34,0	14,3	0,36
75,8	M16X2,00	22,5	27,5	24,5	12,2	34,0	14,3	0,36
88,8	M16X2,00	22,5	34,5	30,0	12,2	38,1	15,9	0,53
88,8	M16X2,00	22,5	34,5	30,0	12,2	38,1	15,9	0,53
88,8	M16X2,00	22,5	34,5	30,0	12,2	38,1	15,9	0,53
88,8	M16X2,00	22,5	34,5	30,0	12,2	42,9	17,5	0,74
88,8	M16X2,00	22,5	34,5	30,0	12,2	42,9	17,5	0,74
88,8	M16X2,00	22,5	34,5	30,0	12,2	42,9	17,5	0,74
101,8	M16X2,00	22,5	34,0	32,0	16,2	49,2	19,0	1,00
101,8	M16X2,00	22,5	34,0	32,0	16,2	49,2	19,0	1,00

Schutzkappen (Protektoren)

Für sämtliche Silver-Lube-Gehäuse sind Schutzkappen aus Polypropylen verfügbar. Die Schutzkappen (Protektoren) sind für Temperaturen von –20 °C bis +90 °C geeignet. Sie können als zusätzlicher Schutz für das Lager bei widrigen Betriebsumgebungsbedingungen oder zur Erfüllung von Sicherheitsanforderungen genutzt werden.

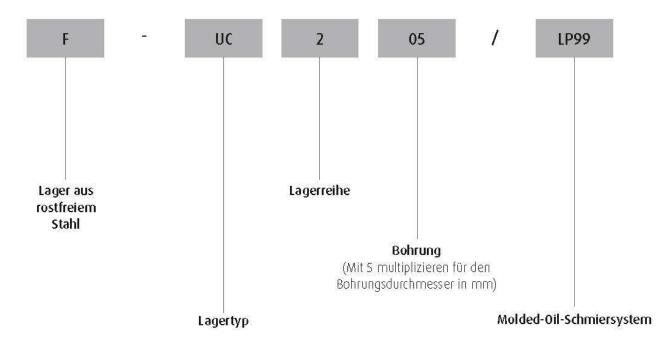
GEHÄUSEGRUPPE	KURZBEZEICHNUNG DER ENDABDECKUNG	MASS D	MASS L
Gruppe 2	P20P	50,0	23,0
Gruppe 3	P25P	55,0	25,0
Gruppe 4	P30P	64,0	30,0
Gruppe 5	P35P	74,0	32,0
Gruppe 6	P40P	84,0	37,0

Alle Maßangaben in mm

SELF-LUBE LAGEREINHEITEN 109

Molded-Oil-Einsätze mit Gehäusen aus rostfreiem Stahl

Molded-Oil-Lager aus rostfreiem Stahl


Typ Einsatz

Typ Gehäuse

Seite	Reihe	
114	F-UCPM2	
116	F-UCFM2	

Molded-Oil-Lagereinsatz Bezeichnungssystem

Kugellagerreihen aus rostfreiem Stahl

Einleitung

Diese Reihe bietet Korrosionsbeständigkeit und eine längere Haltbarkeit der Schmierung in einer sauberen Lagereinheit und niedrigem Reibmoment.

NSK-Kugellagereinheiten der Reihen aus rostfreiem Stahl verfügen über Kugellager in Gehäusen aus rostfreiem Stahl und weisen eine höhere Korrosionsbeständigkeit als Grauguß auf. Diese Reihe ist wegen der rostfreien Eigenschaften des Gehäuses für zahlreiche Anwendungen besonders empfehlenswert.

Die Molded-Oil-Lager werden mit NSKeigenem ölimprägniertem Material, dem Molded-Oil, geschmiert. Molded-Oil besteht aus Schmieröl und Polyolefinharz und weist eine Affinität zu Öl auf. Das Öl, das von diesem Material langsam abgegeben wird, bietet über lange Zeit eine ausreichende Schmierung des Lagers.

Das Öl sickert vom Molded-Oil in das Lager, wodurch immer eine ausreichende Schmierung vorhanden ist. Problemhafte Ölnachfüllungen sind also nicht erforderlich und Verunreinigungen der Umgebung werden vermieden.

Bevor die Lager mit Molded-Oil gefüllt werden, müssen deren Innenflächen speziell vorbehandelt werden. Dadurch liegt das Lagerdrehmoment nur unwesentlich über den fettgeschmierten Lagern. (Patent angemeldet)

Die Abmessungen der Einheiten entsprechen denen der aktuellen NSKEinheiten und sind ebenfalls mit denen anderer Hersteller kompatibel.

Material

	Teil	Material
Lagereinsatz	Laufbahnen Kugel Schleuderscheiben, Käfig Dichtungen Gewindestift	Martensitischer rostfreier Stahl (entspricht SUS 440C) Martensitischer rostfreier Stahl (entspricht SUS 440C) Austenitischer rostfreier Stahl (entspricht SUS 304) Nitrilkautschuk Martensitischer rostfreier Stahl (entspricht SUS 410)
Lagergehäuse		Austenitischer rostfreier Stahlguss (SCS13)

Empfohlene Betriebstemperatur und zulässige Drehzahl

Molded-Oil-Lager werden für Betriebstemperaturen von -15 bis +80 °C empfohlen. Jedoch sollte die Betriebstemperatur unter +60 °C liegen, wenn das Lager im Dauerbetrieb verwendet wird.

dn-Wert: 12 x 10⁴ max

(dn = Bohrung in mm x Drehzahl in U/min)

Anm.: Der empfohlene Betriebstemperaturbereich und die zulässigen Drehzahlen gelten für alle Einheiten mit Molded-Oil-Einsätzen. Wenden Sie sich bitte an NSK, wenn Ihre Anwendung außerhalb dieser Empfehlungen liegt.

Empfohlene Anzugsmomente für Gewindestifte

Lagerbezeichnung (F-UC)	Bezeichnung der Gewindestifte (W-Schraubenkopf)	Maximale Anzugsmomente (Nm)
204, 205	M5 x 0,8	3,9
206	M6 x 0,75	4,9
207	M6 x 0,75	5,8
208~210	M8 x 1	7,8

Innenring-Toleranzbereiche

Einheiten: µm

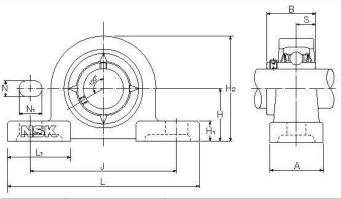
Nennbohrungs- durchmesser d über inkl.		Bohru	ngsdurchr	nesser	Bre	Radial schlag (Ref.)	
		Δdr Abweicl		ΔVdp Schwan- kungen	ΔBs Abweichungen		
mm	mm	max.	min.	max.	max.	min.	max.
18	31,750	+18	0	12	0	-120	18
31.750	50,800	+21	0	14	0	-120	20

Admp: Durchschnittliche Abweichung Bohrungsdurchmesser.

ΔVdp : Schwankung Bohrungsdurchmesser. ΔBs : Abweichung Breite Innenring.

Außenring-Toleranzbereiche

Einheiten: µm

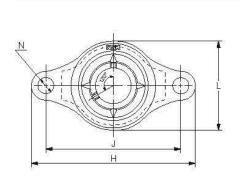

Nennaußen- durchmesser D über inkl. mm mm		ΔDm Abwe	Radial- schlag (Ref.)	
		max.	min.	max.
30	50	0	:-11	20
50	80	0	-13	25
80	120	0	-15	35

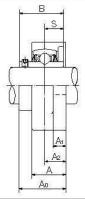
ADm: Durchschnittliche Abweichung Außendurchmesser.

Die Toleranzuntergrenze von ΔDm gilt nicht bei einem Abstand von ¼ in Breite des Außenrings von beiden Seiten.

SELF-LUBE LAGEREINHEITEN 113

Stehlager Reihe F-UCPM2 Zylindrische Bohrung, Gewindestifte, Molded-Oil

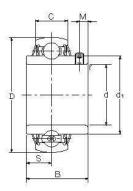



Wellen- durchmesser	Kurzzeichen Einheit					Abme	essungen	(mm)				
mm		Н	L	J	A	N	N,	н,	H ₂	L,	В	S
20	F-UCPM204D0/LP99	33,3	120	95	30	12	14	11	64	42	31,0	12,7
25	F-UCPM205D0/LP99	36,5	130	105	30	12	14	12	70	42	34,1	14,3
30	F-UCPM206D0/LP99	42,9	155	121	36	17	20	13	82	54	38,1	15,9
35	F-UCPM207D0/LP99	47,6	161	127	38	17	20	14	92	54	42,9	17,5
40	F-UCPM208D0/LP99	49,2	171	137	40	17	20	14	98	52	49,2	19
45	F-UCPM209D0/LP99	54	180	146	40	17	20	14	105	60	49,2	19
50	F-UCPM210D0/LP99	57,2	195	159	45	19	22	16	114	65	51,6	19

Schraubengröße	Kurzzeichen Lagereinsatz	Kurzzeichen Gehäuse	Masse der Einheit (ca.) kg
M10	F-UC204/LP99	PM204	0,6
M10	F-UC205/LP99	PM205	0,7
M14	F-UC206/LP99	PM206	1,0
M14	F-UC207/LP99	PM207	1,3
M14	F-UC208/LP99	PM208	1,8
M14	F-UC209/LP99	PM209	2,1
M16	F-UC210/LP99	PM210	2,5

Flanschlager Reihe F-UCFM2

Zylindrische Bohrung, Gewindestifte, Molded-Oil

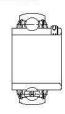


Wellen- durchmesser	Kurzzeichen Einheit	Abmessungen (mm)									
mm		Н	J	A ₂	A,	A	N	L	A _o	В	S
20	F-UCFM204D0/LP99	112	90	15	10	25,5	12	60	33,3	31,0	12,7
25	F-UCFM205D0/LP99	127	99	16	10	26,5	16	.68	35,8	34,1	14,3
30	F-UCFM206D0/LP99	145	117	18	10	30	16	80	40,2	38,1	15,9
35	F-UCFM207D0/LP99	158	130	19	12	32	16	90	44,4	42,9	17,5
40	F-UCFM208D0/LP99	172	144	21	12	35	16	100	51,2	49,2	19
45	F-UCFM209D0/LP99	180	148	22	13	36	19	108	52,2	49,2	19
50	F-UCFM210D0/LP99	189	157	22	13	37	19	115	54,6	51,6	19

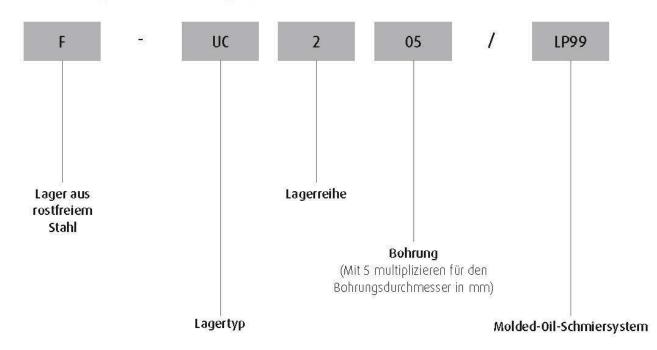
Schraubengröße	Kurzzeichen Lagereinsatz	Kurzzeichen Gehäuse	Masse der Einheit (ca.) kg
M10	F-UC204/LP99	FM204	0,5
M14	F-UC205/LP99	FM205	0,6
M14	F-UC206/LP99	FM206	0,9
M14	F-UC207/LP99	FM207	1,2
M14	F-UC208/LP99	FM208	1,6
M16	F-UC209/LP99	FM209	1,9
M16	F-UC210/LP99	FM210	2,2

Lagereinsatz aus rostfreiem Stahl Zylindrische Bohrung, Gewindestifte, Molded-Oil

Wellen- durchmesser	Kurzzeichen Lagereinsatz	Abmessungen (mm)								
mm	mm	D	8	c	r _{min}					
20	F-UC204/LP99	47	31,0	17	1					
25	F-UC205/LP99	52	34,1	17	1					
30	F-UC206/LP99	62	38,1	19	1					
35	F-UC207/LP99	72	42,9	20	1,5					
40	F-UC208/LP99	80	49,2	21	1,5					
45	F-UC209/LP99	85	49,2	22	1,5					
50	F-UC210/LP99	90	51,6	24	1,5					


	Abmessungen (mm)		Tragzahk	en N	Masse der Einheit (ca.)
S	s M	d1	Ç	Ç,	kg
12,7	4,5	29,6	9900	6650	0,17
14,3	5	33,9	10800	7850	0,20
15,9	5	40,8	15000	11300	0,33
17,5	6	46,8	19700	15300	0,49
19	8	53,0	22400	17800	0,65
19	8	57,5	25200	20400	0,70
19	9	62,4	27000	23300	0,80

Life-Lube Lager


Life-Lube-Einheit

Typ Einsatz

Typ Gehäuse		Seite	125
		126	PNP/LP99
		128	PSF/LP99
	000	130	PSFT/LP99
		132	PST/LP99

Life-Lube-Lagereinsatz Bezeichnungssystem

Life-Lube-Produktreihe

Einleitung

Die Life-Lube-Serie kombiniert die korrosionsbeständigen Eigenschaften der Silver-Lube-Gehäuse mit den hervorragenden Dicht- und Schmiereigenschaften der Molded-Oil-Einsätze.

Die Life-Lube -Einheiten wurden speziell für den Einsatz in Industrien gefertigt, in denen der Kontakt mit Wasser oder anderen Prozessflüssigkeiten unvermeidlich ist, ausgezeichnete chemische Beständigkeit gefordert wird und eine dauerhafte Schmierung notwendig ist.

Die Life-Lube-Lagereinheiten sind als Stehlager, Flanschlager (mit zwei oder vier Befestigungslöchern) und Spannlager erhältlich und zudem in der Lage, anfängliche Ausrichtungsfehler durch Montagefehler auszugleichen. In der Praxis haben sich die Lagereinheiten selbst unter schwierigsten Bedingungen als höchst verlässlich erwiesen.

Die Life-Lube-Gehäuse werden aus thermoplastischem PBT-Harz gefertigt. Sie sind beständig gegen Reinigungsmittel und viele andere Chemikalien und darüber hinaus korrosionsbeständig. Die Gehäuse verfügen weder über eine Beschichtung noch über einen Anstrich, sodass Abblätterungen und Abplatzungen vermieden werden. Außerdem verfügen sie über glatte Oberflächen für Spülungen.

Die Life-Lube-Lagereinsätze werden aus rostfreiem Stahl gefertigt, der erhöhte Korrosionsbeständigkeit bietet. Die Einsätze werden mit dem NSKeigenen, Ölimprägnierten polymeren Molded-Oil geschmiert. Das Öl, das von diesem Material langsam abgegeben wird, bietet über lange Zeit eine ausreichende Schmierung des Lagers. Das feste Molded-Oil-Schmiermittel ist gegen Verunreinigungen und Ausspülungen durch Wasser beständig und macht ein Nachschmieren überflüssig. Dichtungen wie Schleuderscheiben aus rostfreiem Stahl und Nitrilgummidichtungen werden standardmäßig eingebaut.

Gehäusefestigkeit

Die Gehäusetragfähigkeit variiert je nach Last der Anwendung, die intermittierend, konstant oder veränderlich auf das Gehäuse wirken kann. Die maximalen Gehäuselasten werden in den Tabellen 1, 2, 3 und 4 angegeben. Diese Lasten dürfen ohne vorherige Beratung durch NSK nicht überschritten werden.

Die aufgeführten maximalen Gehäusetragfähigkeiten schließen mögliche Reduzierungen dieser Werte durch Faktoren wie Chemikalien, Wasser, Dampf, Hitze, ultraviolettes Licht oder eine Kombination dieser genannten Faktoren nicht mit ein. Falls diese Faktoren in einer der Anwendungen auftreten, muss der Konstrukteur oder der Endverbraucher die Wirkung dieser Faktoren mit einbeziehen und die angegebenen maximalen Gehäusetragfähigkeiten entsprechend reduzieren.

Um eine maximale Tragfähigkeit zu erhalten, wird empfohlen, zusätzlich zu den Befestigungsschrauben Unterlegscheiben zu verwenden. Die Tabellen 1, 2 und 3 geben zudem die maximalen Anzugsmomente für die Befestigungsschrauben an.

Erzeugung statischer Elektrizität

Unter bestimmten Anwendungsbedingungen können Life-Lube-Lagereinheiten statische Elektrizität erzeugen.

Life-Lube-Lager sollten daher nicht in explosiven oder entzündlichen Umgebungen eingesetzt werden. Falls Sie dennoch Life-Lube-Lagereinheiten in explosiven oder entzündlichen Anwendungen einsetzen möchten, müssen diese geerdet werden.

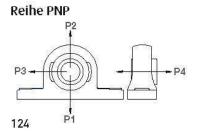
Gehäusefestigkeit

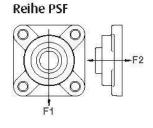
Tabelle 1 PNP Life-Lube-Stehlager – Gehäusetragfähigkeit

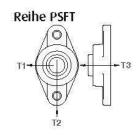
Kurz-		Maximale Gehäusebelastung (N) bei 20°C												
zeichen	P1 1			I.	P2		P3				P4		Anzugs-	
100000000000000000000000000000000000000	Intermit- tierende Belastung	Konstante Belastung	Veränder- liche Belastung		Belastung	Veränder- liche Belästung	tierende	Belastung	Veränder- liche Belästung	Intermit- tierende Belastung	Konstante Belastung	Veränder- liche Belastung	moment (Nm)	
PNP20/LP99	3500	1700	800	2800	1400	800	2600	1300	700	1300	700	400	18	
PNP25/LP99	4000	2000	1000	3100	1500	800	2600	1300	700	1700	900	500	25	
PNP30/LP99	5000	2500	1200	3500	1800	1000	4000	2000	1100	2600	1300	700	30	
PNP35/LP99	6000	3000	1500	4300	2100	1200	4100	2100	1100	3200	1600	900	35	
PNP40/LP99	10700	5300	2900	8000	4000	2200	6800	3400	1900	5200	2600	1400	40	

Tabelle 2 PSF Life-Lube-Flansch, vierloch – Gehäusetragfähigkeit

Kurzzekhen		Maximale F1	e Gehäuseb	elastung (N	Maximales Anzugs-		
	Intermit- tierende Belastung	Konstante Belastung	Veränder- liche Belastung	Intermit- tierende Belastung	Konstante Belastung	Veränder- liche Belastung	moment (Nm)
PSF20/LP99	3100	1600	900	1300	700	400	18
PSF25/LP99	3500	1700	1000	1300	700	400	25
PSF30/LP99	4600	2300	1300	2200	1100	600	30
PSF35/LP99	6200	3100	1700	2600	1300	700	35
PSF40/LP99	6200	3100	1700	4000	2000	1100	40


Tabelle 3 PSFT Life-Lube-Flansch, zweiloch – Gehäusetragfähigkeit


Kurz- zeichen	Maximale Gehäusebelastung (N) bei 20℃									
	T1			T2			Т3			Anzugs-
	Intermit- tierende Belastung	Konstante Belastung	Veränderliche Belästung	Intermit- tierende Belastung	Konstante Belastung	Veränderliche Belästung	Intermit- tierende Belastung	Konstante Belastung	Veränderliche Belastung	moment (Nm)
PSFT20/LP99	4400	2200	1200	1900	900	500	1300	700	400	18
PSFT25/LP99	4400	2200	1200	3000	1500	800	1400	700	400	25
PSFT30/LP99	5900	2900	1600	3300	1600	900	2000	1000	500	30
PSFT35/LP99	6400	3200	1700	3900	2000	1100	2800	1400	800	35
PSFT40/LP99	9000	4500	2500	3900	2000	1100	3300	1600	900	40


Tabelle 4 PST Life-Lube-Spannlager – Gehäusetragfähigkeit

Kurz- zeichen	Maximale Gehäusebelastung (N) bei 20°C U							
	Intermittierende Belastung	Konstante Belastung	Veränderliche Belastung					
PST20/LP99	5700	2800	1600					
PST25/LP99	5400	2700	1500					
PST30/LP99	8100	4000	2300					
PST35/LP99	7800	3900	2200					
PST40/LP99	8100	4000	2300					

Beachten Sie, dass es für Spannlager keine maximalen Anzugsdrehmomente gibt.

Life-Lube-Lagereinsätze

Life-Lube-Lagereinsätze verfügen über Lagerringe, Kugeln und Gewindestifte aus martensitischem rostfreien Stahl, Schleuderscheiben aus austenitischen rostfreien Stahl und Dichtungen aus Nitrilkautschuk.

Die Life-Lube -Lagereinsätze werden mit NSK-eigenem ölimprägniertem Material, dem Molded-Oil, geschmiert. Molded-Oil besteht aus Schmieröl und Polyole-finharz und weist eine Affinität zu Öl auf. Das Öl, das von diesem Material langsam abgegeben wird, bietet über lange Zeit eine ausreichende Schmierung des Lagers. Ein Nachschmieren ist für Life-Lube-Molded-Oil-Einsätze nicht notwendig.

Empfohlene Betriebstemperatur und zulässige Drehzahl

Molded-Oil-Einsätze werden für Betriebstemperaturen von -15 bis +80°C empfohlen. Jedoch sollte die Betriebstemperatur unter +60°C liegen, wenn das Lager durchgehend verwendet wird. Zulässige Drehzahl:

dn-Wert: 12 x 10⁴ max

(dn = Bohrung in mm x Drehzahl in U/min)

Anm.: Der empfohlene Betriebstemperaturbereich und die zulässigen Drehzahlen gelten für alle Einheiten mit Molded-Oil-Einsätzen. Wenden Sie sich bitte an NSK, wenn Ihre Anwendung außerhalb dieser Empfehlungen liegt.

Material

	Teil	Material
	Lagerringe	Martensitischer rostfreier Stahl (entspricht SUS440C)
	Kugel	Martensitischer rostfreier Stahl (entspricht SUS440C)
Lagereinsatz	Schleuderscheibe	Austenitischer rostfreier Stahl (entspricht SUS302)
	Dichtung	Nitrilkautschuk
	Gewindestift	Martensitischer rostfreier Stahl (entspricht SUS410)
Lagergehäuse	The service of the se	Thermoplastsicher Kunststoff PBT

Anzugsdrehmomente für Gewindestifte

Die Gewindestifte für Life-Lube-Lagereinsätze werden aus rostfreiem Stahl gefertigt und können brechen, falls sie zu fest angezogen werden. Die Grenzwerte der in Tabelle 5 aufgelisteten Anzugsdrehmomente sollten nicht überschritten werden.

Tabelle 5 Empfohlene Anzugsmomente für Gewindestifte

Kurzzeichen	Bezeichnung der Gewindestifte	Maximale Anzugsmomente (Nm)
F-UC204/LP99	M5 x 0,8	3,9
F-UC205/LP99	M5 x 0,8	3,9
F-UC206/LP99	M6 x 0,75	4,9
F-UC207/LP99	M6 x 0,75	5,8
F-UC208/LP99	M8 x 1	7,8

Innenring-Toleranzbereiche

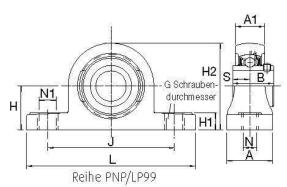
Einheiten: µm

Nennbo durchm	hrungs- esser d	Bohru	Bohrungsdurchmesser			Breite	
über	inkl.	Abweic	mp hungen	ΔVdp Schwan- kungen	Abweic	Bs hungen	381 320
mm	mm	max.	min.	max.	max.	min.	max.
18	31,750	+18	0	12	0	-120	18
31,750	50,800	+21	0	14	0	-120	20

Admp: Durchschnittliche Abweichung Bohrungsdurchmesser.

ΔVdp : Schwankung Bohrungsdurchmesser. ΔBs : Abweichung Breite Innenring.

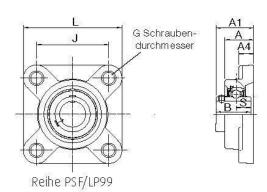
Außenring-Toleranzbereiche


Einheiten: µm

	hrungs- esser d	Δι	m	Radial- schlag (Ref.)
über mm	inkl. mm	max.	min.	max.
30	50	0	-11	20
50	80	0	-13	25
80	120	0	-15	35

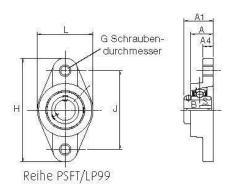
ΔDm: Durchschnittliche Abweichung Außendurchmesser.

Die Toleranzuntergrenze von ΔDm gilt nicht bei einem Abstand von ¼ in Breite des Außenrings von beiden Seiten.


PNP/LP99 Life-Lube Stehlager

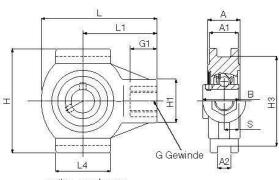
Wellen- durchmesser	Kurzzeichen Einheit	Kurzzeichen Lagereinsatz	Gehäusegruppe		gen (mm)		
mm				L	н	H1	H2
20	PNP20/LP99	F-UC204/LP99	2	127,2	33,3	14,2	65,9
25	PNP25/LP99	F-UC205/LP99	3	140,2	36,5	14,5	71,9
30	PNP30/LP99	F-UC206/LP99	4	162,2	42,9	17,8	83,9
35	PNP35/LP99	F-UC207/LP99	5	167,2	47,6	18,0	94,9
40	PNP40/LP99	F-UC208/LP99	6	184,2	49,2	19,5	98,9

	Abmessungen (mm)									
J	N	N1	G	A	A1	В	S	kg		
94,9	11	14,2	M10	37,8	22,5	31,0	12,7	0,27		
104,9	11	14,2	M10	37,8	24,5	34,0	14,3	0,39		
118,9	14	18,2	M12	45,8	27,0	38,1	15,9	0,52		
126,9	14	18,2	M12	47,8	32,5	42,9	17,5	0,72		
136,8	14	18,2	M12	53,8	36,0	49,2	19,0	0,99		


PSF/LP99 Life-Lube Vierloch - Flanschlager

Wellen- durchmesser	Kurzzeichen Einheit	Kurzzeichen Lagereinsatz	Gehäusegruppe			
mm				L	J	G
20	PSF20/LP99	F-UC204/LP99	2	86,5	63,5	M10
25	PSF25/LP99	F-UC205/LP99	3	95,0	70,0	M10
30	PSF30/LP99	F-UC206/LP99	4	107,5	83,0	M12
35	PSF35/LP99	F-UC207/LP99	5	117,5	92,0	M12
40	PSF40/LP99	F-UC208/LP99	6	130,5	102,0	M12

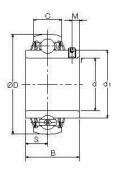
		Abmessungen (mm)			Masse kg
A	A1	A4	В	S	9
27,8	36,3	13,4	31,0	12,7	0,28
27,9	36,7	14,3	34,0	14,3	0,34
31,5	41,4	14,3	38,1	15,9	0,50
34,8	46,9	15,5	42,9	17,5	0,74
37,5	53,2	17,1	49,2	19,0	0,99


PSFT/LP99 Life-Lube Zweiloch - Flanschlager

Wellen- durchmesser	Kurzzeichen Einheit	Kurzzeichen Lagereinsatz	Gehäusegruppe			
mm				L	н	J
20	PSFT20/LP99	F-UC204/LP99	2	64,1	113,3	90,0
25	PSFT25/LP99	F-UC205/LP99	3	68,4	130,3	99,0
30	PSFT30/LP99	F-UC206/LP99	4	80,1	148,3	117,0
35	PSFT35/LP99	F-UC207/LP99	5	90,1	163,3	130,0
40	PSFT40/LP99	F-UC208/LP99	6	100,1	175,3	144,0

	Abmessungen (mm)							
G	A	A1	A4	8	S	kg		
M10	26,5	33,7	11,4	31,0	12,7	0,24		
M10	29,1	36,7	13,4	34,0	14,3	0,30		
M10	30,5	41,2	13,4	38,1	15,9	0,44		
M12	32,8	43,4	16,1	42,9	17,5	0,64		
M12	37,5	51,7	20,0	49,2	19,0	0,89		

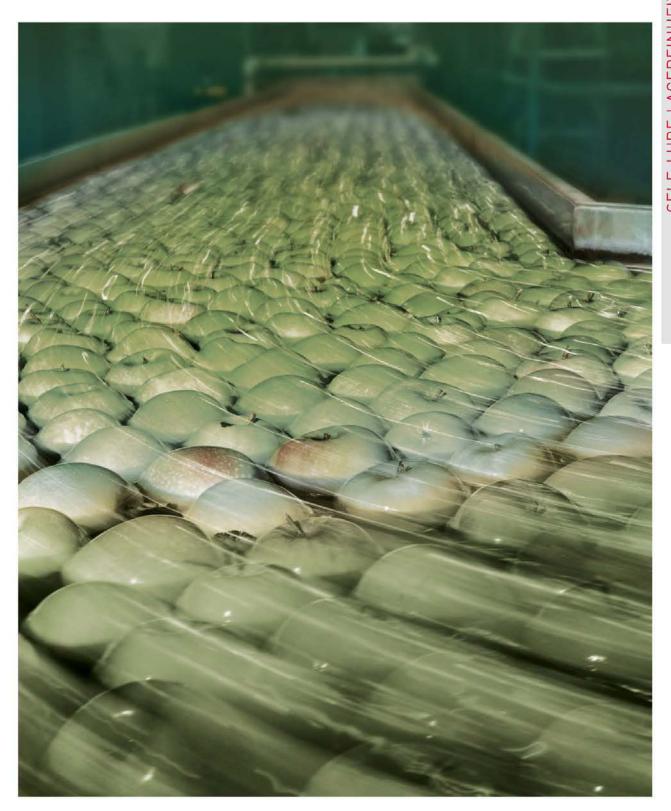
PST/LP99 Life-Lube Spannkopflager



	Reihe	PST/	LP99
--	-------	------	------

Wellen- durchmesser	Kurzzeichen Einheit	Kurzzeichen Lagereinsatz	Gehäusegruppe	Gehäusegruppe Abmessungen (mm)				
mm				L	L1	L4	н	Н1
20	PST20/LP99	F-UC204/LP99	2	99,0	64,0	47,0	88,0	35,0
25	PST25/LP99	F-UC205/LP99	3	99,0	64,0	47,0	88,0	35,0
30	PST30/LP99	F-UC206/LP99	4	125,0	76,0	63,0	102,0	40,0
35	PST35/LP99	F-UC207/LP99	5	125,0	76,0	63,0	102,0	40,0
40	PST40/LP99	F-UC208/LP99	6	140,0	85,0	80,0	114,0	40,0

Abmessungen (mm)					Masse kg			
НЗ	G	G1	A	A1	A2	В	S	
75,8	M16X2,00	22,5	27,5	24,5	12,2	31,0	12,7	0,32
75,8	M16X2,00	22,5	27,5	24,5	12,2	34,0	14,3	0,36
88,8	M16X2,00	22,5	34,5	30,0	12,2	38,1	15,9	0,53
88,8	M16X2,00	22,5	34,5	30,0	12,2	42,9	17,5	0,74
101,8	M16X2,00	22,5	34,0	32,0	16,2	49,2	19,0	1,00


Life-Lube-Einsatzlager Zylindrische Bohrung, Molded-Oil

Wellen- durchmesser	Lagereinsatz				
mm		D	В	c	r _{min}
20	F-UC204/LP99	47	31	17	1
25	F-UC205/LP99	52	34,1	17	1
30	F-UC206/LP99	62	38,1	19	1
35	F-UC207/LP99	72	42,9	20	1,5
40	F-UC208/LP99	80	49,2	21	1,5
45	F-UC209/LP99	85	49,2	22	1,5

	Abmessungen (mm)		Tragzahlen N	en N	Masse (ca.)
S	M	d1	ç	C _{or}	kg
12,7	4,5	29,6	9900	6650	0,17
14,3	5	33,9	10800	7850	0,20
15,9	5	40,8	15000	11300	0,33
17,5	6	46,8	19700	15300	0,49
19	8	53,0	22400	17800	0,65
19	8	57,5	25200	20400	0,70

Sonderprodukte und Lösungen für Lager

SELF-LUBE LAGEREINHEITEN 137

Zusatzprodukte

Auf Kundenanfrage kann das Design der Self-Lube-Familie so gefertigt sein, dass die Einheiten mit formähnlichen, alternativen Einsätzen und Gehäusen kombiniert werden können. Dies ist ein relativ leichter Vorgang, sollte aber zuvor mit NSK besprochen werden.

NSK ist sich zudem des Bedarfs an 'kundenspezifischen' Lösungen bewusst und jederzeit bereit, seinen Kunden bei speziellen Sonderwünschen entgegenzukommen, wenn angemessene Preis- und Volumenkriterien erfüllt werden.

NSK bietet die Möglichkeit spezielle Produktkombinationen anzubieten, wie z. B.:

- > Alternative Einsatz/Gehäuse-Kombinationen
- Spezialfette und -füllungen
- Alternative Dichtungskombinationen Schleuderdichtungen, Dreifach-Lippendichtungen und Deckscheiben

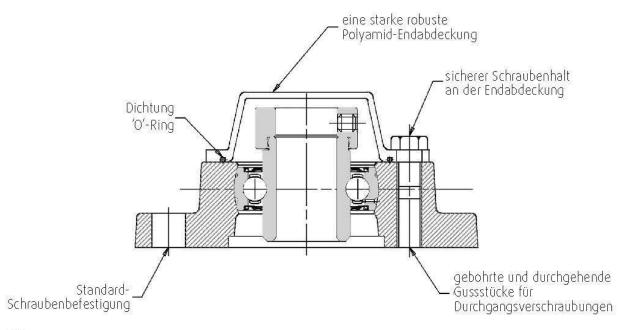
Bitte setzen sich mit NSK in Verbindung und teilen Sie Ihre Wünsche mit.

HLT Self-Lube

HLT Self Lube-Einsätze wurden entwickelt, um bei extremen Temperaturen einen verlässlichen Betrieb zu gewährleisten, wobei die Temperaturgrenzen bei +180°C bzw. -40°C liegen.

HLT-Einsätze sind für alle Produkte der Self-Lube-Reihe erhältlich.

Alle gusseisernen Einheiten sind zudem nachschmierbar und mit entsprechenden Nuten ausgestattet, damit die patentierte Self-Lube-Schutzvorrichtung (Protector) angebracht werden kann.


HLT Einsätze haben:

- › einen hochwiderstandsfähigen Stahlkäfig
- eine spezielle innere Geometrie
- > Klüber-Hochleistungsfett
- Silikon-Dichtungen
- eine optionale Schutzvorrichtung (Protector)
- nachschmierbar

Spezielle Gehäuseoptionen

Wenn Sonderwünsche für kundenspezifische Anlagen bestehen, kann NSK je nach Bestellvolumen spezielle Gehäuse anfertigen.

Ein typisches Beispiel finden Sie unten stehend.

138

Vergleichsliste

Kurzzeichen	Hersteller	RHP und NSI Kurzzeichen	
В	Asahi	1200G	RHP
B200	Asahi	AS200	RHP
B-B	Asahi	1200G	RHP
BF200	Asahi	SF-A	RHP
BFC200	Asahi	FC-A	RHP
BFL200	Asahi	SFT-A	RHP
BLCTE200	Asahi	ASFD200	NSK
BP200	Asahi	NP-A	RHP
BPF	Asahi	SLFE-A	RHP
BPF200	Asahi	ASPF200	NSK
BPFL	Asahi	SLFL-A	RHP
BPFL200	Asahi	ASPFL200	NSK
BPP	Asahi	LPB-A	RHP
BPP200	Asahi	ASPP200	NSK
BT200	Asahi	ST-A	RHP
CS200ZZ	Asahi	CS200LLU	RHP
FHFC200	Asahi	FC-EC	RHP
FHLCTE200	Asahi	AELFD200	NSK
FHPF200	Asahi	AELPF200	NSK
FHPFL200	Asahi	AELPFL200	NSK
FHR200ER(U)	Asahi	1300EC	RHP
FHT200	Asahi	ST-EC	RHP
KH200+ER	Asahi	AEL200	NSK
SER	Asahi	1100CG	RHP
UC300	Asahi	UC300	NSK
UCEH200	Asahi	UCHB200	NSK
UCF200	Asahi	UCF200	NSK
UCFC200	Asahi	UCFC200	NSK
UCFCX00	Asahi	UCFCX00	NSK
UCFK200	Asahi	UCFH200	NSK
UCFL200	Asahi	UCFL200	NSK
UCFLX00	Asahi	UCFLX00	NSK
UCFX00	Asahi	UCFX00	NSK
UCLF200(U)	Asahi	SF	RHP
UCLP200(U)	Asahi	SL	RHP
UCP200	Asahi	UCP200	NSK
UCPA200	Asahi	UCUP200	NSK
UCPX00	Asahi	UCPX00	NSK
UCST200(U)	Asahi	ST	RHP
UCT200	Asahi	UCT200	NSK
UCW200	Asahi	1000G	RHP
UD200EEA	Asahi	1200ECG	RHP
UDF200A	Asahi	SF-EC	RHP
UDFL200B	Asahi	SFT-EC	RHP
UDT200A	Asahi	NP-EC	RHP
UDT200B	Asahi	ST-EC	RHP
UG200+ER	Asahi	UEL200	NSK
UGF200	Asahi	UELF200	NSK
UGFC200	Asahi	UELFC200	NSK
UGFL200	Asahi	UELFL200	NSK
UGP200	Asahi	UELP200	NSK
UGT200 UH200UR(U)	Asahi	UELT200	NSK
	Asahi Asahi	1200EC SF-EC	RHP
UHF200	10.10.000		RHP
UHFL200 UHP200	Asahi Asahi	SFT-EC NP-EC	RHP
UHPP200	Asahi	AELPP200	NSK
UK200	Asahi	UK200	NSK
UNZUU	Asahi, FYH,	UNZUU	NON
UCP200	Koyo, Nachi, NBR, NSK, NTN	NP	RHP
UCT200	Asahi, FYH, Koyo, Nachi, NBR, NSK, NTN	ST	RHP
UCPX	Asahi, FYH, Koyo, NSK	MP	RHP

Kurzzeichen	Hersteller	RHP und N Kurzzeich	
UCTX	Asahi, FYH, Koyo, NSK	MST	RHP
UCX	Asahi, FYH, Koyo, NSK	1000G	RHP
UC200	Asahi, FYN, Koyo, Nachi, NBR, NSK, NTN	1000G	RHP
UCF200	Asahi, FYN, Koyo, Nachi, NBR, NSK, NTN	SF	RHP
UCFL200	Asahi, FYN, Koyo, Nachi, NBR, NSK, NTN	SFT	RHP
UCFX	Asahi, FYN, Koyo, NSK	MSF	RHP
UCLFX	Asahi, FYN, Koyo, NSK	MSFT	RHP
FG200ER(U)	Asahi, Nachi	1000DECG SL-DEC	RHP RHP
FGAK200 FH200ER(U)	Asahi, Nachi Asahi, Nachi	1200EC	RHP
FNR-R	BCA	SF-EC	RHP
PNR-R	BCA	SL-EC	RHP
PNR-RS	BCA	NP-EC	RHP
PWG-R	BCA	SL-DEC	RHP
PWG-RS	BCA	NP-DEC	RHP
TNR-R	BCA	SFT-EC	RHP
FB220	Browning	SF-EC	RHP
FB230	Browning	SFT-EC	RHP
FB250	Browning	SF	RHP
FB260	Browning	SFT	RHP
FB350	Browning	MSF	RHP
PB220	Browning	SL-EC	RHP
PB221	Browning	NP-EC	RHP
PB250	Browning	SL	RHP
PB251	Browning	NP	RHP
PB350	Browning	MP	RHP
1000KRR	Fafnir	1100DEC	RHP
200NPPB	Fafnir	1726200-2RS	RHP
FLCTE	Fafnir	LFTC-EC	RHP
GC-KRRB	Fafnir	1000G	RHP
GC-KRRG2	Fafnir	1100CG	RHP
GE-KPPB	Fafnir	T1000DECG	RHP
GE-KRRB G-KPPB3	Fafnir Fafnir	1000DECG T1000DECG	RHP RHP
GLCTE	Fafnir	LFTC-EC	RHP
GRAE-NPPB	Fafnir	1200ECG	RHP
GW208PPB5	Fafnir	1/PDNF240/9G	RHP
GW208PPB6	Fafnir	1/PDNF240/8G	RHP
GW208PPB8	Fafnir	PDNF240/9G	RHP
GW209PPB11	Fafnir	28/DNF245-45G	RHP
GW209PPB2	Fafnir	PDNF145-45G	RHP
GW209PPB5	Fafnir	PDNF245/10G	RHP
GW209PPB8	Fafnir	DNF 245/10G	RHP
GW210PP4	Fafnir	PDF150/9G	RHP
GW210PPB2	Fafnir	PDNF150-1.15/16G	RHP
GW210PPB4	Fafnir	PDNF150/9G	RHP
GW211PP2	Fafnir	PDF155-2.3/16G	RHP
GW211PP3	Fafnir	PDF155/12G	RHP
PASE	Fafnir Fafair	NP-EC	RHP
PB pcr	Fafnir Fafoir	LPB-EC	RHP
PCF	Fafnir Fafoir	SF-EC	RHP
PCFT PHE	Fafnir Fafnir	SFT-EC SCH-EC	RHP RHP
PMNE	Fafnir	FC-EC	RHP
PSHE	Fafnir	SNP-EC	RHP
OTHE	F-f-is	CTCC	OHO

Kurzzeichen	Hersteller	RHP und N Kurzzeich	
RA	Fafnir	SLFE-EC	RHP
RAENPP	Fafnir	1300EC	RHP
RAKC	Fafnir	SL	RHP
RAKHP	Fafnir	MP	RHP
RASC	Fafnir	NP	RHP
RASE	Fafnir	NP-DEC	RHP
RAT	Fafnir	SLFL-EC	RHP
RATR	Fafnir	SLFT-EC	RHP
RC	Fafnir	SLC-DEC	RHP
RCC RCE	Fafnir Fafnir	SLC SLC-DEC	RHP RHP
RCHP	Fafnir	MSC	RHP
RCJ	Fafnir	SF-DEC	RHP
RCJHP	Fafnir	MSF	RHP
RCJSP	Fafnir	SF	RHP
RCIT	Fafnir	SFT-DEC	RHP
RCITC	Fafnir	SFT	RHP
ROTE	Fafnir	SFT-DEC	RHP
ROTHP	Fafnir	MSFT	RHP
ROTP	Fafnir	SFT	RHP
REC	Fafnir	MFC	RHP
RFHP	Fafnir	MEC	RHP
RHCM	Fafnir	SCHB	RHP
RHE	Fafnir	SCH-DEC	RHP
RMNE	Fafnir	FC-DEC	RHP
RMNEY	Fafnir	FC	RHP
RPB	Fafnir	LPBR-EC	RHP
RR	Fafnir	SLFE-DEC	RHP
RRC	Fafnir	SLFE	RHP
RRT	Fafnir	SLFL-DEC	RHP
RRTR	Fafnir	SLFT-DEC	RHP
RSHE	Fafnir	SNP-DEC	RHP
RTUE	Fafnir	ST-DEC	RHP
RTUHP	Fafnir	MST	RHP
RTUP	Fafnir	ST	RHP
TAS	Fafnir	TNP-DEC	RHP
TASE	Fafnir	TNP-DEC	RHP
IQ	Fafnir	TSF-DEC	RHP
TOT	Fafnir	TSFT-DEC	RHP
THE	Fafnir	TSCH-DEC	RHP
TMNE	Fafnir Fafnir	TFC-DEC	RHP
TMNE TSHE	Fafnir Fafnir	TSNP-DEC	RHP RHP
TTUE	Fafnir	TST-DEC	RHP
VAK	Fafnir	SL-EC	RHP
VAK	Fafnir	SL-EC	RHP
VAS	Fafnir	NP-EC	RHP
VAS	Fafnir	NP-EC	RHP
VCJ	Fafnir	SF-EC	RHP
va	Fafnir	SF-EC	RHP
vgr	Fafnir	SFT-EC	RHP
vät	Fafnir	SFT-EC	RHP
VMNE	Fafnir	FC-EC	RHP
VMNE	Fafnir	FC-EC	RHP
VSHE	Fafnir	SNP-EC	RHP
VSHE	Fafnir	SNP-EC	RHP
W208PP10	Fafnir	36/DF140-1.1/2	RHP
W208PP5	Fafnir	2/DF240/9	RHP
W208PP6	Fafnir	2/DF240/8	RHP
W208PP8	Fafnir	PDF240/9	RHP
W208PP9	Fafnir	PDNF240/8	RHP
W208PPB13	Fafnir	2/DNF240/7	RHP
W208PPB2	Fafnir	36/PDNF140-1.1/2	RHP
W208PPB4	Fafnir	PONF140-1.3/16	RHP
W208PPB5	Fafnir	2/DNF240/9	RHP
W208PPB6	Fafnir	2/DNF240/8	RHP

Kurzzeichen	Hersteller	RHP und N Kurzzeiche	100
W208PPB7	Fafnir	2/DNF140-1.3/16	RHP
W208PPB8	Fafnir	PDNF240/9	RHP
W208PPB9	Fafnir	PDNF240/8	RHP
W209PPB2	Fafnir	PDNF145-45	RHP
W209PPB4	Fafnir	28/PDNF145-1.1/2	RHP
W209PPB5	Fafnir	PDNF245/10	RHP
W209PPB8	Fafnir	DNF245/10	RHP
W210PP2	Fafnir	PDF150-1.15/16	RHP
W210PP4	Fafnir	PDF150/9	RHP
W210PPB2	Fafnir	PDNF150-1.15/16	RHP
W210PPB4	Fafnir	PDNF150/9	RHP
W210PPB5	Fafnir	5/PONF150-1.3/4	RHP
W210PPB6	Fafnir	PDNF250/9	RHP
W211PP2	Fafnir	PDF155-2.3/16	RHP
W211PP3	Fafnir	PDF155/12	RHP
W211PPB2	Fafnir	PDNF155-2.3/16	RHP
W211PPB3	Fafnir	PDNF155/12	RHP
200NPPB	Fafnir, INA	1726200-2RS	RHP
GE-KPPB3	Fafnir, INA	T1000DECG	RHP
G-KRRB	Fafnir, INA	1000DECG	RHP
GRA-NPPB	Fafnir, INA	1200ECG	RHP
PB DAT NOOD	Fafnir, INA	LPB-EC	RHP
RAE-NPPB	Fafnir, INA	1200EC	RHP
RAK	Fafnir, INA	SL-DEC	RHP
RA-NPP RA-NPPB	Fafnir, INA Fafnir, INA	1300EC 1200EC	RHP RHP
RSHE	Fafnir, INA	SNP-DEC	RHP
IC-J	Fafnir, INA	TSF-DEC	RHP
TCJT	Fafnir, INA	TSFT-DEC	RHP
36200	FAG	1000DECG	RHP
56200	FAG	1000G	RHP
76200	FAG	1726200-2RS	RHP
76200B.2RSR	FAG	1726200-2RS	RHP
FB16200	FAG	SLFE-EC	RHP
FB56200	FAG	SLFE	RHP
FG16200	FAG	SF-EC	RHP
FG56200	FAG	SF	RHP
H	FAG	H	RHP
KM	FAG	AN	RHP
SB16200	FAG	LPB-EC	RHP
SC16200	FAG	NP-EC	RHP
SG36200	FAG	NP-DEC	RHP
SG56200	FAG	NP 1100CG	RHP
E200 NA200	FYH FYH	1000CG	RHP RHP
NANF200	FYH	SF-DEC	RHP
NANFL200	FYH	SFT-DEC	RHP
NAP200	FYH	NP-DEC	RHP
NASL200	FYH	SL-DEC	RHP
NAT-E	FYH	ST-DEC	RHP
RB200	FYH	1100	RHP
SA200	FYH	1200EC	RHP
SAA200	FYH	1300EC	RHP
SAF-FE	FYH	SF-EC	RHP
SAFL-FE	FYH	SFT-EC	RHP
SAP200	FYH	NP-EC	RHP
SAPF200	FYH	SLFE-EC	RHP
SAPP200F	FYH	LPB-A	RHP
SASL200F	FYH	SL-EC	RHP
SBPF200	FYH	SLFL-A	RHP
SBPP200F SC200	FYH FYH	LPB-EC 1726200-2RS	RHP RHP
UCHA200	FYH	SCHB	RHP
UCS200N	FYH	1100CG	RHP
J 402.0011	3 101	,10000	181.0

Vergleichsliste

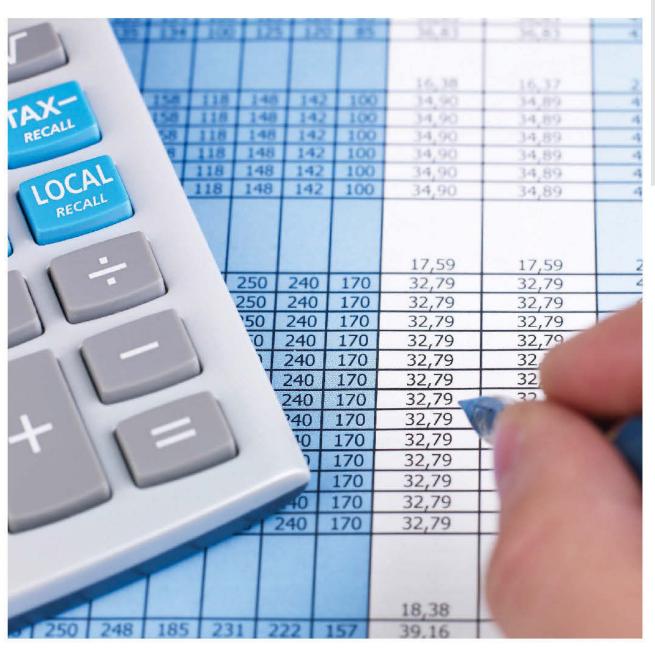
Kurzzekhen	Hersteller	RHP und N Kurzzeiche	
	FYH, Koyo,	attitud district	24-20-20-20-20
UK200	Nachi, NBR, NSK, NTN	1000-KG	RHP
	FYH, Koyo,	200000	
UKP200	Nachi, NBR, NSK, NTNNP1000-k	RHP	
UCPA200	FYH, Koyo, NSK	SNP	RHP
UCF200	FYH, Koyo,	FC	RHP
OGIZOO	NSK, NTN		INFIF
UKT200	FYH, Koyo, NSK, NTN	MST1000-K	RHP
UKF200	FYH, Nachi,	MSF1000-K	RHP
OKIZOO	NBR, NSK, NTN FYH, Nachi,	1000 10	130.01
UKFL200	NBR, NSK, NTN	MSFT1000-K	RHP
SB200	FÝH, NBR	1200G	RHP
EW	Hoffmann, Pollard	FT	RHP
RMS	Hoffmann, Pollard	MRJ	RHP
2-NPPB	INA	1726200-2RS	RHP
EKRR	INA	1100DEC	RHP
E-KRR	INA	1100DEC	RHP RHP
FLCTE FLCTE / GLCTE	INA INA	LFTC-EC LFTC-EC	RHP
FLCTEY GLCTE	INA	LFTC-A	RHP
GKRRBW	INA	1000DEC	RHP
GAY-NPPB	INA	1200G	RHP
GEKRRB FA101T	INA	1000DECGHLT	RHP
GEKRRB-CC	INA	1000DECGFS	RHP
GE-KPPB3	INA	T1000DECG	RHP
GE-KRRB	INA	1000DECG	RHP
GLCTE	INA	LFTC-EC	RHP
GLCTEY	INA	LFTC-A	RHP
GRANPPBW	INA	1200ECG	RHP
GRAE-NPPB	INA	1200ECG	RHP
GSH-RRB	INA	1000KG	RHP
GYKRRBW	INA	1000G	RHP
GYEKRRB VA	INA	J1000GCR	RHP
GYE-KRRB	INA	1000G	RHP
GY-KRRB	INA	1000G	RHP
PAK	INA	SL-EC	RHP
PAKY	INA	SL-EC	RHP
PASE	INA	NP-EC	RHP
PASEY	INA	NP-A	RHP
PB PBY	INA INA	LPB-EC LPB-A	RHP RHP
PCI	INA	SF-EC	RHP
PCIT	INA	SFT-EC	RHP
PCITY	INA	SFT-A	RHP
PCJY	INA	SF-A	RHP
PHE	INA	SCH-EC / SCHB-EC	RHP
PHEY	INA	SCH-A / SCHB-A	RHP
PHUSE	INA	BT-EC+ BTHF	RHP
PME	INA	FC-EC	RHP
PMEY	INA	FC-A	RHP
PSHE	INA	SNP-EC	RHP
PSHEY	INA	SNP-A	RHP
PTUE	INA	ST-EC	RHP
PTUEY	INA	ST-A	RHP
RA	INA	SLFE-EC	RHP
RANPPW	INA	1300EC	RHP
RACEY	INA	NP	RHP
RAENPP	INA	1300EC	RHP
RAKY	INA	SL	RHP
RASE	INA	NP-DEC	RHP
RASEFA101T	INA	NP-HLT	RHP
RASEA	INIA	NIP1000KG	RHP

Kurzzeichen	Hersteller	RHP und NSK Kurzzeichen	
RASEY	INA	NP	RHP
RASEYTN VA	INA	PNP-CR	RHP
RAT	INA	SLFL-EC	RHP
RATR	INA	SLFT-EC	RHP
RATRY	INA	SLFT-A	RHP
RATY	INA	SLFL-A	RHP
RAY	INA	SLFE-A	RHP
RB RBY	INA	LPB-DEC LPB	RHP RHP
RCJ	INA INA	SF-DEC	RHP
RCJFA101T	INA	SF-HLT	RHP
ROT	INA	SFT-DEC	RHP
RCJTFA101T	INA	SFT-HLT	RHP
RCITA	INA	SFT1000KG	RHP
RÓTY	INA	SFT	RHP
RÓY	INA	SF	RHP
RCJYTN VA	INA	PSF-CR	RHP
RHE	INA	SCH-DEC / SCHB-DEC	RHP
RHEY	INA	SCH/SCHB	RHP
RME	INA	FC-DEC	RHP
RMEY	INA	FC	RHP
RR	INA	SLFE-DEC	RHP
RRT	INA	SLFL-DEC	RHP
RRTR RRTY	INA INA	SLFT-DEC SLFL	RHP RHP
RRY	INA	SLFE	RHP
RSHE	INA	SNP-DEC	RHP
RSHEY	INA	SNP	RHP
RIT	INA	TSLFL-DEC	RHP
RTTR	INA	TSLFT-DEC	RHP
RTUE	INA	ST-DEC	RHP
RTUEY	INA	ST	RHP
TASE	INA	TNP-DEC	RHP
TASE	INA	TNP-DEC	RHP
IB III	INA	TLPB-DEC	RHP
TCJ	INA	TSF-DEC	RHP
TCJT TCJTYTN VA	INA INA	TSFT-DEC PSFT-CR	RHP RHP
THE	INA	TSCH-DEC / TSCHB-DEC	RHP
TME	INA	TFC-DEC	RHP
TME	INA	TFC-DEC	RHP
TR	INA	TSLFE-DEC	RHP
TSHE	INA	TSNP-DEC	RHP
TSHE	INA	TSNP-DEC	RHP
TTUE	INA	TST-DEC	RHP
TTUE	INA	TST-DEC	RHP
YE-KRR	INA	1100	RHP
Y-KRR	INA	1100	RHP
CB200 GA1100-2RSB	Koyo	172620000-2RS 1000DECG	RHP RHP
GAP1100-ZKSB	Koyo Koyo	NP-EC	RHP
GAPL1100B	Koyo	SL-DEC	RHP
GARA100-2RSA	Коуо	1200ECG	RHP
GARAF100A	Koyo	SF-EC	RHP
GARAFL100A	Коуо	SFT-EC	RHP
GARAP100A	Коуо	NP-EC	RHP
GARAPL100A	Koyo	SL-EC	RHP
GFF1100B	Koyo	SF-DEC	RHP
GFFL1100B	Koyo	SFT-DEC	RHP
HFC	Koyo	MEC	RHP
HV-(M)	Koyo	MST	RHP
LC	Koyo	SLC	RHP
LV-(M) PB	Koyo	ST 1700G	RHP
PF-A	Koyo	1200G SLFE-EC	RHP RHP
DE M	Koyo	SEFERE	KUL.

Kurzzeichen	Hersteller	RHP und Kurzzeid		Kurz
PFT1100B	Коуо	SLFE-DEC	RHP	UBF
RA100	Koyo	1200EC	RHP	UBF
SCHB	Коуо	SCHB	RHP	UBFI
SP	Koyo	LPB-A	RHP	UBP
SP100A	Koyo	LPB-EC	RHP	UBP
F3Y200N	Link Belt	SF-DEC	RHP	UBP
FX3Y200N	Link Belt	SFT-DEC	RHP	UBP
P3Y200N	Link Belt	NP-DEC	RHP RHP	UCEI
PL3Y200N C25	Link Belt McGill	SL-DEC NP	RHP	AELZ AELZ
C35	McGill	MP	RHP	AELE
CL25	McGill	SL	RHP	AELF
FC2-25	McGill	SFT	RHP	AELF
FC2-35	McGill	MSFT	RHP	AELF
FC4-25	McGill	SF	RHP	AELF
FC4-35	McGill	MSF	RHP	AELI
ER SS	McGill, Sealmaster	1100CG	RHP	AELI
BPF-B	Nachi	SLFE-A	RHP	AELF
BPP-B	Nachi	LPB-A	RHP	AELI
FHPR200	Nachi	LPBR-EC	RHP	AELF
SA200	NBR	1200ECG	RHP	AELF
SAFL200	NBR	SLFL-EC	RHP	AELF
SAP200	NBR	LPB-EC	RHP	AELF
SAY200	NBR	SLFE-EC	RHP	AELS
SBF200	NBR	SLFE-A	RHP	AELT
SBFL200	NBR	SLFL-A	RHP	AS2
SBP200	NBR	LPB-A	RHP	AS2
2FE	NDH	SFT-EC	RHP	ASF
2FS	NDH	SFT	RHP	ASF
4FE	NDH	SF-EC	RHP	ASF
4FS	NDH	SF	RHP	ASF
HPE	NDH	NP-EC	RHP	ASFI
HPS	NDH	NP	RHP	ASF
PE	NDH	SL-EC	RHP	ASP.
PS	NDH	SL	RHP	ASP
R2FE	NDH	SFT-EC	RHP	ASPI
R2FS	NDH	SFT	RHP	ASPI
R4FE	NDH	SF-EC	RHP	ASP
R4FS	NDH	SF	RHP	ASPI
RHPE	NDH	NP-EC	RHP	ASPI
RHPS	NDH	NP 51.55	RHP	ASP
RPE RPS	NOH	SL-EC	RHP	ASTZ
2.00.00	NDH	SL 472 (200 200	RHP	CS20
CS-DDU	NSK	1726200-2RS	RHP	CS-L
EM200 EMR200	NSK NSK	1200EC 1300EC	RHP RHP	UC30 UCF2
EN200	NSK	1200EC	RHP	UCF3
ENFL200	NSK NSK	SFT-EC	RHP	UCFO
ENP200	NSK	NP-EC	RHP	UCFO
ENP200 ENPE200	NSK	SLFF-FC		UCFO
ENPP200	NSK	LPB-EC	RHP RHP	UCFI
ENPPR200	NSK	LPBR-EC	RHP	UCFI
ENR200	NSK	1300EC	RHP	UCFI
EW200	NSK	1000DECG	RHP	UCFI
EWFC200	NSK	FC-DEC	RHP	UCFX
EWFH200	NSK	SF-DEC	RHP	UCH
EWFL200	NSK	SFT-DEC	RHP	UCH
EWFLH200	NSK	TSFT-DEC	RHP	UCP
EWP200	NSK	NP-DEC	RHP	UCP
EWPA200	NSK	SNP-DEC	RHP	UCP
EWPLL200	NSK	SL-DEC	RHP	UCS
EWT200	NSK	ST-DEC	RHP	UCTZ
GEM200	NSK	1200ECG	RHP	UCT2
GEMTR200J	NSK	ST-EC	RHP	UCT
UB200	NSK	1200G	RHP	UCUI
UBF200	NSK	SF-A	RHP	UCX

	8	E	
Kurzzeichen	Hersteller	RHP und Kurzzei	
UBFC200	NSK	FC-A	RHP
UBFD200	NSK	LFTC-A	RHP
UBFL200	NSK	SFT-A	RHP
UBP200	NSK	NP-A	RHP
UBPD200	NSK	SNP-A	RHP
UBPF200	NSK	SLFE-A	RHP
UBPP200 UCEH200	NSK NSK	LPBR-A SCHB	RHP RHP
AEL200	NTN	1200ECG	RHP
AEL200	NTN	AEL200	NSK
AELE200	NTN	SF-EC	RHP
AELFC200	NTN	FC-EC	RHP
AELFD200	NTN	AELFD200	NSK
AELFL200	NTN	SFT-EC	RHP
AELP200	NTN	NP-EC	RHP
AELPF200	NTN	SLFE-EC	RHP
AELPF200	NTN	AELPF 200	NSK
AELPFL200 AELPL200	NTN NTN	AELPFL200 SL-EC	NSK RHP
AELPP200	NTN	LPB-EC	RHP
AELPP200	NTN	AELPP200	NSK
AELPW200	NTN	SNP-EC	RHP
AELRPP200	NTN	LPBR-EC	RHP
AELS200	NTN	1300EC	RHP
AELT200	NTN	ST-EC	RHP
AS200	NTN	12006	RHP
AS200 ASF200	NTN NTN	AS200	NSK
ASFC200	NTN	SF-A FC-A	RHP RHP
ASFD200	NTN	LFTC-A	RHP
ASFD200	NTN	ASED200	NSK
ASFL200	NTN	SFT-A	RHP
ASFW200	NTN	LFTC-A	RHP
ASP200	NTN	NP-A	RHP
ASPF200	NTN	SLFE-A	RHP
ASPF200	NTN	ASPF200	NSK.
ASPFL200 ASPL200	NTN NTN	ASPFL200	NSK RHP
ASPP200	NTN	LPB-A	RHP
ASPP200	NTN	ASPP200	NSK
ASPW200	NTN	SNP-A	RHP
AST200	NTN	ST-A	RHP
CS200LLU	NTN	CS200LLU	RHP
CS-LLU	NTN	1726200-2RS	RHP
UC300	NTN	UC300	NSK
UCF200 UCF300	NTN NTN	UCF200 UCF300	NSK NSK
UCFC200	NTN	UCFC200	NSK
UCFC300	NTN	UCFC300	NSK
UCFCX00	NTN	UCFCX00	NSK
UCFH200	NTN	UCFH200	NSK
UCFL200	NTN	UCFL200	NSK
UCFL300	NTN	UCFL300	NSK
UCFLX00	NTN	UCFLX00	NSK NSK
UCFX00 UCHB	NTN NTN	UCFX00 SCHB	RHP
UCHB200	NTN	UCHB200	NSK
UCP200	NTN	UCP200	NSK
UCP300	NTN	UCP300	NSK
UCPX00	NTN	UCPX00	NSK
UCS200	NTN	1100	RHP
UCT200	NTN	UCT200	NSK
UCT300	NTN	UCT300	NSK
UCTX00	NTN	UCTX00	NSK
UCUP200 UCX00	NTN NTN	UCUP200 UCX00	NSK NSK
ULAUU	INTIN	Locyon	ACM

Vergleichsliste


Kurzzekhen	Hersteller	RHP und NSK Kurzzeichen	
UEL200	NTN	1000DECG	RHP
UEL200	NTN	UEL200	NSK
UELF200	NTN	SF-DEC	RHP
UELF200	NTN	UELF200	NSK
UELFC200	NTN	FC-DEC	RHP
UELFC200	NTN	UELFC200	NSK
UELFL200	NTN	SFT-DEC	RHP
UELFL200	NTN	UELFL200	NSK
UEL P200	NTN	NP-DEC UELP200	RHP
UELP200 UELPL200	NTN NTN	SL-DEC	NSK RHP
	5000000	SNP-DEC	RHP
UELPW200 UELS200	NTN NTN	1100DEC	RHP
UFLT200	NTN	ST-DEC	RHP
UELT200	NTN	UELT200	NSK
UK200	NTN	UK200	NSK
RMS-E	Pollard	MMRI	RHP
KLNJ	R&M	KLNI	RHP
KLNJ-D	R&M	KLNJ-Z	RHP
KLNJ-DD	R&M	KLNJ-2Z	RHP
KLNJ-WSR	R&M	KLNJ-2RS	RHP
630300	RIV	1000G	RHP
5300	Sealmaster	1000G	RHP
5200('C)	Sealmaster	1000G	RHP
5300('C)	Sealmaster	1000G	RHP
MEC	Sealmaster	MFC	RHP
MP	Sealmaster	MP	RHP
MSC	Sealmaster	MSC	RHP
MSF	Sealmaster	MSF	RHP
MSFT	Sealmaster	MSFT	RHP
MST	Sealmaster	MST	RHP
NP	Sealmaster	NP	RHP
SCHB	Sealmaster	SCHB	RHP
SFT	Sealmaster	SFT	RHP
SLG	Sealmaster	SL	RHP
SRP	Sealmaster	LPBR	RHP
SSF	Sealmaster	SLFE	RHP
SSP	Sealmaster	LPB	RHP
ST	Sealmaster	ST	RHP
TB	Sealmaster	CNP	RHP
TB-("C)	Sealmaster	CNP	RHP
SC	Sealmaster	SLC	RHP
SF	Sealmaster	SF	RHP
173200	SKF	1200ECG	RHP
173600	SKF	1200EC	RHP
174600	SKF	1300EC	RHP
477200	SKF	1000DECG	RHP
479200	SKF	1000G	RHP
1716200D-2LS	SKF	1300EC	RHP
1726200-2RS	SKF	1726200-2RS	RHP
1/26200-2RS1	SKF	1/26200-2RS	RHP
1726300-2RS1	SKF	1726300-2RS	RHP
238200(D)-2LS	SKF	1200EC	RHP
413200(0)	SKF	1000G	RHP
FY-CB	SKF	SF-EC	RHP
FYC-RM	SKF	FC-A	RHP
FYC-TF	SKF	FC	RHP
FYC-WM	SKF	FC-DEC	RHP
FY-FM	SKF	SF-EC	RHP
FYGF-FJ	SKF	FC-EC	RHP
FYGF-SD	SKF	FC	RHP
FYGF-W	SKF	FC-DEC	RHP
FYJ-FM	SKF	SF-EC	RHP
FYJ-RM EVILTE	SKF SKF	SF-A UCF200	RHP RHP
FYJ-TF FYI-WF	SKF	UELF200	RHP
1 1 1 7 44 1	21/10	ULLEZUU	INDIE

Kurzzeichen	Hersteller	RHP und N: Kurzzeiche	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
FYKTH/GFA	SKF	PSF-CR	RHP
FY-RM	SKF	SF-A	RHP
FY-S	SKF	SF	RHP
FYTB-CB	SKF	SFT-EC	RHP
FYTB-FJ	SKF	SFT-EC	RHP
FYTB-FM	SKF	SFT-EC	RHP
FYTBJ-FM	SKF	SFT-EC	RHP
FYTBJ-RM	SKF	SFT-A	RHP
FYTBJ-TF	SKF	UCFL200	RHP RHP
FYTBJ-WF FYTBKTH/GFA	SKF SKF	UELFL200 PSFT-CR	RHP
FYTB-L(D)	SKF	SFT	RHP
FYTB-RM	SKF	SFT-A	RHP
FYTB-S(D)	SKF	SFT	RHP
FYTB-TF	SKF	SFT	RHP
FYTB-TM	SKF	SFT	RHP
FYTB-W(M)	SKF	SFT-DEC	RHP
FYTB-WF	SKF	SFT-DEC	RHP
FY-TF	SKF	SF LETC FG	RHP
FYTF-FJ	SKF	LFTC-EC	RHP
FY-TM	SKF	SF SF OFC	RHP
FY-WM	SKF	SF-DEC	RHP
FY-X H	SKF SKF	SF-DEC H	RHP RHP
HA	SKF	HA	RHP
HE	SKF	HE	RHP
KM	SKF	AN	RHP
MB	SKF	AW	RHP
P-CA	SKF	LPB-EC	RHP
PF-CA	SKF	SLFE-EC	RHP
PFD-FM	SKF	SLFT-DEC	RHP
PFD-FM	SKF	SLFT-EC	RHP
PFD-RM	SKF	SLFT-A	RHP
PFD-TF	SKF	SLFT	RHP
PFD-TM	SKF	SLFT	RHP
PFD-WF PFD-WM	SKF SKF	SLFT-DEC SLFT-DEC	RHP RHP
PF-FM	SKF	SLFE-EC	RHP
P-FJ	SKF	LPB-EC	RHP
PF-L(D)	SKF	SLFE	RHP
P-FM	SKF	LPB-EC	RHP
PF-PA	SKF	SLFE-EC	RHP
PF-RM	SKF	SLFE-A	RHP
PFT-CA	SKF	SLFE-EC	RHP
PF-TF	SKF	SLFE	RHP
PFT-FM	SKF	SLFL-EC	RHP
PF-TM PFT-RM	SKF.	SLFE SLELA	RHP
PET-TE	SKF SKF	SLFL-A SLFL	RHP RHP
PET-TM	SKF	SLFL	RHP
PFT-W	SKF	SLFL-DEC	RHP
PFT-WF	SKF	SLFL-DEC	RHP
PFT-WM	SKF	SLFL-DEC	RHP
PF-WF	SKF	SLFE-DEC	RHP
PF-WM	SKF	SLFE-DEC	RHP
P-L(0)	SKF	LPB	RHP
P-R-CA	SKF	LPBR-A	RHP
P-R-FA	SKF	LPBR-A	RHP
P-R-FJ	SKE	LPBR-A	RHP
P-R-L P-RM	SKF SKF	LPBR LPB-A or ASPP200	RHP RHP
P-KM P-TF	SKF	LPB-A OF ASPP200	RHP
P-IM	SKF	LPB	RHP
P-W	SKF	LPB-DEC	RHP
P-WF	SKF	LPB-DEC	RHP
P-MAM	SKE	I PR-DEC	RHP

Kurzzeichen	Hersteller	RHP und NS Kurzzeiche	
SY	SKF	NP	RHP
SYB-FM	SKF	SL-EC	RHP
SYB-L(D)	SKF	SL	RHP
SYB-TM	SKF	SL	RHP
SYBWM	SKF	SL-DEC	RHP
SY-CB	SKF	NP-EC	RHP
SYF-FM	SKF	SNP-EC	RHP
SYFJ-FM	SKF	SNP-EC	RHP
SYFJ-RM	SKF	SNP-A	RHP
SYFJ-TF	SKF	UCUP200	NSK
SYFJ-WF	SKF	SNP-DEC	RHP
SY-FM	SKF	NP-EC	RHP
SY-FM	SKF	NP-EC	RHP
SYF-RM	SKE	SNP-A	RHP
SYF-TF	SKF	SNP	RHP
SYF-WF	SKF	SNP-DEC SL-EC	RHP
SYH-CB SYH-X	SKF SKF	SL-DEC	RHP RHP
270 A 2 2 A 33 C	75,500	NP-EC	
SYJ-FM SYJ-RM	SKF SKF	NP-A	RHP RHP
SYJ-TF	SKF	UCP200	NSK
SYJ-WF	SKF	UELP200	NSK
SYKTH/GFA	SKF	PNP-CR	RHP
SY-RM	SKF	NP-A	RHP
SY-TF	SKF	NP NP	RHP
SY-TM	SKF	NP	RHP
SY-W	SKF	NP-DEC	RHP
SY-WF	SKF	NP-DEC	RHP
SY-WM	SKF	NP-DEC	RHP
TB	SKF	ST	RHP
TB-CB	SKF	ST-EC	RHP
TB-X	SKF	ST-DEC	RHP
TU-FJ	SKF	ST-EC	RHP
TU-FM	SKF	ST-EC	RHP
TU-FM	SKF	ST-EC	RHP
TUJ-FM	SKF	ST-EC	RHP
TUJ-RM	SKF	ST-A	RHP
TUJ-TF	SKF	UCT200	NSK
TUJ-WF	SKF	UELT200	NSK
TU-L(D)	SKF	ST	RHP
TU-RM	SKF	ST-A	RHP
TU-S(D)	SKF	ST	RHP
TU-TF	SKF	ST	RHP
TU-TM TU-WF	SKF SKF	ST-DEC	RHP RHP
TU-WM	SKF	ST-DEC	RHP
YAR22RF/	SKF	11000GCR	RHP
HVGFA	200) looded	333.0
YAR200	SKF	1000G	RHP
YAR-2-2RF	SKF	1000GFS	RHP
YAR-2F	SKF	1000G	RHP
YAT200	SKF	1200G	RHP
YEL200	SKF	1000DECG	RHP
YEL200-2F	SKF	1000DECG	RHP
YET200	SKF	1200ECG	RHP
YSA200-2FK	SKF	1000KG	RHP
CES200	SNR	1300EC	RHP
CEX200	SNR	1100DEC	RHP
CUC200	SNR	1100	RHP
CUCS200	SNR	1300	RHP
ES200	SNR	1200ECG	RHP
ESC200	SNR	SLC-EC	RHP
ESEHE200	SNR	SCH-EC	RHP
ESF200	SNR	SF-EC	RHP
ESFC200	SNR	FC-EC	RHP
ESFD	SNR	LFTC-EC	RHP
ESFL200	SNR	SFT-EC	RHP

Kurzzeichen	Hersteller	RHP und	INSK
HOLLECHEN	Helsteller	Kurzzek	
ESP200	SNR	NP-EC	RHP
ESPA200	SNR	SNP-EC	RHP
ESSP200	SNR	BT-EC	RHP
EST200	SNR	ST-EC	RHP
EX200	SNR	1000DECG	RHP
EX200L3	SNR	T1000DECG8	RHP
EXC200	SNR	SLC-DEC	RHP
EXEHE200	SNR	SCH-DEC	RHP
EXF200	SNR	SF-DEC	RHP
EXFC200	SNR	FC-DEC	RHP
EXP200	SNR	NP-DEC	RHP
EXPA200	SNR	SNP-DEC	RHP
EXSP200	SNR	BT-DEC	RHP
EXT200	SNR	ST-DEC	RHP
GNP	SNR	PNP-CR	RHP
GSF	SNR	PSF-CR	RHP
GSFT	SNR	PSFT-CR	RHP
MUCFD	SNR	11000GCR	RHP
SPR	SNR	BTHF	RHP
UC200	SNR	1000G	RHP
UC20013	SNR	T1000G	RHP
UCC200	SNR	SLC	RHP
UCEHE200	SNR	SCH	RHP
UCF200	SNR	SF	RHP
UCFC200	SNR	FC	RHP
UCFL200	SNR	SFT	RHP
UCP200	SNR	NP NP	RHP
UCPA200	SNR	SNP	RHP
UCSP200	SNR	BT	RHP
UCT200	SNR	ST	RHP
UK200	SNR	1000KG	RHP
UKC200	SNR	SLC1000K	RHP
UKEHE200	SNR	SCH1000K	RHP
UKF200	SNR	SF1000K	RHP
UKFL200	SNR	SET1000K	RHP
UKP200	SNR	NP1000K	RHP
UKPA200	SNR	SNP1000K	RHP
UKT200	SNR	ST1000K	RHP
US200	SNR	1200G	RHP
USC200	SNR	SLC-A	RHP
USEHE200	SNR	SCH-A	RHP
USF200	SNR	SF-A	RHP
USFC200	SNR	FC-A	RHP
USFD	SNR	LFTC-A	RHP
USFL200	SNR	SFT-A	RHP
USP200	SNR	NP-A	RHP
USPA200	SNR	SNP-A	RHP
USSP200	SNR	BT-A	RHP
UST200	SNR	ST-A	RHP
6200EES	Stevr	176200-2RS	RHP
DZUUEED	steyr	17 0ZUU-ZK3	KHF

Umrechnungstabellen

Umrechnungstabellen

Vergleich von SI, CGS, und dem technischen Einheitensystem

Einheiten Einheiten- system SI	Länge m	Masse kg	Zeit s	Temp.	Beschleunigung m/s ²	Kraft N	Spannung Pa	Druck Pa	Energie	Leistung W
CGS System	cm	9	S	°C	Gal	dyn	dyn/cm²	dyn/cm²	erg	erg/s
Technisches Einheiten- system	m	kgf - s²/m	S	°C	m/s²	kgf	kgf/m²	kgf/m²	kgf · m	kgf · m/s

Umrechnungsfaktoren von SI-Einheiten

	SI-Einheiten	P 100	Einheiten außer Si		Umrechnungsfaktoren
Parameter	Einheitenbezeichnung	Symbole	Einheitenbezeichnung	Symbole	von SI-Einheiten
	Unity		Grad	0	180/π
Winkel	Bogenmaß	rad	Minute	100	10 800/π
			Sekunde	920	648 000/π
Länge	Meter	m	Mikron	μ	106
Lange	Meter	111	Angström	Å	1010
Fläche	Quadratmeter	m²	Ar	а	10°2
riacile	Quautaunetei	100-	Hektar	ha	10.4
17-1	W. Ethanara	m³	Liter	l, L	103
Volumen	Kubikmeter	mr.	Deziliter	dl, dL	104
			Minute	min	1/60
Zeit	Sekunde	s	Stunde	h	1/3 600
			Tag	d	1/86 400
Frequenz	Hertz	Hz	Takt	s ¹	Ï
Drehzahl	Umdrehung pro Sekunde	s ⁻¹	Umdrehung pro Minute	min ⁻¹	60
6 1 11			Kilometer pro Stunde	km/h	3 600/1 000
Drehzahl	Meter pro Sekunde	m/s	Knoten	kn	3 600/1 852
Beschleunigung	Meter pro Quadrat Sekunde	m/s²	Fallbeschleunigung	G	1/9,806 65
NA	pet		Tonne	t	10³
Masse	Kilogramm	kg	Tonne	T	9,842 x 10 ⁻⁴
			Kilopond	kgf	1/9,806 65
Kraft	Newton	N	Tonnenpond	tf	1/ (9,806 65 · 103)
			Dyn	dyn	10 ^s
Drehmoment oder Moment	Newtonmeter	N·m	Kilopondmeter	kgf · m	1/9,806 65
	01	Pa	Kilopond pro Quadratzentimeter	kgf/cm²	1/ (9,806 65 · 104)
Spannung	Pascal	(N/m ²)	Kilopond pro Quadratmillimeter	kgf/mm²	1/ (9,806 65 · 104)
			Kilopond pro Quadratzentimeter	kgf/m²	1/9,806 65
			Wassersäule	mH₂0	1/(9,806 65 · 10³)
Donale	Pascal	Pa	Quecksilbersäule	mmHg	760/(1,013 25 · 10°)
Druck	(Newton pro Quadratmeter)	(N/m ²)	Torr	Torr	760/(1,013 25 · 10°)
			Bar	bar	10⁵
			Atmosphäre	atm	1/(1,013 25 - 105)

Umrechnungsfaktoren von SI-Einheiten (Fortsetzung)

	SI-Einheiten		Einheiten außer S	il	Umrechnungsfaktoren
Parameter	Einheitenbezeichnung	Symbole	Einheitenbezeichnung	Symbole	von SI-Einheiten
			Erg	erg	107
	Joule	10	Kalorie (International)	cal _n	4,186 8
Energie	58	, ,	Kilopondmeter	kgf · m	1/9,806 65
	(Newton · meter)	(N · m)	Kilowattstunde	kW·h	1/(3,6 - 106)
			Pferdestärkenstunde	PS · h	≈ 3,776 72 · 10 ⁻⁷
	Watt	w	Kilopondmeter pro Sekunde	kgf · m/s	1/9,806 65
Leistung	1000000	1004	Kilokalorie pro Stunde	kcal/h	1/1,163
	(Joule pro Sekunde)	(J/s)	Pferdestärken	PS	≈ 1/735,498 8
Viskosität, Viskositätsindex	Pascal-Sekunde	Pa·s	Poise	Р	10
16. P. T. (6.1. (101		2.72	Stokes	St	104
Kinematische Viskosität	Quadratmeter pro Sekunde	m²/s	Zentistokes	cSt	106
Temperatur	Kelvin, Grad Celsius	K, °C	Grad	°C	(siehe Hinweis (1))
Elektrischer Strom	Ampere	A	Ampere	Α	1
Elektrische Spannung	Volt	٧	(Watt pro Ampere)	(W/A)	1
Magnetfeldstärke	Ampere pro Meter	A/m	Oersted	0e	4π/10³
Mana atischer Flues C	Tesla	Ť	Gauss	Gs	104
Magnetischer Fluss D	iesia	ļ ₃	Gamma	γ	109
Elektrischer Widerstand	0hm	Ω	(Volt pro Ampere)	(V/A)	1

Hinweis

1. Die Umrechnung von TK in Θ °C ist Θ =T-273,15, aber für Temperaturdifferenzen gilt Δ T= $\Delta\Theta$. Jedoch stehen Δ T und $\Delta\Theta$ für Temperaturdifferenzen, die mit der Kelvin- bzw. Celcius-Skala gemessen wurden.

Anmerkung 1. Die Namen und Symbole in () entsprechen denen darüber oder links davon. Umrechnungsbeispiel 1N=1/9,806 65kgf

Vorsetzzeichen im SI-System

Potenzen	Präfix	Symbole	Potenzen	Präfix	Symbole
1018	Exa	Е	10 ⁻¹	Dezi	d
10 ¹⁵	Peta	Р	10 ⁻²	Zenti	C
1012	Tera	Ť	10³	Milli	m
109	Giga	G	10-6	Mikro	р
106	Mega	M	10-9	Nano	ū
10³	Kilo	k	10-12	Piko	Р
10²	Hecto	h	10-15	Femto	f
10¹	Deka	da	10-18	Atto	а

Umrechnungstabelle Zoll - mm

											1″=	25,4 mm
	Zoll	0	1	2	3	4	5	6	7	8	9	10
Bruch	Dezimale						mm					
0	0,000000	0,000	25,400	50,800	76,200	101,600	127,000	152,400	177,800	203,200	228,600	254,000
1/64	0,015625	0,397	25,797	51,197	76,597	101,997	127,397	152,797	178,197	203,597	228,997	254,397
1/32	0,031250	0,794	26,194	51,594	76,994	102,394	127,794	153,194	178,594	203,994	229,394	254,794
3/64	0,046875	1,191	26,591	51,991	77,391	102,791	128,191	153,591	178,991	204,391	229,791	255,191
1/16	0,062500	1,588	26,988	52,388	77,788	103,188	128,588	153,988	179,388	204,788	230,188	255,588
5/64	0,078125	1,984	27,384	52,784	78,184	103,584	128,984	154,384	179,784	205,184	230,584	255,984
3/32	0,093750	2,381	27,781	53,181	78,581	103,981	129,381	154,781	180,181	205,581	230,981	256,381
7/64	0,109375	2,778	28,178	53,578	78,978	104,378	129,778	155,178	180,578	205,978	231,378	256,778
1/8	0,125000	3,175	28,575	53,975	79,375	104,775	130,175	155,575	180,975	206,375	231,775	257,175
%4 %32	0,140625 0,156250	3,572 3,969	28,972 29,369	54,372 54,769	79,772 80,169	105,172	130,572	155,972 156,369	181,372 181,769	206,772	232,172 232,569	257,572 257,969
11/64	0,130230	4,366	29,766	55,166	80,566	105,369	131,366	156,766	182,166	207,169	232,966	258,366
3/16	0,187500	4,762	30,162	55,562	80,962	106,362	131,762	157,162	182,562	207,962	233,362	258,762
13/64	0,203125	5,159	30,559	55,959	81,359	106,759	132,159	157,559	182,959	208,359	233,759	259,159
7/32	0,218750	5,556	30,956	56,356	81,756	107,156	132,556	157,956	183,356	208,756	234,156	259,556
15/64	0,234375	5,953	31,353	56,753	82,153	107,553	132,953	158,353	183,753	209,153	234,553	259,953
1/4	0,250000	6,350	31,750	57,150	82,550	107,950	133,350	158,750	184,150	209,550	234,950	260,350
17/64	0,265625	6,747	32,147	57,547	82,947	108,347	133,747	159,147	184,547	209,947	235,347	260,747
9/32	0,281250	7,144	32,544	57,944	83,344	108,744	134,144	159,544	184,944	210,344	235,744	261,144
19/64	0,296875	7,541	32,941	58,341	83,741	109,141	134,541	159,941	185,341	210,741	236,141	261,541
5/16 21/	0,312500	7,938	33,338	58,738	84,138	109,538	134,938	160,338	185,738	211,138	236,538	261,938
21/64 11/32	0,328125 0,343750	8,334 8,731	33,734 34,131	59,134 59,531	84,534 84,931	109,934	135,334 135,731	160,734 161,131	186,134 186,531	211,534 211,931	236,934 237,331	262,334 262,731
23/64	0,359375	9,128	34,528	59,928	85,328	110,331	136,128	161,528	186,928	212,328	237,728	263,128
3/6	0,375000	9,525	34,925	60,325	87,725	111,125	136,525	161,925	187,325	212,725	238,125	263,525
25/64	0,390625	9,922	35,322	60,722	86,122	111,522	136,922	162,322	187,722	213,122	238,522	263,922
13/32	0,406250	10,319	35,719	61,119	86,519	111,919	137,319	162,719	188,119	213,519	238,919	264,319
27/64	0,421875	10,716	36,116	61,516	86,916	112,316	137,716	163,116	188,516	213,916	239,316	264,716
7/16	0,437500	11,112	36,512	61,912	87,312	112,712	138,112	163,512	188,912	214,312	239,712	265,112
29/64	0,453125	11,509	36,909	62,309	87,709	113,109	138,509	163,909	189,309	214,709	240,109	265,509
15/32	0,468750	11,906	37,306	62,706	88,106	113,506	138,906	164,306	189,706	215,106	240,506	265,906
31/64	0,484375	12,303	37,703	63,103	88,503	113,903	139,303	164,703	190,103	215,503	240,903	266,303
1/2 33/64	0,500000 0,515625	12,700 13,097	38,100 38,497	63,500 63,897	88,900 89,297	114,300	139,700 140,097	165,100 165,497	190,500	215,900 216,297	241,300 241,697	266,700 267,097
17/32	0,531250	13,494	38,894	64,294	89,694	115,094	140,494	165,894	191,294	216,694	242,094	267,494
35/64	0,546875	13,891	39,291	64,691	90,091	115,491	140,891	166,291	191,691	217,091	242,491	267,891
9/16	0,562500	14,288	39,688	65,088	90,488	115,888	141,288	166,688	192,088	217,488	242,888	268,288
37/64	0,578125	14,684	40,084	65,484	90,884	116,284	141,684	167,084	192,484	217,884	243,284	268,684
19/32	0,593750	15,081	40,481	65,881	91,281	116,681	142,081	167,481	192,881	218,281	243,681	269,081
39/64	0,609375	15,478	40,878	66,278	91,678	117,078	142,478	167,878	193,278	218,678	244,078	269,478
5/8	0,625000	15,875	41,275	66,675	92,075	117,475	142,875	168,275	193,675	219,075	244,475	269,875
41/64	0,640625	16,272	41,672	67,072	92,472	117,872	143,272	168,672	194,072	219,472	244,872	270,272
21/32 43/64	0,656250	16,669	42,069	67,469	92,869	118,269	143,669	169,069	194,469	219,869	245,269	270,669 271,066
11/16	0,671875 0,687500	17,066 17,462	42,466 42,862	67,866 68,262	93,266 93,662	118,666	144,066 144,462	169,466 169,862	194,866 195,262	220,266	245,666 246,062	271,066
45/64	0,703125	17,462	43,259	68,659	94,059	119,002	144,859	170,259	195,659	221,059	246,459	271,462
23/32	0,718750	18,256	43,656	69,056	94,456	119,856	145,256	170,656	196,056	221,456	246,856	272,256
47/64	0,734375	18,653	44,053	69,453	94,853	120,253	145,653	171,053	196,453	221,853	247,253	272,653
3/4	0,750000	19,050	44,450	69,850	95,250	120,650	146,050	171,450	196,850	222,250	247,650	273,050
49/64	0,765625	19,447	44,847	70,247	95,647	121,047	146,447	171,847	197,247	222,647	248,047	273,447
25/32	0,781250	19,844	45,244	70,644	96,044	121,444	146,844	172,244	197,644	223,044	248,444	273,844
51/64	0,796875	20,241	45,641	71,041	96,441	121,841	147,241	172,641	198,041	223,441	248,841	274,241
13/16	0,812500	20,638	46,038	71,438	96,838	122,238	147,638	173,038	198,438	223,838	249,238	274,638
53/64 27/32	0,828125	21,034	46,434	71,834	97,234	122,634	148,034	173,434 173,831	198,834	224,234	249,634	275,034 275,431
55/64	0,843750 0,859375	21,431	46,831 47,228	72,231	97,631 98,028	123,031	148,431	174,228	199,628	224,631	250,031 250,428	275,828
7/8	0,875000	22,225	47,625	73,025	98,425	123,426	149,225	174,220	200,025	225,026	250,825	276,225
57/64	0,890625	22,622	48,022	73,422	98,822	124,222	149,622	175,022	200,023	225,822	251,222	276,622
29/32	0,906250	23,019	48,419	73,819	99,219	124,619	150,019	175,419	200,819	226,219	251,619	277,019
59/64	0,921875	23,416	48,816	74,216	99,616	125,016	150,416	175,816	201,216	226,616	252,016	277,416
15/16	0,937500	23,812	49,212	74,612	100,012	125,412	150,812	176,212	201,612	227,012	252,412	277,812
61/64	0,953125	24,209	49,609	75,009	100,409	125,809	151,209	176,609	202,009	227,409	252,809	278,209
31/32	0,968750	24,606	50,006	75,406	100,806	126,206	151,606	177,006	202,406	227,806	253,206	278,606
63/64	0,984375	25,003	50,403	75,803	101,203	126,603	152,003	177,403	202,803	228,203	253,603	279,003

1″= 25,4 mm

1	oll	11	12	13	14	15	16	17	18	19	20
Bruch	Dezimale					m	m				
0	0,0000	279,400	304,800	330,200	355,600	381,000	406,400	431,800	457,200	482,600	508,000
1/16	0,0625	280,988	306,388	331,788	357,188	382,588	407,988	433,388	458,788	484,188	509,588
1/8	0,1250	282,575	307,975	333,375	358,775	384,175	409,575	434,975	460,375	485,775	511,175
3/16	0,1875	284,162	309,562	334,962	360,362	385,762	411,162	436,562	461,962	487,362	512,762
1/4	0,2500	285,750	311,150	336,550	361,950	387,350	412,750	438,150	463,550	488,950	514,350
5/16	0,3125	287,338	312,738	338,138	363,538	388,938	414,338	439,738	465,138	490,538	515,938
3/8	0,3750	288,925	314,325	339,725	365,125	390,525	415,925	441,325	466,725	492,125	517,525
7/16	0,4375	290,512	315,912	341,312	366,712	392,112	417,512	442,912	468,312	493,712	519,112
1/2	0,5000	292,100	317,500	342,900	368,300	393,700	419,100	444,500	469,900	495,300	520,700
%16	0,5625	293,688	319,088	344,488	369,888	395,288	420,688	446,088	471,488	496,888	522,288
5/8	0,6250	295,275	320,675	346,075	371,475	396,875	422,275	447,675	473,075	498,475	523,875
11/16	0,6875	296,862	322,262	347,662	373,062	398,462	423,862	449,262	474,662	500,062	525,462
3/4	0,7500	298,450	323,850	349,250	374,650	400,050	425,450	450,850	476,250	501,650	527,050
13/16	0,8125	300,038	325,438	350,838	376,238	401,638	427,038	452,438	477,838	503,238	528,638
7/8	0,8750	301,625	327,025	352,425	377,825	403,225	428,625	454,025	479,425	504,825	530,225
15/16	0,9375	303,212	328,612	354,012	379,412	404,812	430,212	455,612	481,012	506,412	531,812

1"= 25,4 mm

I	Zoll .	21	22	23	24	25	26	27	28	29	30
Bruch	Dezimale					m	m				
0	0,0000	533,400	558,800	584,200	609,600	635,000	660,400	685,800	711,200	736,600	762,000
1/16	0,0625	534,988	560,388	585,788	611,188	636,588	661,988	687,388	712,788	738,188	763,588
1/8	0,1250	536,575	561,975	587,375	612,775	638,175	663,575	688,975	714,375	739,775	765,175
3/16	0,1875	538,162	563,562	588,962	614,362	639,762	665,162	690,562	715,962	741,362	766,762
1/4	0,2500	539,750	565,150	590,550	615,950	641,350	666,750	692,150	717,550	742,950	768,350
5/16	0,3125	541,338	566,738	592,138	617,538	642,938	668,338	693,738	719,138	744,538	769,938
3/8	0,3750	542,925	568,325	593,725	619,125	644,525	669,925	695,325	720,725	746,125	771,525
7/16	0,4375	544,512	569,912	595,312	620,712	646,112	671,512	696,912	722,312	747,712	773,112
1/2	0,5000	546,100	571,500	596,900	622,300	647,700	673,100	698,500	723,900	749,300	774,700
9/16	0,5625	547,688	573,088	598,488	623,888	649,288	674,688	700,088	725,488	750,888	776,288
5/8	0,6250	549,275	574,675	600,075	625,475	650,875	676,275	701,675	727,075	752,475	777,875
11/16	0,6875	550,862	576,262	601,662	627,062	652,462	677,862	703,262	728,662	754,062	779,462
3/4	0,7500	552,450	577,850	603,250	628,650	654,050	679,450	704,850	730,250	755,650	781,050
13/16	0,8125	554,038	579,438	604,838	630,238	655,638	681,038	706,438	731,838	757,238	782,638
7/8	0,8750	555,625	581,025	606,425	631,825	657,225	682,625	708,025	733,425	758,825	784,225
15/16	0,9375	557,212	582,612	608,012	633,412	658,812	684,212	709,612	735,012	760,412	785,812

1"= 25,4 mm

1	oll	31	32	33	34	35	36	37	38	39	40
Bruch	Dezimale					m	m				
0	0,0000	787,400	812,800	838,200	863,600	889,000	914,400	939,800	965,200	990,600	1016,000
1/16	0,0625	788,988	814,388	839,788	865,188	890,588	915,988	941,388	966,788	992,188	1017,588
1/8	0,1250	790,575	815,975	841,375	866,775	892,175	917,575	942,975	968,375	993,775	1019,175
3/16	0,1875	792,162	817,562	842,962	868,362	893,762	919,162	944,562	969,962	995,362	1020,762
1/4	0,2500	793,750	819,150	844,550	869,950	895,350	920,750	946,150	971,550	996,950	1022,350
5/16	0,3125	795,338	820,738	846,138	871,538	896,938	922,338	947,738	973,138	998,538	1023,938
3/8	0,3750	796,925	822,325	847,725	873,125	898,525	923,925	949,325	974,725	1000,125	1025,525
7/16	0,4375	798,512	823,912	849,312	874,712	900,112	925,512	950,912	976,312	1001,712	1027,112
1/2	0,5000	800,100	825,500	850,900	876,300	901,700	927,100	952,500	977,900	1003,300	1028,700
9/16	0,5625	801,688	827,088	852,488	877,888	903,288	928,688	954,088	979,488	1004,888	1030,288
5/8	0,6250	803,275	828,675	854,075	879,475	904,875	930,275	955,675	981,075	1006,475	1031,875
11/16	0,6875	804,862	830,262	855,662	881,062	906,462	931,862	957,262	982,662	1008,062	1033,462
3/4	0,7500	806,450	831,850	857,250	882,650	908,050	933,450	958,850	984,250	1009,650	1035,050
13/16	0,8125	808,038	833,438	858,838	884,238	909,638	935,038	960,438	985,838	1011,238	1036,638
7/8	0,8750	809,625	835,025	860,425	885,825	911,225	936,625	962,025	987,425	1012,825	1038,225
15/16	0,9375	811,212	836,612	862,012	887,412	912,812	938,212	963,621	989,012	1014,412	1039,812

Temperatur-Umrechnungstabellen

Anhang Tabelle 4 Umrechnungstabelle °C-°F

(Benutzung dieser Tabelle) Um beispielsweise 38 °C in °F umzurechnen, müssen Sie die Zahl in der rechten Spalte (°F) bei 38 in der mittleren Spalte im zweiten Block ablesen. Dies bedeutet, dass 38 °C 100,4 °F entspricht. Um 38 °F in °C umzurechnen, ist die Zahl links in der Spalte für °C-Werte derselben Reihe abzulesen. Hier wird der Wert 3,3 °C angegeben.

$$C = \frac{5}{9} (F-32)$$

$$F = 32 + \frac{5}{9} C$$

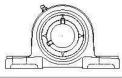
$$F = 32 + \frac{5}{9} C$$

°C		°F	°C	Ja	°F	°C		°F	°C		°F
-73,3	-100	-148,0	0,0	32	89,6	21,7	71	159,8	43,3	110	230
-62,2	-80	-112,0	0,6	33	91,4	22,2	72	161,6	46,1	115	239
-51,1	60	-76,0	1,1	34	93,2	22,8	73	163,4	48,9	120	248
-40,0	-40	-40,0	1,7	35	95,0	23,3	74	165,2	51,7	125	257
-34,4	-30	-22,0	2,2	36	96,8	23,9	75	167,0	54,4	130	266
-28,9	-20	-4,0	2,8	37	98,6	24,4	76	168,8	57,2	135	275
-23,3	-10	14,0	3,3	38	100,4	25,0	77	170,6	60,0	140	284
-17,8	0	32,0	3,9	39	102,2	25,6	78	172,4	65,6	150	302
-17,2	1	33,8	4,4	40	104,0	26,1	79	174,2	71,1	160	320
-16,7	2	35,6	5,0	41	105,8	26,7	80	176,0	76,7	170	338
-16,1	3	37,4	5,6	42	107,6	27,2	81	177,8	82,2	180	356
-15,6	4	39,2	6,1	43	109,4	27,8	82	179,6	87,8	190	374
-15,0	5	41,0	6,7	44	111,2	28,3	83	181,4	93,3	200	392
-14,4	6	42,8	7,2	45	113,0	28,9	84	183,2	98,9	210	410
-13,9	7	44,6	7,8	46	114,8	29,4	85	185,0	104,4	220	428
-13,3	8	46,4	8,3	47	116,6	30,0	86	186,8	110,0	230	446
-12,8	9	48,2	8,9	48	118,4	30,6	87	188,6	115,6	240	464
-12,2	10	50,0	9,4	49	120,2	31,1	88	190,4	121,1	250	482
-11,7	11	51,8	10,0	50	122,0	31,7	89	192,2	148,9	300	572
-11,1	12	53,6	10,6	51	123,8	32,2	90	194,0	176,7	350	662
-10,6	13	55,4	11,1	52	125,6	32,8	91	195,8	204	400	752
-10,0	14	57,2	11,7	53	127,4	33,3	92	197,6	232	450	842
-9,4	15	59,0	12,2	54	129,2	33,9	93	199,4	260	500	932
-8,9	16	60,8	12,8	55	131,0	34,4	94	201,2	288	550	1022
-8,3	17	62,6	13,3	56	132,8	35,0	95	203,0	316	600	1112
-7,8	18	64,4	13,9	57	134,6	35,6	96	204,8	343	650	1202
-7,2	19	66,2	14,4	58	136,4	36,1	97	206,6	371	700	1292
-6,7	20	68,0	15,0	59	138,2	36,7	98	208,4	399	750	1382
-6,1	21	69,8	15,6	60	140,0	37,2	99	210,2	427	800	1472
-5,6	22	71,6	16,1	61	141,8	37,8	100	212,0	454	850	1562
-5,0	23	73,4	16,7	62	143,6	38,3	101	213,8	482	900	1652
-4,4	24	75,2	17,2	63	145,4	38,9	102	215,6	510	950	1742
-3,9	25	77,0	17,8	64	147,2	39,4	103	217,4	538	1000	1832
-3,3	26	78,8	18,3	65	149,0	40,0	104	219,2	593	1100	2012
-2,8	27	80,6	18,9	66	150,8	40,6	105	221,0	649	1200	2192
-2,2	28	82,4	19,4	67	152,6	41,1	106	222,8	704	1300	2372
-1,7	29	84,2	20,0	68	154,4	41,7	107	224,6	760	14 00	2552
-1,1	30	86,0	20,6	69	156,2	42,2	108	226,4	816	1500	2732
-0,6	31	87,8	21,1	70	158,0	42,8	109	228,2	871	1600	2912

J-Line Wälzlagereinheiten

J-Line	-Wälzlagereinheiten	
I. Te	chnische Daten	
1.	Aufbau der J-Line Wälzlagereinheiten	157
2.		
	2.1 Kombinationstabelle	158
	2.2 Abdichtung	160
	2.3 Sichere Passung	161
	2.4 Ausgleich von Fluchtungsfehlern	161
	2.5 Einfache Montage	161
	2.6 Austausch von Wälzlagern	161
	2.7 Einsatzpassung im Gehäuse	161
3.	et de la marie de	
	3.1 Radiallagerluft von Lagereinsätzen	162
	3.2 Maßgenauigkeit von Lagereinsätzen	163
	3.3 Maßgenauigkeit von Gehäusen	164
4.	Tragzahlen und Lebensdauer	
	4.1 Lagerlebensdauer	167
	4.2 Auswahl von Kugellagereinheiten	171
	4.3 Auswahl von Wellen	172
	4.4 Grenzdrehzahl	17/
5.	- 1881-1881-1881-1881-1881-1881-1881-18	
	5.1 Zulässige Drehzahl	175
	5.2 Schmiernippeltyp	175
	5.3 Schmiernippelposition	175
	5.4 Schmierfett	176
	5.5 Nachschmieren	176
	Montageanleitung	17 8
I. Ma	aßtabellen	1 81

- I. Technische Daten
- 1. Aufbau der J-Line-Wälzlagereinheiten

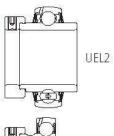

J-LINE WÄLZLAGEREINHEITEN 157

2. Konstruktionsausführung und Vorteile

2.1 Kombinationstabelle

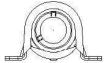
Gehäuse

Wälzlager

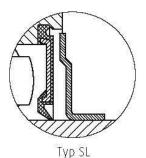


Gewindestifttyp

Spannexzentertyp


	71	(())	<u>√</u> (⊕)				
	Seite		Seite		Seite		Seite
UCP2	184	UCF2	190	UCFC2	196	UCFL2	202
UELP2	186	UELF2	192	UELFC2	198	UELFL2	204
UKP2	188	UKF2	194	UKFC2	200	UKFL2	206

158

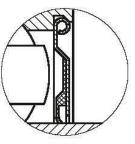


	Seite		Seite		Seite		Seite
UCT2	208	UCUP2	214				
				ASPF2 ASPFL2	238 234	AS PP2	230
UELT2	210	UELUP2	216				
				AELPF2 AELPFL2	240 236	AELPP2	232
UKT2	212	UKUP2	218				

J-LINE WÄLZLAGEREINHEITEN 159

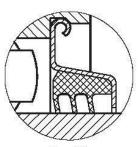
2. Konstruktionsausführung und Vorteile

2.2 Abdichtung



Doppellippendichtung

Die Gummidichtung ist in einer Nut in der Bohrung des Außenrings befestigt, und die Lippe berührt den Außendurchmesser des Innenrings.


Die separate metallische Schleuderscheibe ist auf dem Außendurchmesser des Innenrings befestigt und weist einen kleinen ringförmigen Spalt zur Bohrung des Außenrings auf.

Diese Ausführung verhindert, dass Verunreinigungen in das Lagerinnere gelangen. (Standard bei den Serien UC, UEL und UK)

Typ H mit Stahlblecheinsatz Die Gummidichtung ist mit einem Stahlblech verbunden und sitzt in einer Nut in der Bohrung des Außenrings. Die Dichtung berührt den Außendurchmesser des Innenrings. Das Stahlblech weist einen kleinen ringförmigen Spalt zum Außendurchmesser des Innenrings auf.

Diese Ausführung verhindert, dass Verunreinigungen in das Lagerinnere gelangen. (Standard bei den Serien AS und AEL)

Typ L3 Dreifachlippendichtung

Eine Gummidichtung mit drei Lippen ist mit einem Stahlblech verbunden, das in einer Nut in der Bohrung des Außenrings befestigt ist. Die drei Lippen der Gummidichtung berühren den Außendurchmesser des Innenrings. Das Stahlblech weist einen kleinen ringförmigen Spalt zum Außendurchmesser des Innenrings auf. Diese Ausführung bietet einen sehr effektiven Schutz bei Anwendungen mit hohem Verschmutzungsgrad. (auf Anfrage für die Serien UC und UEL erhältlich)

2.3 Sichere Passung

Die Befestigung des Wälzlagers auf der Welle erfolgt durch Anziehen des Gewindestifts am Innenring. Hierdurch wird ein lösen des Innenringes wirkungsvoll verhindert - selbst wenn das Wälzlager starken Vibrationen und Stößen ausgesetzt ist.

2.4 Ausgleich von Fluchtungsfehlern

Der Lageraußendurchmesser der J-Line-Einheiten und die Bohrung des Gehäuses sind kugelförmig, sodass die Lagereinheit selbsteinstellende Eigenschaften aufweist. Auf diese Weise können anfängliche Fluchtungsfehler der Welle ausgeglichen werden.

2.5 Einfache Montage

Die integrierten J-Line-Lagereinheiten bestehen aus einem Wälzlagereinsatz und einem Gehäuse. Da das Wälzlager herstellerseitig mit der richtigen Menge an hochwertigem Lithiumfett vorgeschmiert wird, kann es direkt einsatzbereit auf die Welle montiert werden

2.6 Austausch von Wälzlagern

Der in den J-Line-Lagereinheiten verwendete Einsatz kann problemlos durch ein entsprechendes Produkt ersetzt werden. Bei einem Ausfall des Einsatzes kann ein neues Wälzlager in das vorhandene Gehäuse eingebaut werden.

2.7 Einsatzpassung im Gehäuse

Um den Lagereinsatz sicher im Gehäuse zu platzieren, wird bei J-Line-Lagereinheiten standardmäßig eine "J-Toleranz"für die Gehäusebohrung verwendet.

Da J-Line-Produkte häufig in anspruchsvollen Anwendungen (z. B. in der Landmaschinentechnik) eingesetzt werden, wurde den Einsätzen der Serien UC, UEL und UK als zusätzliches Sicherheitsmerkmal ein Anschlagstift hinzugefügt. Dieser verhindert, dass sich der Lageraußenring dreht, selbst wenn das Lager während des Betriebs innerhalb des Gehäuses verschwenkt wird.

3. Toleranzen

3.1 Radiallagerluft von Lagereinsätzen

C3 für Wälzlager mit zylindrischer Bohrung und C4 für Wälzlager mit konischer Bohrung.

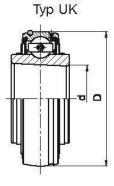
3.1.1 Lagereinsätze mit zylindrischer Bohrung

Bohrungsd d (n	Bohrungsdurchmesser d (mm)		3
über	inkl.	min.	max.
10	18	11	25
18	24	13	28
24	30	13	28
30	40	15	33
40	50	18	36
50	65	23	43
65	80	25	51
80	100	30	58
100	120	36	66
120	140	41	81

Alle Lagerluftwerte in µm

3.1.2 Lagereinsätze mit konischer Bohrung

Bohrungsd d (r	urchmesser nm)	(4
über	inkl.	min.	max.
10	18	18	33
18	24	20	36
24	30	23	41
30	40	28	46
40	50	30	51
50	65	38	61
65	80	46	71
80	100	53	84
100	120	61	97
120	140	71	114


Alle Lagerluftwerte in µm

3.2 Maßgenauigkeit von Lagereinsätzen

3.2.1 Außenringtoleranzen

D (n	nm)	Δ,	Imp	Kea
über	inkl.	max.	min.	max
30	50	0	-11	20
50	80	0	-13	25
80	120	0	-15	35
120	150	0	-18	40
150	180	0	-25	45
180	250	0	-30	50
250	315	0	-35	60

Typ UC

Alle Toleranzwerte in µm

D Nennmaß des Außendurchmessers

 Δ_{dmp} Abweichung des mittleren Bohrungsdurchmessers in einer Ebene vom Nennmaß Rundlauf des Außenrings am zusammengebauten Lager (Radialschlag)

3.2.2 Toleranzen von Innenringen mit zylindrischer Bohrung

		Lagereinsätze mit zylindrischer Bohrung						
d (n	nm)	Bo	hrungsdurchmes	ser		(v.E.	K _{ia}	
		4,	dmp	V _{dp}	△ _{Bs}	$\Delta_{_{\mathbf{8s'}}}\Delta_{_{\mathbf{Cs}}}$		
über	inkl.	max.	min.	max.	max.	min.	max.	
10	18	+15	0	10	0	-120	15	
18	30	+18	Ö	12	0	-120	18	
30	50	+21	0	14	0	-120	20	
50	80	+24	Ö	16	0	-150	25	
80	120	+28	0	19	0	-200	30	
120	180	+33	0	22	0	-250	35	

d Nennmaß des Bohrungsdurchmessers

Abweichung des mittleren Außendurchmessers in einer Ebene

Schwankung des Bohrungsdurchmessers in einer einzelnen radialen Ebene

Abweichung der einzelnen Innenringbreite

Abweichung einer einzelnen Außenringbreite

Rundlauf des Innenrings am zusammengebauten Lager (Radialschlag)

3. Toleranzen

3.2.3 Toleranzen von Innenringen mit konischer Bohrung

d (mm)		Δ,	Imp	△ _{d1mp}	V _{dp} 1)	
über	inkl.	max.	min.	max.	min.	max.
18	30	+33	0	+21	0	13
30	50	+39	0	+25	0	15
50	80	+46	0	+30	0	19
80	120	+54	0	+35	0	25
120	180	+63	0	+40	0	31

Alle Toleranzwerte in µm

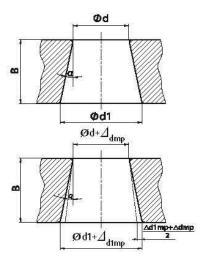
Gilt für jede einzelne radiale Ebene der Bohrung

d Nennmaß des Bohrungsdurchmessers

Durchmesser am theoretischen großen Ende einer konischen Bohrung d $_1$ = d + 1/12B

Abweichung des mittleren Bohrungsdurchmessers in einer Ebene vom Nennmaß

∆ domp domp Abweichung des mittleren Bohrungsdurchmessers in einer einzelnen Ebene am theoretischen großen Ende einer konischen Bohrung


Schwankung des Bohrungsdurchmessers in einer einzelnen radialen Ebene

V В Nennbreite des Innenrings

Der Konuswinkel (halber Kegelwinkel) ist α = 2° 23′ 9.4″

= 2.38594°

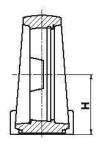
= 0.041643 rad

3.3 Maßgenauigkeit von Gehäusen

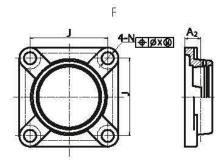
Der sphärische Bohrungsdurchmesser des J-Line-Gehäuses entspricht der Toleranzklasse J7, wie in Tabelle 3.3.1 unten dargestellt.

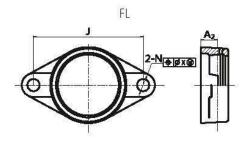
3.3.1 Toleranz des sphärischen Bohrungsdurchmessers von Gehäusen

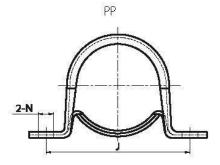
Manner	aß des K	Gehäuse f	ür Festsitz	
ugelbohrungs	durchmessers nm)	D	zklasse J7	
über inkl.		max.	min.	
30	50	+14	-11	
50	80	+18	-12	
80	120	+22	-13	
120	180	+26	-14	
180	250	+30	-16	
250	315	+36	-16	

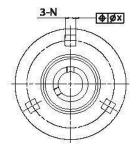

Alle Toleranzwerte in µm

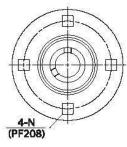
3.3.2 Maßgenauigkeit von Stehlagergehäusen

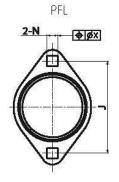

Toleranz der Spitzenhöhe des Stehlagers


Kurzzeichen Gehäuse P, PA	Toleranz von H
203-210	±150
211-218	±200


Alle Toleranzwerte in µm


3.3.3 Maßgenauigkeit von Flanschlagergehäusen





PF

4-N_{♠ØX}₽YB

3. Toleranzen

Gehäusetoleranzen

Kurzzeichen	200)		Kurzzeichen	Tolerand	e of ΔH_3			
Gehäuse	X ≤	ΔΑ2	Gehäuse	FC	2	X ≤	ΔA ₂	Υ ≤
F, FL	F, FL =		FC	max.	min.		940	_
204			204					
205			205	205	-46			
206			206					
207	700	±500	207	0		700	±500	200
208			208		EA			
209			209	-54				
210			210	NC.				
211			211					
212			212					
213			213					
214	1000	00000	214	0	-63	1000	200	3200
215	1000	±800	215	U	0	1000	±800	300
216		216 217						
217			217]		
218			218		-72			

Alle Toleranzwerte in µm

Toleranz von Stahlblechgehäusen

Kurzzekhen Gehäuse	ΔN	Toleranz von J	Kurzzeichen Gehäuse	ΔN	Toleranz der Position der Montagebohrung
PP203-208	±0,5	±0,4	PF203-208 PFL203-208	±0,2	0,4

Alle Toleranzwerte in µm

4. Tragzahlen und Lebensdauer

4. Tragzahlen und Lebensdauer

Wälzlager die unter normalen Bedingungen eingesetzt werden, sind die Oberflächen der Laufbahn und der Wälzkörper ständig wiederholten Druckbelastungen ausgesetzt, wodurch es zu Abblätterungen der Oberflächen kommt. Diese Abblätterungen sind auf Materialermüdung zurückzuführen und ziehen schließlich den Ausfall der Wälzlager nach sich. Die Lagerlebensdauer eines Wälzlagereinsatzes wird in der Regel durch die Gesamtzahl der Umdrehungen bestimmt, die ein Lager leisten kann, bevor es zu Abblätterungen kommt.

Einige Lagerausfälle entstehen durch Passungsrost, Abrieb, Rissbildung, Abplatzer, Fressen, Rost etc. Dies kann durch unsachgemäßen Einbau, unzureichende oder unsachgemäße Schmierung, fehlerhafte Abdichtung oder falsche Lagerauswahl verursacht werden und muss unabhängig von der Lagerlebensdauerberücksichtigt werden.

4.1.1 Tragzahlen und Lebensdauerbewertung

Die Tragfähigkeit beinhaltet die dynamische und die statische Tragzahl.

Die Last, welche auf das eingesetzte Lager wirkt und mit mindestens 10 U/min rotiert wird als dynamische Belastung definiert, während die Last bei langsamer Rotation oder Oszillation als statische Last bezeichnet wird.

Ein Lagereinsatz ist eine Art von Radialkugellager, das hauptsächlich Radialkräfte aufnimmt.

Dynamische Tragzahl C_r: Die dynamische Tragzahl drückt die Tragfähigkeit eines Wälzlagers basierend auf eine in Größe und Richtung unveränderliche Radiallast aus, die ein Wälzlager theoretisch für eine nominelle Lebensdauer von 106 Umdrehungen aufnehmen kann. Statische Tragzahl C_{or}: Die statische Tragzahl drückt die maximal aufgebrachte radiale Last aus, die zu einer errechneten Kontaktspannung an den mittleren Kontaktpunkten der am höchsten belasteten Stelle zwischen des Wälzkörpers und der Laufbahn führt und nur einer bleibenden Gesamtverformung von etwa dem 0,0001-fachen des Wälzkörperdurchmessers entspricht:

4.600 MPa bei Pendelkugellagem

4.200 MPa bei Radialkugellagern

4.000 MPa bei Radialrollenlagern

Die Tragzahlen werden im Katalog auf der Seite mit den Lagerabmessungen angegeben.

Lebensdauer: Die Lebensdauer eines Wälzlagers ist definiert als die Anzahl an Umdrehungen, die ein Lager aushalten kann, bevor die ersten Ermüdungserscheinungen auf den Oberflächen der Laufbahnen oder Wälzkörper auftreten. Zuverlässigkeit: Die Zuverlässigkeit bezieht sich auf den Prozentsatz der Wälzlager einer Gruppe von anscheinend identischen Wälzlagern, verwendet unter gleichen Bedingungen, die eine bestimmte Lebensdauer erreichen oder überschreiten können. Es handelt sich um die Wahrscheinlichkeit, mit der ein Wälzlager eine bestimmte Lebensdauer erreicht oder überschreitet.

Nominelle Lebensdauer: Für eine Gruppe von anscheinend identischen Wälzlagern, die unter identischen Bedingungen genutzt werden, wird die nominelle Lebensdauer als die Gesamtzahl der Umdrehungen definiert, die 90 % der Lager voraussichtlich erreichen oder überschreiten werden.

Gemäß der Norm ISO 281 wird die nominelle Lebensdauer von Radialkugellagern nach folgender Formel berechnet:

$$L_{10} = \left(\frac{C_r}{P}\right)^3$$

oder
$$\frac{C_{\Gamma}}{P} = L_{10}^{-1/3}$$

Dabei gilt: L₁₀: L10: nominelle Lebensdauer (10⁶ Umdrehungen)

C: dynamische Tragzahl

P: äquivalente dynamische Belastung

4. Tragzahlen und Lebensdauer

Äquivalente dynamische Belastung P: Die äquivalente dynamische Belastung ist eine konstante Last in einer vorgegebenen Richtung, unter deren Einfluss ein Wälzlager die gleiche Lebensdauer erreichen würde wie unter den tatsächlichen Lastverhältnissen.

Für einen Lagereinsatz, der mit einer konstanten Drehzahl arbeitet, kann die nominelle Lebensdauer in Betriebsstunden ausgedrückt werden. Sie wird mit der folgenden Formel berechnet:

$$L_{10h} = \frac{10^6}{60n} \left(\frac{C_f}{P} \right)^3$$

oder
$$L_{10h} = \frac{10^6}{60n} L_{10}$$

$$= \frac{16666}{n} \left(\frac{C_f}{p} \right)^3$$

Dabei gilt: L_{10h} = nominelle Lebensdauer (Stunden)

 $n = Lagerdrehzahl (min^{-1})$

Wenn das Wälzlager unter verschiedenen Belastungen und Drehzahlen arbeitet, ist bei der Berechnung der Lagerlebensdauer die folgende Formel für die mittlere äquivalente dynamische Belastung anzuwenden:

$$P_{m} = \sqrt[3]{\frac{\int_{0}^{N} P^{3} dn}{N}}$$

Dabei gilt: $P_m = mittlere$ äquivalente dynamische Belastung P = äquivalente dynamische Belastung

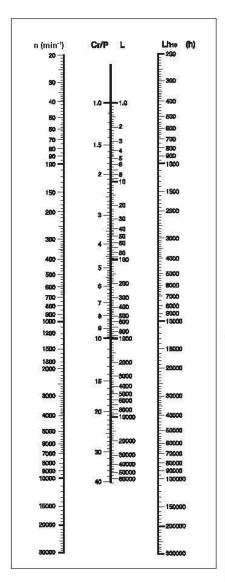
N = Gesamtdrehzahl innerhalb eines Lastwechselzyklus

4.1.2 Berechnungsmethode für die äquivalente dynamische Belastung

Die äquivalente dynamische Belastung wird mithilfe einer hypothetischen Bedingung bestimmt, bei der die tatsächliche Belastung in eine äquivalente dynamische Belastung umgewandelt wird.

Allgemeine Gleichung zur Berechnung der äquivalenten dynamischen Belastung:

 $P = XF_c + YF_a$


ei gilt: P = äguivalente dynamische Belastung (N);

 F_r = tatsächliche Radialbelastung (N) F_a = tatsächliche Axialbelastung (N)

X = Radialfaktor Y = Axialfaktor

Die Axialbelastung F_a darf die Hälfte der statischen Tragzahl nicht überschreiten. Die Einschränkungen durch die Gehäusefestigkeit müssen ebenfalls berücksichtigt werden. Siehe dazu Seite 170.

Die Werte der Radial- und Axialfaktoren X und Y für Lagereinsätze können der folgenden Tabelle entnommen werden:

4. Tragzahlen und Lebensdauer

	Fa			Q			N			ß	
$\frac{F_a}{C_o}$	F _f	≤e : F _r	F;	3 >e	e	F F	a >e r	e	F, F	a >e r	e
	Х	Υ	Х	Υ		X	γ		Х	γ	
0.025	1	0	0.56	2.0	0.22	0.46	1.75	0.31	0.44	1.42	0.40
0.040	1	0	0.56	1.8	0.24	0.46	0.62	0.33	0.44	1.36	0.42
0.070	1	0	0.56	1.6	0.27	0.46	1.46	0.36	0.44	1.27	0.44
0.130	1	0	0.56	1.4	0.31	0.46	1.30	0.41	0.44	1.16	0.48
0.250	1	0	0.56	1.2	0.37	0.46	1.14	0.46	0.44	1.05	0.53

Wenn Drehbelastungen auf Lager aufgebracht werden, wird die äquivalente dynamische Belastung wie folgt berechnet:

$$P_m = f_m \cdot P$$

Dabei gilt: P_m = äquivalente dynamische Belastung unter Berücksichtigung der Drehbelastung

 $f_m = bei hoher Drehbelastung: f_m=2$

Wenn eine Stoßbelastung aufgebracht wird, kann die äquivalente dynamische Belastung wie folgt berechnet werden:

$$P_d = f_d \cdot P$$

Dabei gilt: P_d = äquivalente dynamische Belastung unter Berücksichtigung der Stoßbelastung (N)

f_d = Stoßbelastungsfaktor wird wie folgt definiert

Wenn keine oder nur eine geringe Stoßbelastung aufgebracht wird:

$$f_d = 1~1.2$$

Bei moderater Stoßbelastung:

$$f_d = 1.2 \sim 1.8$$

4.1.3 Berechnung der modifizierten Lebensdauer

Normalerweise kann die nominelle Lebensdauer L10 zur Berechnung der Lagerlebensdauer herangezogen werden. Die Zuverlässigkeit der Berechnung liegt bei 90 %.

Bei einigen Anwendungen kann jedoch eine Zuverlässigkeit von über 90 % bei der Berechnung der Lagerlebensdauer erforderlich sein. Außerdem muss der Einfluss der Lagerqualität und der Betriebsbedingungen bei der Berechnung der Lagerlebensdauer berücksichtigt werden.

Die modifizierte Lagerlebensdauer L_{nm} beinhaltet also die Zuverlässigkeit (100-n)% bzw. Ausfallwahrscheinlichkeit in n%, die spezifizierter Lagerqualität und spezifizierten Betriebsbedingungen a_{xyz} . Sie kann wie folgt ausgedrückt werden: $L_{nm} = a_1 a_{xyz} L_{10}$

Der Lebensdauerbewert a, für die Zuverlässigkeit a, ist der folgenden Tabelle zu entnehmen.

Lebensdauerbeiwert a1 für die Zuverlässigkeit

Zuverlässigkeit	L _{nm}	a ₁
90	L _{10m}	1
95	L _{sm}	0,62
96	L _{4m}	0,53
97	L _{3m}	0,44
98	L _{2m}	0,33
99	L _{1m}	0,21

170

<u> Sehäuselagereinheiten</u>

Der Lebensdaueranpassungsfaktor a_{xy_z} beinhaltet Folgendes:

- Material
- Schmierung
- > Umgebung
- Verunreinigungen
- > Innere Spannung
- Montage
- Lagerbelastung

Die Lagerlebensdauer wird durch die oben genannten Faktoren beeinflusst. Daher müssen bei der Auswahl der Wälzlager alle Faktoren berücksichtigt werden, um Ausfälle zu vermeiden. Die Berechnungsmethode für die Lagerlebensdauer entnehmen Sie bitte der ISO 281.

4.1.4 Beispiel für die Auswahl der Lagereinsätze

Ein Kugellager soll bei einer Drehzahl von 800 min–1 nur mit einer Radiallast von $F_r = 3.000$ N und einer nominellen Lebensdauer von mindestens 30.000 Stunden betrieben werden. Wählen Sie das passende Lager aus. Lösung 1:

Nach folgender Formel:

$$L_{10h} = \frac{10^6}{60n} L_{10} = \frac{16666}{n} \left(\frac{C_r}{P}\right)^3$$

Von L_{10h} = 30.000 Stunden, Drehzahl = 800 min⁻¹, nur unter Radialbelastung, also P = F_r = 3.000 N, also gilt C_r = 33.877 N.

Lösung 2:

Durch die Verbindung von n (800 min⁻¹) und der erforderlichen nominellen Lebensdauer L_{10h} (30.000 Stunden) mit einer geraden Linie in der Abbildung lässt sich feststellen, dass der C_r/P -Wert 11,3 und $P = F_r = 3.000$ N ist. Folglich ist die erforderliche dynamische Tragzahl $C_r = 33.900$ N.

n (min⁻¹) Cr/P L 1.0 50 800 700 600 900 1000 70 80 90 100 1500 150 300 4000 5000 600 8000 7000 1200 1600 15000 20000 40000 4000 50000 5000 anno 70000 15000 150000

4.2 Auswahl von Kugellagereinheiten

Da sich die Kugellagereinheiten mit ihren hervorragenden Eigenschaften im Betrieb bewährt haben, werden die Anwendungsbereiche der Einheiten ständig erweitert. Sie werden derzeit in allen Bereichen der Industrie eingesetzt. Durch die korrekte Verwendung von Kugellagereinheiten lässt sich die zu erwartende Lebensdauer um das Doppelte steigern. Eine falsche Auswahl und Handhabung hingegen können die voraussichtliche Lebensdauer verkürzen. Daher sollten die folgenden Aspekte bei der Auswahl von Kugellagereinheiten unbedingt berücksichtigt werden:

- 1. Größe und Art der Betriebslast
- 2. Erwünschte minimale zu erwartende Lebensdauer
- 3. Betriebsdrehzahl der Welle
- 4. Bei Lagersätzen Verwendung von aufeinander abgestimmten Lagern.
- 5. Verfügbarer Platz für Montage- und Demontagearbeiten
- 6. Äußere Beschaffenheit am Einbauort
- 7. Chemikalien, Gaszusammensetzung und Temperatur am Einbauort

4. Tragzahlen und Lebensdauer

- 8. Umgebungstemperatur am Einbauort
- 9. Form- und Lagetoleranzen der Welle und der Lagersitze
- 10. Instandhaltung und Überwachung, einschließlich des Schmiersystems

Die obigen Aspekte sind als Auswahlkriterien zu betrachten. Die Punkte 1, 2 und 3 können zur Lebensdauerberechnung der Kugellagereinheit verwendet werden.

Hinsichtlich Punkt 4 muss ein Typ gewählt werden, der die Ausrichtungseinstellung durch eine Einbauänderung ermöglicht, da die gegenseitige Ausrichtung auch bei automatisch ausrichtenden Wälzlagern erforderlich ist, wenn mehrere Lagersätze auf eine Welle montiert werden können.

Bezüglich Punkt 5 ist zu prüfen, ob genügend Einbauraum zur Verfügung steht, um zu erkennen, wie die Montagearbeiten durchgeführt werden können.

Punkt 6 legt die Notwendigkeit einer sauberen Umgebung nahe, je nach Anwendungszweck der betreffenden Maschine. Eine solche Überlegung ist beispielsweise bei Elektrogeräten erforderlich.

Mit Blick auf die Punkte 7 und 8 muss untersucht werden, ob das Kugellager schädlichen Gasen und Chemikalien oder hohen Temperaturen ausgesetzt ist.

Wie in Punkt 9 erwähnt, sollte die Genauigkeit der Kugellagereinheit, und die der Anwendung aufeinander abgestimmt sein.

Punkt 10 deckt die Wartung und Instandhaltung ab. Hier stellen sich unter anderem folgende Fragen: Wie leicht können Wartungsarbeiten durchgeführt werden? Ist die Einheit innerhalb der Maschine verbaut und schwer zugänglich, sodass die Schmierung kaum durchgeführt werden kann? Ist eine Schmierung erforderlich, und wenn ja, wie soll sie erfolgen? Die Auswahl der geeigneten Lagereinheit für den jeweiligen Einsatzort gewährleistet die volle Leistung der Kugellagereinheit.

4.3 Auswahl von Wellen

Die Kugellagereinheit ist an zwei Stellen an einer Seite des Innenrings unter 120° Versatz mit einem Gewindestift versehen. Die Montage auf der Welle erfolgt in der Regel lose im Schiebesitz. Für diesen Fall wird die folgende Beziehung zwischen Welle und Bohrung empfohlen.

Maßgenauigkeit der Welle bei Verwendung von Lagereinsätzen mit zylindrischer Bohrung (Schiebesitz)

Wellendurchmesser (mm)		für niedriger	e Drehzahlen	für mittlere	für mittlere Drehzahlen 18		e Drehzahlen	für hohe C	rehzahlen
		h	9	ŀ			7	j6	
über	inkl.	max.	min.	max.	min.	max.	min.	max.	min.
10	18	0	-43	0	-27	0	-18	+8	-3
18	30	0	-52	0	-33	0	-21	+9	-4
30	50	0	-62	0	- 39	0	-25	+11	-5
50	80	0	-74	0	-46	0	-30	+12	-7
80	120	0	- 87	0	-54	0	-35	+13	-9
120	180	0	-100	0	- 63	0	-40	+14	-11

Einheit = µm

Wird die Kugellagereinheit jedoch mit hoher Drehzahl oder unter hoher Belastung verwendet, muss die Wellenpassung einen festen Sitz aufweisen. Das Wälzlager kann auch mithilfe der Adapterbaugruppe auf der Welle montiert werden. Diese praktische Lösung kann als Zwischenlager für relativ lange Wellen oder bei Wellen verwendet werden, deren Wellenmaß geringfügig abweicht. Bei dieser Methode werden Lager mit einer kegeligen Bohrung im Verhältnis 1:12 eingesetzt. Die dabei verwendete Spannhülse ist entsprechend konisch ausgeführt und mit einer Mutter angezogen. Daher ist eine leichte Abweichung des Wellendurchmessers nicht problematisch.

Maßgenauigkeit der Welle bei Verwendung von Lagereinsätzen mit zylindrischer Bohrung (Festsitz)

1000 LEV 1950	28			Abv	Toleranz der Welle					
Wellendurchmesser (mm)		für höhere	Drehzahlen	für eher sch	für eher schwere Lasten		e Drehzahlen	für schwere Lasten		
		m6		m7		n6		n7		
über	inkl.	max.	min.	max.	min.	max.	min.	max.	min.	
10	18	+18	+7	+25	+7	+23	+12	+30	+12	
18	30	+21	+8	+29	+8	+28	+15	+36	+15	
30	50	+25	+9	+34	+9	+33	+17	+42	+17	
50	80	+30	+11	+41	+11	+39	+20	+50	+20	
80	120	+35	+13	+48	+13	+45	+23	+58	+23	
120	180	+40	+15	+55	+15	+52	+27	+67	+27	

Einheit = µm

Maßgenauigkeit der Welle bei Verwendung von Lagereinsätzen mit kegeliger Bohrung

722 920		Abweichung der Toleranz der Welle						
Wellendurchmesser (mm)		für kurz	e Welle	für lang	e Welle			
		h	9	h ⁻	10			
über	inkl.	max.	min.	max.	min.			
10	18	0	-43	0	-70			
18	30	0	-52	0	-84			
30	50	0	-62	0	- 100			
50	80	0	-74	0	-120			
80	120	0	-87	0	- 140			
120	180	0	-100	0	- 160			

Einheit = µm

4. Tragzahlen und Lebensdauer

4.4 Grenzdrehzahl

Die Grenzdrehzahl von Kugellagereinheiten wird im Wesentlichen durch die Passung zwischen den Wälzlagern und den Wellen bestimmt. In der Regel wird zwischen Gewindestift- und Spannexzenter-Lagereinheiten und Wellen eine Spielpassung verwendet. In dem Fall wird eine Wellentoleranz von h7 gewählt. Toleranz h8 oder h9 wird für eine Anwendung mit geringer Belastung und niedriger Drehzahl genutzt. Die engere Toleranz js7 wird für schwere Lasten und hohe Geschwindigkeiten angewendet. Die mit dem Spannhülsenlager verwendete Welle kann sogar eine h9 Passung haben. Daraus ergibt sich eine ITS Rundlauftoleranz.

Die Grenzdrehzahlen für Kugellagereinheiten mit unterschiedlichen Passungen sind in der folgenden Tabelle dargestellt.

	Serie 200								
d (mm)		Wellent	oleranz						
von	j\$7(h9/IT5)	h7	h8	h9					
12	6700	5300	3800	1400					
15	6700	5300	3800	1400					
17	6700	5300	3800	1400					
20	6000	4800	3400	1200					
25	5600	4000	3000	1000					
30	4500	3400	2400	850					
35	4000	3000	2000	750					
40	3600	2600	1900	670					
45	3200	2400	1700	600					
50	3000	2200	1600	560					
55	2600	2000	1400	500					
60	2400	1800	1200	450					
65	2200	1700	1100	430					
70	2200	1600	1100	400					
75	2000	1500	1000	380					
80	1900	1400	950	340					
85	1800	1300	900	320					
90	1700	1200	800	300					
95	275	= 3	12 75	35.5					
100	***		11-12						
105	100	250	5 63	3 75					
110	1991	54 0	1,000						
120	199	XXX	200	1946					
130		221	×4	124					
140	- w	229	(3 <u>-0</u>	948					

Hinweise: 1. Die Spalte js7(h9/IT5) gilt für Kugellagereinheiten mit Spannhülse. Die Spalten h7 bis h9 passen für Kugellagereinheiten mit Gewindestift und Spannexzenter.

2. Die Daten in der obigen Tabelle beziehen sich nur auf Produkte der Serie SL mit Doppellippendichtung.

174

5. Schmierung

5.1 Zulässige Drehzahl

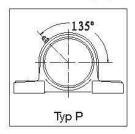
Die maximal zulässige Drehzahlen von Gehäuselagern sind abhängig von der Höhe der Temperaturbelastbarkeit der Gummidichtung der Lagereinsätze. Die Wärme entsteht dabei primär durch die Reibung der beiden Gummidichtungen am Innenring. Ebenfalls spielt die Fettfüllung de Lager bei der Wärmeentwicklung eine wesentliche Rolle. Zusätzlich können je nach Betriebsverhältnissen noch Wärmeeinstrahlungen von außen die Temperatur des Lagers erhöhen. Im Übrigen gelten für die Bestimmung der Grenzdrehzahlen die gleichen Kriterien, wie sie auch für Radialrillenkugellager gelten.

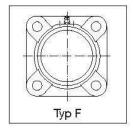
Unter Berücksichtigung aller Faktoren kann die zulässige Drehzahl aus dem maximalen Drehzahlkennwert dn ermittelt werden.

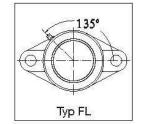
 $dn \le 150,000$ [$dn=d \times n$]

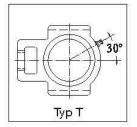
Dabei gilt d: Lagerbohrungsdurchmesser (mm)

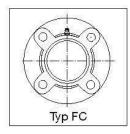
n: Drehzahl (min⁻¹)

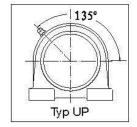

5.2 Schmiernippeltyp




Gehäusegröße	Schmiernippeltyp
203~210	M6X1
211~215	M8X1
216~218	M10X1


Тур А


5.3 Schmiernippelposition



5. Schmierung

5.4 Schmierfett

Das in J-Line-Lagereinsätzen verwendete Fett ist Shell Gadus S2 V100 2, ein hochwertiges Fett auf Lithiumbasis.

5.5 Nachschmieren

J-Line-Lager von NSK sind werkseitig mit der richtigen Fettmenge geschmiert und müssen beim Einbau nicht nachgefettet werden.

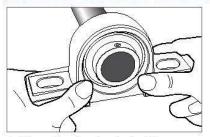
Eine Nachschmierung ist normalerweise nicht erforderlich, außer bei extremen Temperaturen, Drehzahlen und Belastungen oder wenn übermäßige Nässe oder Verschmutzung vorliegen.

Die Nachschmierhäufigkeit variiert je nach Art und Qualität des verwendeten Schmierfetts sowie den Betriebsbedingungen.

Daher ist es schwierig, eine allgemeine Regel festzulegen. Unter normalen Betriebsbedingungen ist es jedoch empfehlenswert, das Schmiermittel nachzufüllen, bevor ein Drittel (½) der zu erwartenden Lebensdauer erreicht wird.

Die Tabelle zeigt die Standardnachschmierfrequenzen. Unabhängig von der berechneten Lebensdauer des Fetts werden in dieser Liste mit Blick auf die Sicherheit Faktoren wie die Lagerdrehzahl, Betriebstemperatur und Umgebungsbedingungen berücksichtigt.

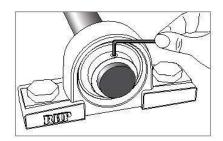
Die Leistung eines Wälzlagers wird stark von der Fettmenge beeinflusst. Um eine Überfüllung zu vermeiden, ist es ratsam, das Schmiermittel im laufenden Betrieb der Maschine nachzufüllen. Füllen Sie das Fett so lange ein, bis es unterhalb der Dichtlippe am Innenring oder zwischen Schleuderscheibe und Außenring etwas Fett heraustritt. So erzielen Sie eine optimale Leistung.


Nachschmierfristen

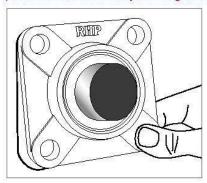
Typ der Einheit	dn-Wert	Umgebungsbedingungen	Betriebstem	peratur °C, °F	Nachschmierfristen		
					Stunden	Zeitraum	
Standard	40.000 und weniger	Normal	-15 bis +80	+5 bis +176	1.500 bis 3.000	6 bis 12 Monate	
Standard	70.000 und weniger	Normal	-15 bis +80	+5 bis +176	1.000 bis 2.000	3 bis 6 Monate	
Standard	70.000 und weniger	Normal	+80 bis +100	+176 bis +212	500 bis 700	1 Monat	
Standard	70.000 und weniger	Sehr staubig	-15 bis +100	+5 bis +212	100 bis 500	1 Woche bis 1 Monat	
Standard	70.000 und weniger	Spritzwassereinwirkung	-15 bis +100	+5 bis +212	30 bis 100	1Tag bis 1 Woche	

dn = Bohrungsdurchmesser (mm) - Drehzahl (min-1)

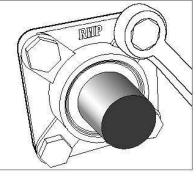
6. Montageanleitung für J-Line-Lagereinheiten


J-Line-Einheiten mit Gewindestiftbefestigung

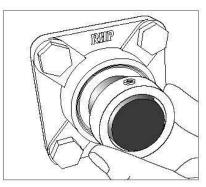
 Lösen Sie die Gewindestifte, sodass die Bohrung freiliegt, und schieben Sie das Lager auf die Welle.

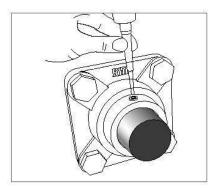


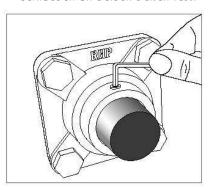
 Befestigen Sie die Einheit auf einer ebenen Oberfläche, ziehen Sie die Schrauben gleichmäßig an.



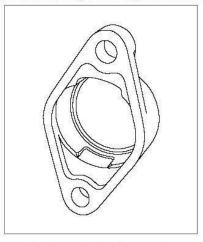
 Ziehen Sie die Gewindestifte mit dem empfohlenen Anzugsmoment an.


J-Line-Einheiten mit Spannringbefestigung

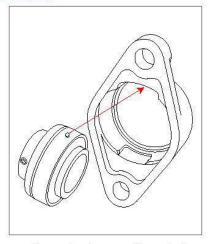

 Setzen Sie das Lager und das Gehäuse auf die Welle. Montieren Sie den Exzenterring noch nicht.


 Ziehen Sie die Schrauben leicht an, wiederholen Sie den Vorgang auf der anderen Wellenseite und ziehen Sie anschließend die Schrauben an beiden Seiten fest.

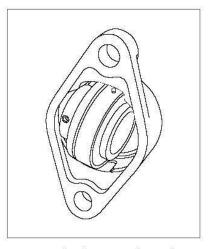
3. Befestigen Sie den Exzenterring in Wellendrehrichtung.



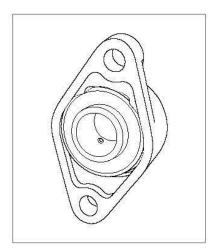
4. Schlagen Sie den Exzenterring mit dem Dorn und einem kleinen Hammer in Wellendrehrichtung an.



 Ziehen Sie den Gewindestift mit dem empfohlenen Anzugsmoment an.

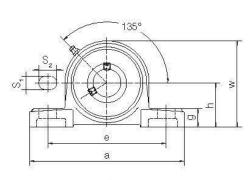

J-Line-Montage des Lagereinsatzes im Gehäuse

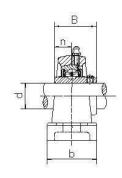
1. Befestigen Sie das leere Gehäuse in einem Schraubstock o. Ä.


 Richten Sie den Anschlagstift des Lagereinsatzes an der Flanschaussparung aus.

3. Setzen Sie den Lagereinsatz in die Flanschaussparung ein.

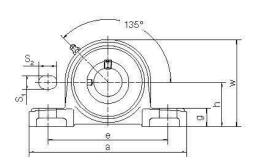
4. Bringen Sie das Lager mithilfe einer Stange in Position.

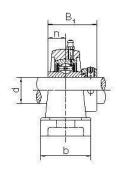



5. Die J-Line-Lagereinheit ist nun gebrauchsfertig.

II. Maßtabellen

Stehlagereinheiten UCP2

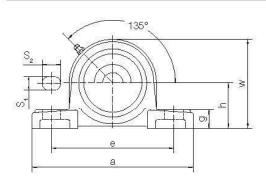


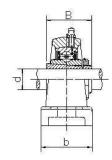


Kurzzeichen Einheit	Abmessungen (mm)										
	d	h	а	e	b	S,	S ₂	g	w	В	n
UCP201D1	12	30,2	127	95	38	13	19	14	62	31	12,7
UCP202D1	15	30,2	127	95	38	13	19	14	62	31	12,7
UCP203D1	17	30,2	127	95	38	13	19	14	62	31	12,7
UCP204D1	20	33,3	127	95	38	13	19	14	65	31,0	12,7
UCP205D1	25	36,5	140	105	38	13	19	15	71	34,1	14,3
UCP206D1	30	42,9	160	121	44	17	20	17	84	38,1	15,9
UCP207D1	35	47,6	167	127	48	17	20	18	93	42,9	17,5
UCP208D1	40	49,2	184	137	54	17	20	18	100	49,2	19
UCP209D1	45	54,0	190	146	54	17	20	20	106	49,2	19
UCP210D1	50	57,2	206	159	60	20	23	21	113	51,6	19,0
UCP211D1	55	63,5	219	171	60	20	23	23	125	55,6	22,2
UCP21201	60	69,8	241	184	70	20	23	25	138	65,1	25,4
UCP213D1	65	76,2	265	203	70	25	28	27	150	65,1	25,4
UCP21401	70	79,4	266	210	72	25	28	27	156	74,6	30,2
UCP215D1	75	82,6	275	217	74	25	28	28	162	77,8	33,3
UCP216D1	80	88,9	292	232	78	25	28	30	174	82,6	33,3
UCP21701	85	95,2	310	247	83	25	28	32	185	85,7	34,1
UCP218D1	90	101,6	327	262	88	27	30	33	198	96,0	39,7

Schraubengröße (mm)	Kurzzeichen Lager	Kurzzeichen Gehäuse	Gewicht (kg)
M10	UC201D1	P201D1	0,65
M10	UC202D1	P202D1	0,64
M10	UC203D1	P203D1	0,63
M10	UC204D1	P204D1	0,64
M10	UC205D1	P205D1	0,76
M14	UC206D1	P206D1	1,20
M14	UC207D1	P207D1	1,46
M14	UC208D1	P208D1	1,86
M14	UC209D1	P209D1	2,06
M16	UC210D1	P210D1	2,61
M16	UC211D1	P211D1	3,23
M16	UC212D1	P212D1	4,40
M20	UC213D1	P213D1	5,35
M20	UC214D1	P214D1	5,86
M20	UC215D1	P215D1	6,45
M20	UC216D1	P216D1	7,86
M20	UC217D1	P217D1	9,56
M22	UC218D1	P21801	11,59

Stehlagereinheiten UELP2

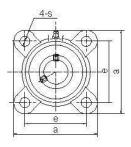


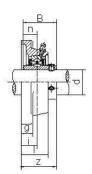


Kurzzeichen Einheit					Abm	essungen ((mm)				
	d	h	а	e	b	S,	S ₂	9	w	B ₁	n
UELP204D1	20	33,3	127	95	38	13	19	14	65	43,7	17,1
UELP205D1	25	36,5	140	105	38	13	19	15	71	44,4	17,5
UELP206D1	30	42,9	160	121	44	17	20	17	84	48,4	18,3
UELP20701	35	47,6	167	127	48	17	20	18	93	51,1	18,8
UELP208D1	40	49,2	184	137	54	17	20	18	100	56,3	21,4
UELP20901	45	54,0	190	146	54	17	20	20	106	56,3	21
UELP210D1	50	57,2	206	159	60	20	23	21	113	62,7	24,6
UELP21101	55	63,5	219	171	60	20	23	23	125	71,4	27,8
UELP212D1	60	69,8	241	184	70	20	23	25	138	77,8	31,0
UELP21301	65	76,2	265	203	70	25	28	27	150	85,7	34,1
UELP21401	70	79,4	266	210	72	25	28	27	156	85,7	34,1
UELP215D1	75	82,6	275	217	74	25	28	28	162	92,1	37,3

Schraubengröße (mm)	Kurzzeichen Lager	Kurzzeichen Gehäuse	Gewicht (kg)
M10	UEL204D1	P204D1	0,70
M10	UEL205D1	P205D1	0,81
M14	UEL206D1	P206D1	1,27
M14	UEL207D1	P207D1	1,60
M14	UEL208D1	P208D1	1,99
M14	UEL209D1	P209D1	2,19
M16	UEL210D1	P210D1	2,80
M16	UEL211D1	P211D1	3,50
M16	UEL212D1	P212D1	4,76
M20	UEL213D1	P213D1	5,89
M20	UEL214D1	P214D1	6,27
M20	UEL215D1	P215D1	6,93

Stehlagereinheiten UKP2

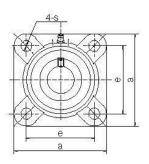


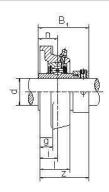


Kurzzeichen Einheit	Abmessungen (mm)									
	d	h	a	e	b	S ₁	S ₂	g	w	В
UKP205D1+H2305	20	36,5	140	105	38	13	19	15	71	35
UKP206D1+H2306	25	42,9	160	121	44	17	20	17	84	38
UKP207D1+H2307	30	47,6	167	127	48	17	20	18	93	43
UKP208D1+H2308	35	49,2	184	137	54	17	20	18	100	46
UKP209D1+H2309	40	54,0	190	146	54	17	20	20	106	50
UKP210D1+H2310	45	57,2	206	159	60	20	23	21	113	55
UKP21101+H2311	50	63,5	219	171	60	20	23	23	125	59
UKP21201+H2312	55	69,8	241	184	70	20	23	25	138	62
UKP21301+H2313	60	76,2	265	203	70	25	28	27	150	65
UKP21501+H2315	65	82,6	275	217	74	25	28	28	162	73
UKP216D1+H2316	70	88,9	292	232	78	25	28	30	174	78
UKP21701+H2317	75	95,2	310	247	83	25	28	32	185	82
UKP218D1+H2318	80	101,6	327	262	88	27	30	33	198	86

Schraubengröße (mm)	Kurzzeichen Lager	Kurzzeichen Gehäuse	Gewicht (kg)
M10	UK205D1+H2305	P205D1	0,81
M14	UK206D1+H2306	P206D1	1,26
M14	UK207D1+H2307	P207D1	1,53
M14	UK208D1+H2308	P208D1	1,93
M14	UK209D1+H2309	P209D1	2,18
M16	UK210D1+H2310	P210D1	2,78
M16	UK211D1+H2311	P211D1	3,39
M16	UK212D1+H2312	P21201	4,52
M20	UK213D1+H2313	P213D1	5,47
M20	UK215D1+H2315	P215D1	6,84
M20	UK216D1+H2316	P216D1	8,29
M20	UK217D1+H2317	P217D1	9,97
M22	UK218D1+H2318	P218D1	11,89

Flanschlagereinheiten (Vierkant) UCF2

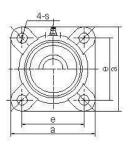


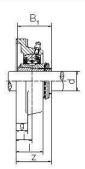


Kurzzeichen Einheit					Abmessu	ngen (mm)				
	d	а	e	ì	9	l	S	Z	B	n
UCF201D1	12	86	64	15	12	25,5	12	33,3	31	12,7
UCF202D1	15	86	64	15	12	25,5	12	33,3	31	12,7
UCF203D1	17	86	64	15	12	25,5	12	33,3	31	12,7
UCF204D1	20	86	64	15	12	25,5	12	33,3	31	12,7
UCF205D1	25	95	70	16	14	27	12	35,8	34,1	14,3
UCF206D1	30	108	83	18	14	31	12	40,2	38,1	15,9
UCF207D1	35	117	92	19	16	34	14	44,4	42,9	17,5
UCF208D1	40	130	102	21	16	36	16	51,2	49,2	19
UCF209D1	45	137	105	22	18	38	16	52,2	49,2	19
UCF210D1	50	143	111	22	18	40	16	54,6	51,6	19
UCF211D1	55	162	130	25	20	43	19	58,4	55,6	22,2
UCF212D1	60	175	143	29	20	48	19	68,7	65,1	25,4
UCF213D1	65	187	149	30	22	50	19	69,7	65,1	25,4
UCF214D1	70	193	152	31	22	54	19	75,4	74,6	30,2
UCF215D1	75	200	159	34	22	56	19	78,5	77,8	33,3
UCF216D1	80	208	165	34	22	58	23	83,3	82,6	33,3
UCF21701	85	220	175	36	24	63	23	87,6	85,7	34,1
UCF218D1	90	235	187	40	24	68	23	96,3	96	39,7

Schraubengröße (mm)	Kurzzeichen Lager	Kurzzeichen Gehäuse	Gewicht (kg)	
M10	UC201D1	F201D1	0,59	
M10	UC202D1	F202D1	0,58	
M10	UC203D1	F203D1	0,57	
M10	UC204D1	F204D1	0,55	
M10	UC205D1	F205D1	0,73	
M10	UC206D1	F206D1	1,02	
M12	UC207D1	F207D1	1,33	
M14	UC208D1	F208D1	1,67	
M14	UC209D1	F209D1	2,00	
M14	UC210D1	F210D1	2,32	
M16	UC211D1	F211D1	3,12	
M16	UC212D1	F212D1	3,95	
M16	UC213D1	F213D1	4,81	
M16	UC214D1	F214D1	5,42	
M16	UC215D1	F215D1	5,94	
M20	UC216D1	F216D1	6,94	
M20	UC217D1	F217D1	8,67	
M20	UC218D1	F218D1	10,62	

Flanschlagereinheiten (Vierkant) UELF2

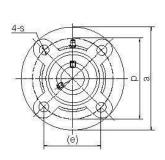


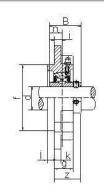


Kurzzeichen Einheit		Abmessungen (mm)									
	d	а	e	i	g	I	S	Z	B,	n	
UELF204D1	20	86	64	15	12	25,5	12	41,6	43,7	17,1	
UELF205D1	25	95	70	16	14	27	12	42,9	44,4	17,5	
UELF206D1	30	108	83	18	14	31	12	48,1	48,4	18,3	
UELF207D1	35	117	92	19	16	34	14	51,3	51,1	18,8	
UELF208D1	40	130	102	21	16	36	16	55,9	56,3	21,4	
UELF209D1	45	137	105	22	18	38	16	56,9	56,3	21,4	
UELF210D1	50	143	111	22	18	40	16	60,1	62,7	24,6	
UELF21101	55	162	130	25	20	43	19	68,6	71,4	27,8	
UELF212D1	60	175	143	29	20	48	19	75,8	77,8	31	
UELF213D1	65	187	149	30	22	50	19	81,6	85,7	34,1	
UELF214D1	70	193	152	31	22	54	19	82,6	85,7	34,1	
UELF215D1	75	200	159	34	22	56	19	88,8	92,1	37,3	

Schraubengröße (mm)	Kurzzeichen Lager	Kurzzeichen Gehäuse	Gewicht (kg)	
M10	UEL204D1	F204D1	0,60	
M10	UEL205D1	F205D1	0,79	
M10	UEL206D1	F206D1	1,10	
M12	UEL207D1	F207D1	1,47	
M14	UEL208D1	F208D1	1,80	
M14	UEL209D1	F209D1	2,13	
M14	UEL210D1	F210D1	2,51	
M16	UEL211D1	F211D1	3,39	
M16	UEL212D1	F212D1	4,27	
M16	UEL213D1	F213D1	5,35	
M16	UEL214D1	F214D1	5,84	
M16	UEL215D1	F215D1	6,43	

Flanschlagereinheiten (Vierkant) UKF2

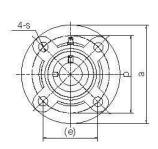


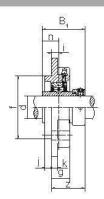


Kurzzeichen Einheit	Abmessungen (mm)									
	d	а	e	i	9	I	S	Z	В,	
UKF205D1+H2305	20	95	70	16	14	27	12	35,5	35	
UKF206D1+H2306	25	108	83	18	14	31	12	39	38	
UKF207D1+H2307	30	117	92	19	16	34	14	42,5	43	
UKF208D1+H2308	35	130	102	21	16	36	16	46,5	46	
UKF209D1+H2309	40	137	105	22	18	38	16	48,5	50	
UKF210D1+H2310	45	143	111	22	18	40	16	50	55	
UKF211D1+H2311	50	162	130	25	20	43	19	54,5	59	
UKF212D1+H2312	55	175	143	29	20	48	19	61	62	
UKF213D1+H2313	60	187	149	30	22	50	19	64	65	
UKF215D1+H2315	65	200	159	34	22	56	19	71	73	
UKF216D1+H2316	70	208	165	34	22	58	23	73,5	78	
UKF21701+H2317	75	220	175	36	24	63	23	77	82	
UKF218D1+H2318	80	235	187	40	24	68	23	81,5	86	

Schraubengröße (mm)	Kurzzeichen Lager	Kurzzeichen Gehäuse	Gewicht (kg)
M10	UK205D1+H2305	F205D1	0,78
M10	UK206D1+H2306	F206D1	1,09
M12	UK207D1+H2307	F207D1	1,41
M14	UK208D1+H2308	F208D1	1,74
M14	UK209D1+H2309	F209D1	2,12
M14	UK210D1+H2310	F210D1	2,49
M16	UK211D1+H2311	F211D1	3,28
M16	UK212D1+H2312	F212D1	4,03
M16	UK213D1+H2313	F213D1	4,93
M16	UK215D1+H2315	F215D1	6,33
M20	UK216D1+H2316	F216D1	7,37
M20	UK217D1+H2317	F217D1	9,09
M20	UK218D1+H2318	F218D1	10,91

Vierlochflanschlager mit Zentrieransatz UCFC2

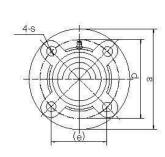


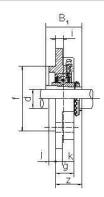


Kurzzeichen Einheit						Abme	essungen	(mm)					
	d	а	P	e	i	s	j	k	g	f	z	В	n
UCFC201D1	12	100	78	55,1	10	12	5	7	20,5	62	28,3	31,0	12,7
UCFC202D1	15	100	78	55,1	10	12	5	7	20,5	62	28,3	31,0	12,7
UCFC203D1	17	100	78	55,1	10	12	5	7	20,5	62	28,3	31,0	12,7
UCFC204D1	20	100	78	55,1	10	12	5	7	20,5	62	28,3	31,0	12,7
UCFC205D1	25	115	90	63,6	10	12	6	7	21	70	29,8	34,1	14,3
UCFC206D1	30	125	100	70,7	10	12	8	8	23	80	32,2	38,1	15,9
UCFC207D1	35	135	110	77,8	11	14	8	9	26	90	36,4	42,9	17,5
UCFC208D1	40	145	120	84,8	11	14	10	9	26	100	41,2	49,2	19,0
UCFC209D1	45	160	132	93,3	10	16	12	14	26	105	40,2	49,2	19,0
UCFC210D1	50	165	138	97,6	10	16	12	14	28	110	42,6	51,6	19,0
UCFC211D1	55	185	150	106,1	13	19	12	15	31	125	46,4	55,6	22,2
UCFC21201	60	195	160	113,1	17	19	12	15	36	135	56,7	65,1	25,4
UCFC213D1	65	205	170	120,2	16	19	14	15	36	145	55,7	65,1	25,4
UCFC214D1	70	215	177	125,1	17	19	14	18	40	150	61,4	74,6	30,2
UCFC215D1	75	220	184	130,1	18	19	16	18	40	160	62,5	77,8	33,3
UCFC216D1	80	240	200	141,4	18	23	16	18	42	170	67,3	82,6	33,3
UCFC217D1	85	250	208	147,1	18	23	18	20	45	180	69,6	85,7	34,1
UCFC21801	90	265	220	155,5	22	23	18	20	50	190	78,3	96,0	39,7

Schraubengröße (mm)	Kurzzeichen Lager	Kurzzeichen Gehäuse	Gewicht (kg) 0,70	
M10	UC201D1	FC201D1		
M10	UC202D1	FC202D1	0,69	
M10	UC203D1	FC203D1	0,68	
M10	UC204D1	FC204D1	0,66	
M10	UC205D1	FC205D1	0,89	
M10	UC206D1	FC206D1	1,18	
M12	UC207D1	FC207D1	1,53	
M12	UC208D1	FC208D1	1,85	
M14	UC209D1	FC209D1	2,53	
M14	UC210D1	FC210D1	2,78	
M16	UC211D1	FC211D1	3,86	
M16	UC212D1	FC212D1	4,69	
M16	UC213D1	FC213D1	5,30	
M16	UC214D1	FC214D1	6,46	
M16	UC215D1	FC215D1	6,86	
M20	UC216D1	FC216D1	8,47	
M20	UC217D1	FC217D1	10,18	
M20	UC218D1	FC218D1	12,24	

Vierlochflanschlager mit Zentrieransatz UELFC2

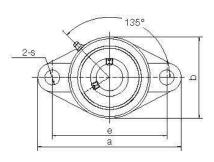


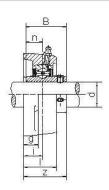


Kurzzeichen Einheit	Abmessungen (mm)												
	d	a	p	e	i	s	j	k	9	f	Z	B ₁	n
UELFC204D1	20	100	78	55,1	10	12	5	7	20,5	62	36,6	43,7	17,1
UELFC205D1	25	115	90	63,6	10	12	6	7	21	70	36,9	44,4	17,5
UELFC206D1	30	125	100	70,7	10	12	8	8	23	80	40,1	48,4	18,3
UELFC20701	35	135	110	77,8	11	14	8	9	26	90	43,3	51,1	18,8
UELFC208D1	40	145	120	84,8	11	14	10	9	26	100	45,9	56,3	21,4
UELFC209D1	45	160	132	93,3	10	16	12	14	26	105	44,9	56,3	21,4
UELFC210D1	50	165	138	97,6	10	16	12	14	28	110	48,1	62,7	24,6
UELFC211D1	55	185	150	106,1	13	19	12	15	31	125	56,6	71,4	27,8
UELFC212D1	60	195	160	113,1	17	19	12	15	36	135	63,8	77,8	31,0
UELFC213D1	65	205	170	120,2	16	19	14	15	36	145	67,6	85,7	34,1
UELFC214D1	70	215	177	125,1	17	19	14	18	40	150	68,6	85,7	34,1
UELFC21501	75	220	184	130,1	18	19	16	18	40	160	72,8	92,1	37,3

Schraubengröße (mm)	Kurzzeichen Lager	Kurzzeichen Gehäuse	Gewicht (kg)
M10	UEL204D1	FC204D1	0,72
M10	UEL205D1	FC205D1	0,94
M10	UEL206D1	FC206D1	1,25
M12	UEL207D1	FC207D1	1,67
M12	UEL208D1	FC208D1	1,98
M14	UEL209D1	FC209D1	2,66
M14	UEL210D1	FC210D1	2,97
M16	UEL211D1	FC211D1	4,13
M16	UEL212D1	FC212D1	5,01
M16	UEL213D1	FC213D1	5,84
M16	UEL214D1	FC214D1	6,87
M16	UEL215D1	FC215D1	7,34

Vierlochflanschlager mit Zentrieransatz UKFC2

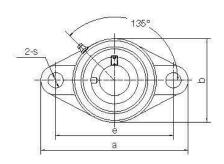


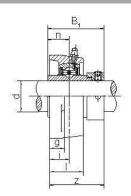


Kurzzeichen Einheit						Abmessun	gen (mm))				
	d	а	р	e	i	s	j	k	g	f	Z	B,
UKFC205D1+H2305	20	115	90	63,6	10	12	6	7.	21	70	29,5	35
UKFC206D1+H2306	25	125	100	70,7	10	12	8	8	23	80	31	38
UKFC207D1+H2307	30	135	110	77,8	11	14	8	9	26	90	33,5	43
UKFC208D1+H2308	35	145	120	84,8	11	14	10	9	26	100	35,5	46
UKFC209D1+H2309	40	160	132	93,3	10	16	12	14	26	105	36	50
UKFC210D1+H2310	45	165	138	97,6	10	16	12	14	28	110	37,5	55
UKFC211D1+H2311	50	185	150	106,1	13	19	12	15	31	125	41,5	59
UKFC212D1+H2312	55	195	160	113,1	17	19	12	15	36	135	48	67
UKFC213D1+H2313	60	205	170	120,2	16	19	14	15	36	145	49	65
UKFC215D1+H2315	65	220	184	130,1	18	19	16	18	40	160	53,5	73
UKFC216D1+H2316	70	240	200	141,4	18	23	16	18	42	170	57	78
UKFC217D1+H2317	75	250	208	147,1	18	23	18	20	45	180	59	87
UKFC218D1+H2318	80	265	220,0	155,5	22	23	18	20	50	190	64,5	86

Schraubengröße (mm)	Kurzzeichen Lager	Kurzzeichen Gehäuse	Gewicht (kg)
M10	UK205D1+H2305	FC205D1	0,93
M10	UK206D1+H2306	FC206D1	1,24
M12	UK207D1+H2307	FC207D1	1,60
M12	UK208D1+H2308	FC208D1	1,92
M14	UK209D1+H2309	FC209D1	2,65
M14	UK210D1+H2310	FC210D1	2,96
M16	UK211D1+H2311	FC211D1	4,02
M16	UK212D1+H2312	FC212D1	4,77
M16	UK213D1+H2313	FC213D1	5,41
M16	UK215D1+H2315	FC215D1	7,25
M20	UK216D1+H2316	FC216D1	8,90
M20	UK217D1+H2317	FC217D1	10,60
M20	UK218D1+H2318	FC218D1	12,54

Zweilochflanschlager UCFL2

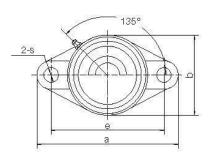


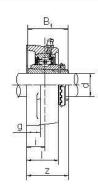


Kurzzeichen Einheit					Abm	essungen (mm)				
	d	а	e	i	g	1	s	b	z	В	n
UCFL201D1	12	113	90	15	11	25,5	12	60	33,3	31,0	12,7
UCFL202D1	15	113	90	15	11	25,5	12	60	33,3	31,0	12,7
UCFL203D1	17	113	90	15	11	25,5	12	60	33,3	31,0	12,7
UCFL204D1	20	113	90	15	11	25,5	12	60	33,3	31,0	12,7
UCFL205D1	25	130	99	16	13	27	16	68	35,8	34,1	14,3
UCFL206D1	30	148	117	18	13	31	16	80	40,2	38,1	15,9
UCFL207D1	35	161	130	19	14	34	16	90	44,4	42,9	17,5
UCFL208D1	40	175	144	21	14	36	16	100	51,2	49,2	19,0
UCFL209D1	45	188	148	22	15	38	19	108	52,2	49,2	19,0
UCFL210D1	50	197	157	22	15	40	19	115	54,6	51,6	19,0
UCFL211D1	55	224	184	25	18	43	19	130	58,4	55,6	22,2
UCFL21201	60	250	202	29	18	48	23	140	68,7	65,1	25,4
UCFL213 D1	65	258	210	30	22	50	23	155	69,7	65,1	25,4
UCFL214D1	70	265	216	31	22	54	23	160	75,4	74,6	30,2
UCFL21501	75	275	225	34	22	56	23	165	78,5	77,8	33,3
UCFL216D1	80	290	233	34	22	58	25	180	83,3	82,6	33,3
UCFL21701	85	305	248	36	24	63	25	190	87,5	85,7	34,1
UCFL218D1	90	320	265	40	24	68	25	205	96,3	96,0	39,7

Schraubengröße (mm)	Kurzzeichen Lager	Kurzzeichen Gehäuse	Gewicht (kg)
M10	UC201D1	FL201D1	0,45
M10	UC202D1	FL202D1	0,44
M10	UC203D1	FL203D1	0,43
M10	UC204D1	FL204D1	0,40
M14	UC205D1	FL205D1	0,58
M14	UC206D1	FL206D1	0,83
M14	UC207D1	FL207D1	1,10
M14	UC208D1	FL208D1	1,42
M16	UC209D1	FL209D1	1,75
M16	UC210D1	FL210D1	2,02
M16	UC211D1	FL211D1	2,79
M20	UC212D1	FL212D1	3,65
M20	UC213D1	FL213D1	4,56
M20	UC214D1	FL214D1	5,12
M20	UC215D1	FL215D1	5,64
M22	UC216D1	FL216D1	6,91
M22	UC217D1	FL217D1	8,27
M22	UC218D1	FL218D1	10,13

Zweilochflanschlager UELFL2

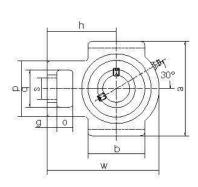


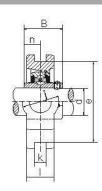


Kurzzeichen Einheit					Abm	essungen (mm)				
	d	а	e	i	g	I	5	b	Z	B,	n
UELFL204D1	20	113	90	15	11	25,5	12	60	41,6	43,7	17,1
UELFL205D1	25	130	99	16	13	27	16	68	42,9	44,4	17,5
UELFL206D1	30	148	117	18	13	31	16	80	48,1	48,4	18,3
UELFL207D1	35	161	130	19	14	34	16	90	51,3	51,1	18,8
UELFL208D1	40	175	144,0	21	14	36	16	100	55,9	56,3	21,4
UELFL209D1	45	188	148	22	15	38	19	108	56,9	56,3	21,4
UELFL210D1	50	197	157	22	15	40	19	115	60,1	62,7	24,6
UELFL21101	55	224	184	25	18	43	19	130	68,6	71,4	27,8
UELFL21201	60	250	202	29	18	48	23	140	75,8	77,8	31
UELFL213D1	65	258	210	30	22	50	23	155	81,6	85,7	34,1
UELFL214D1	70	265	216	31	22	54	23	160	82,6	85,7	34,1
UELFL21501	75	275	225	34	22	56	23	165	88,8	92,1	37,3

Schraubengröße (mm)	Kurzzeichen Lager	Kurzzeichen Gehäuse	Gewicht (kg)
M10	UEL204D1	FL204D1	0,46
M14	UEL20501	FL205D1	0,63
M14	UEL206D1	FL206D1	0,90
M14	UEL207D1	FL207D1	1,24
M14	UEL208D1	FL208D1	1,56
M16	UEL209D1	FL209D1	1,88
M16	UEL210D1	FL210D1	2,21
M16	UEL211D1	FL211D1	3,06
M20	UEL212D1	FL212D1	3,97
M20	UEL213D1	FL213D1	5,10
M20	UEL214D1	FL214D1	5,53
M20	UEL215D1	FL215D1	6,09

Zweilochflanschlager UKFL2



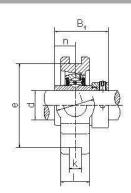


Kurzzeichen Einheit					Abmessur	gen (mm)				
	d	а	e	ì	9	<u> </u>	s	ь	Z	B ₁
UKFL205D1+H2305	20	130	99	16	13	27	16	68	35,5	35
UKFL206D1+H2306	25	148	117	18	13	31	16	80	39	38
UKFL20701+H2307	30	161	130	19	14	34	16	90	42,5	43
UKFL208D1+H2308	35	175	144	21	14	36	16	100	46,5	46
UKFL20901+H2309	40	188	148	22	15	38	19	108	48,5	50
UKFL210D1+H2310	45	197	157	22	15	40	19	115	50	55
UKFL211D1+H2311	50	224	184	25	18	43	19	130	54,5	59
UKFL21201+H2312	55	250	202	29	18	48	23	140	61	62
UKFL213D1+H2313	60	258	210	30	22	50	23	155	64	65
UKFL21501+H2315	65	275	225	34	22	56	23	165	71	73
UKFL21601+H2316	70	290	233	34	22	58	25	180	73,5	78
UKFL21701+H2317	75	305	248	36	24	63	25	190	77	82
UKFL218D1+H2318	80	320	265	40	24	68	25	205	81,5	86

Schraubengröße (mm)	Kurzzeichen Lager	Kurzzeichen Gehäuse	Gewicht (kg)
M14	UK205D1+H2305	FL205D1	0,63
M14	UK206D1+H2306	FL206D1	0,89
M14	UK207D1+H2307	FL207D1	1,17
M14	UK208D1+H2308	FL208D1	1,49
M16	UK209D1+H2309	FL209D1	1,87
M16	UK210D1+H2310	FL210D1	2,19
M16	UK211D1+H2311	FL211D1	2,95
M20	UK212D1+H2312	FL212D1	3,73
M20	UK213D1+H2313	FL213D1	4,67
M20	UK215D1+H2315	FL215D1	6,00
M22	UK216D1+H2316	FL216D1	7,34
M22	UK217D1+H2317	FL217D1	8,68
M22	UK218D1+H2318	FL218D1	10,43

Spannkopflager UCT2

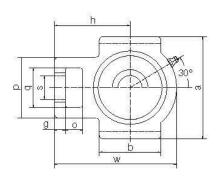


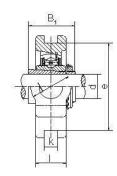


Kurzzeichen Einheit							Ab	messur	ngen (m	m)						
	d	0	9	р	q	5	b	k	e	а	w	j	1	h	В	n
UCT201D1	12	16	10	51	32	19	51	12	76	89	94	32	21	61	31	12,7
UCT202D1	15	16	10	51	32	19	51	12	76	89	94	32	21	61	31	12,7
UCT203D1	17	16	10	51	32	19	51	12	76	89	94	32	21	61	31	12,7
UCT204D1	20	16	10	51	32	19	51	12	76	89	94	32	21	61	31	12,7
UCT205D1	25	16	10	51	32	19	51	12	76	89	97	32	24	62	34,1	14,3
UCT206 D1	30	16	10	56	37	22	57	12	89	102	113	37	28	70	38,1	15,9
UCT207D1	35	16	13	64	37	22	64	12	89	102	129	37	30	78	42,9	17,5
UCT208D1	40	19	16	83	49	29	83	16	102	114	144	49	33	89	49,2	19
UCT209D1	45	19	16	83	49	29	83	16	102	117	144	49	35	87	49,2	19
UCT210D1	50	19	16	83	49	29	86	16	102	117	149	49	37	90	51,6	19
UCT211D1	55	25	19	102	64	35	95	22	130	146	171	64	38	106	55,6	22,2
UCT212D1	60	32	19	102	64	35	102	22	130	146	194	64	42	119	65,1	25,4
UCT213D1	65	32	21	111	70	41	121	26	151	167	224	70	44	137	65,1	25,4
UCT214D1	70	32	21	111	70	41	121	26	151	167	224	70	46	137	74,6	30,2
UCT215D1	75	32	21	111	70	41	121	26	151	167	232	70	48	140	77,8	33,3
UCT216D1	80	32	21	111	70	41	121	26	165	184	235	70	51	140	82,6	33,3
UCT217D1	85	38	29	124	73	48	157	30	173	198	260	73	54	162	85,7	34,1

Kurzzeichen Lager	Kurzzeichen Gehäuse	Gewicht (kg)
UC201D1	T201D1	0,77
UC202D1	T202D1	0,76
UC203D1	T203D1	0,75
UC204D1	T204D1	0,73
UC205D1	T205D1	0,80
UC206D1	T206D1	1,22
UC207D1	T207D1	1,57
UC208D1	T208D1	2,31
UC209D1	T209D1	2,34
UC210D1	T21001	2,47
UC211D1	T211D1	3,74
UC212D1	T21201	4,58
UC213D1	T213D1	6,60
UC214D1	T214D1	6,74
UC215D1	T215D1	7,19
UC216D1	T216D1	8,08
UC217D1	T21701	10,66

Spannkopflager UELT2

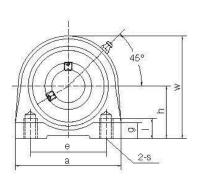


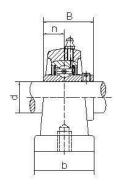


Kurzzeichen Einheit							Ab	messur	gen (m	ım)						
	d	0	9	р	q	5	b	k	e	а	w	j	1	h	B ₁	n
UELT204D1	20	16	10	51	32	19	51	12	76	89	94	32	21	61	43,7	17,1
UELT205D1	25	16	10	51	32	19	51	12	76	89	97	32	24	62	44,4	17,5
UELT206D1	30	16	10	56	37	22	57	12	89	102	113	37	28	70	48,4	18,3
UELT207 01	35	16	13	64	37	22	64	12	89	102	129	37	30	78	51,1	18,8
UELT208D1	40	19	16	83	49	29	83	16	102	114	144	49	33	89	56,3	21,4
UELT209D1	45	19	16	83	49	29	83	16	102	117	144	49	35	87	56,3	21,4
UELT210D1	50	19	16	83	49	29	86	16	102	117	149	49	37	90	62,7	24,6
UELT211D1	55	25	19	102	64	35	95	22	130	146	171	64	38	106	71,4	27,8
UELT21201	60	32	19	102	64	35	102	22	130	146	194	64	42	119	77,8	31
UELT213D1	65	32	21	111	70	41	121	26	151	167	224	70	44	137	85,7	34,1
UELT214D1	70	32	21	111	70	41	121	26	151	167	224	70	46	137	85,7	34,1
UELT21501	75	32	21	111	70	41	121	26	151	167	232	70	48	140	92,1	37,3

Kurzzeichen Lager	Kurzzeichen Gehäuse	Gewicht (kg)
UEL204D1	T204D1	0,78
UEL205D1	T205D1	0,86
UEL206D1	T206D1	1,29
UEL207D1	T207D1	1,70
UEL208D1	T208D1	2,45
UEL209D1	T209D1	2,47
UEL210D1	T210D1	2,66
UEL211D1	T211D1	4,01
UEL212D1	T212D1	4,90
UEL213D1	T213D1	7,14
UEL214D1	T214D1	7,15
UEL215D1	T215D1	7,67

Spannkopflager mit Spannhülse UKT2

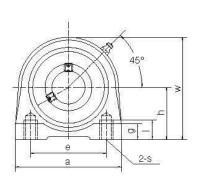


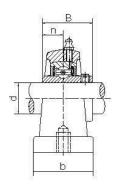


Kurzzeichen Einheit							Abme	sunger	(mm)						
	d	0	g	p	q	S	b	k	e	а	w	j	Ĺ	h	B,
UKT205D1+H2305	20	16	10	51	32	19	51	12	76	89	97	32	24	62	35
UKT206D1+H2306	25	16	10	56	37	22	57	12	89	102	113	37	28	70	38
UKT207D1+H2307	30	16	13	64	37	22	64	12	89	102	129	37	30	78	43
UKT208D1+H2308	35	19	16	83	49	29	83	16	102	114	144	49	33	89	46
UKT209D1+H2309	40	19	16	83	49	29	83	16	102	117	144	49	35	87	50
UKT210D1+H2310	45	19	16	83	49	29	86	16	102	117	149	49	37	90	55
UKT21101+H2311	50	25	19	102	64	35	95	22	130	146	171	64	38	106	59
UKT212D1+H2312	55	32	19	102	64	35	102	22	130	146	194	64	42	119	62
UKT213D1+H2313	60	32	21	111	70	41	121	26	151	167	224	70	44	137	65
UKT215D1+H2315	65	32	21	111	70	41	121	26	151	167	232	70	48	140	73
UKT216D1+H2316	70	32	21	111	70	41	121	26	165	184	235	70	51	140	78
UKT21701+H2317	75	38	29	124	73	48	157	30	173	198	260	73	54	162	82

Kurzzeichen Lager	Kurzzeichen Gehäuse	Gewicht (kg)
UK205D1+H2305	T205D1	0,86
UK206D1+H2306	T206D1	1,26
UK207D1+H2307	T207D1	2,50
UK208D1+H2308	T208D1	2,50
UK209D1+H2309	T209D1	2,51
UK210D1+H2310	T210D1	2,60
UK211D1+H2311	T211D1	4,26
UK212D1+H2312	T212D1	5,02
UK213D1+H2313	T213D1	6,56
UK215D1+H2315	T215D1	7,52
UK216D1+H2316	T216D1	8,56
UK217D1+H2317	T217D1	11,38

Stehlagereinheiten UCUP2

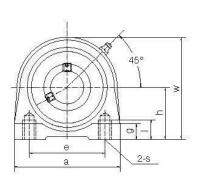


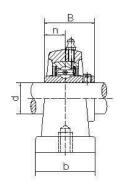


Kurzzeichen Einheit					Abm	essungen (mm)				
	d	h	а	e	b	s	g	1	w	В	n
UCUP201D1	12	30,2	76	52	40	M10	11	15	62	31	12,7
UCUP20201	15	30,2	76	52	40	M10	11	15	62	31	12,7
UCUP203D1	17	30,2	76	52	40	M10	11	15	62	31	12,7
UCUP204D1	20	30,2	76	52	40	M10	11	15	62	31	12,7
UCUP20501	25	36,5	84	56	38	M10	12	15	72	34,1	14,3
UCUP206D1	30	42,9	94	66	50	M14	12	18	84	38,1	15,9
UCUP20701	35	47,6	110	80	55	M14	13	20	95	42,9	17,5
UCUP208D1	40	49,2	116	84	58	M14	13	20	100	49,2	19
UCUP209D1	45	54,2	120	90	60	M14	13	25	108	49,2	19
UCUP210D1	50	57,2	130	94	64	M16	14	25	116	51,6	19
UCUP21101	55	63,5	140	104	66	M16	14	25	125	55,6	22,2
UCUP21201	60	69,9	150	114	68	M16	15	25	138	65,1	25,4

Schraubengröße (mm)	Kurzzeichen Lager	Kurzzeichen Gehäuse	Gewicht (kg
M10	UC201D1	UP201D1	0,63
M10	UC202D1	UP202D1	0,62
M10	UC203D1	UP203D1	0,61
M10	UC204D1	UP204D1	0,59
M10	UC205D1	UP205D1	0,76
M14	UC206D1	UP206D1	1,12
M14	UC207D1	UP207D1	1,55
M14	UC208D1	UP208D1	1,80
M14	UC209D1	UP209D1	2,05
M16	UC210D1	UP210D1	2,56
M16	UC211D1	UP211D1	3,14
M16	UC212D1	UP212D1	4,12

Stehlagereinheiten UELUP2

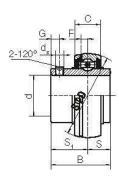




Kurzzeichen Einheit		Abmessungen (mm)										
	d	h	а	e	b	s	9	I	w	В	n	
UELUP204D1	20	30,2	76	52	40	M10	11	15	62	43,7	17,1	
UELUP205D1	25	36,5	84	56	38	M10	12	15	72	44,4	17,5	
UELUP206D1	30	42,9	94	66	50	M14	12	18	84	48,4	18,3	
UELUP207D1	35	47,6	110	80	55	M14	13	20	95	51,1	18,8	
UELUP208D1	40	49,2	116	84	58	M14	13	20	100	56,3	21,4	
UELUP209D1	45	54,2	120	90	60	M14	13	25	108	56,3	21,4	
UELUP210D1	50	57,2	130	94	64	M16	14	25	116	62,7	24,6	
UELUP211D1	55	63,5	140	104	66	M16	14	25	125	71,4	27,8	
UELUP21201	60	69,9	150	114	68	M16	15	25	138	77,8	31,0	

Schraubengröße (mm)	Kurzzeichen Lager	Kurzzeichen Gehäuse	Gewicht (kg)
M10	UEL204D1	UP204D1	0,64
M10	UEL205D1	UP20501	0,81
M14	UEL206D1	UP206D1	1,19
M14	UEL207D1	UP20701	1,68
M14	UEL208D1	UP208D1	1,93
M14	UEL209D1	UP209D1	2,18
M16	UEL210D1	UP210D1	2,75
M16	UEL211D1	UP211D1	3,41
M16	UEL212D1	UP21201	4,44

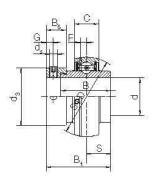
Stehlagereinheiten UKUP2



Kurzzeichen Einheit					Abmessur	ngen (mm)				
	d	h	a	e	b	s	g	1	w	В
UKUP205D1+H2305	20	36,5	84	56	38	M10	12	15	72	35
UKUP206D1+H2306	25	42,9	94	66	50	M14	12	18	84	38
UKUP207D1+H2307	30	47,6	110	80	55	M14	13	20	95	43
UKUP208D1+H2308	35	49,2	116	84	58	M14	13	20	100	46
UKUP209D1+H2309	40	54,2	120	90	60	M14	13	25	108	50
UKUP210D1+H2310	45	57,2	130	94	64	M16	14	25	116	55
UKUP211D1+H2311	50	63,5	140	104	66	M16	14	25	125	59
UKUP21201+H2312	55	69,9	150	114	68	M16	15	25	138	62

Schraubengröße (mm)	Kurzzeichen Lager	Kurzzeichen Gehäuse	Gewicht (kg)
M10	UK205D1+H2305	UP205D1	0,80
M14	UK206D1+H2306	UP206D1	1,18
M14	UK207D1+H2307	UP207D1	1,62
M14	UK208D1+H2308	UP208D1	1,87
M14	UK209D1+H2309	UP209D1	2,17
M16	UK210D1+H2310	UP210D1	2,73
M16	UK211D1+H2311	UP211D1	3,30
M16	UK212D1+H2312	UP212D1	4,20

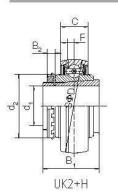
Lagereinsatz UC2

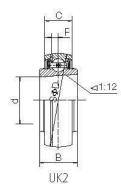


Kurzzeichen Einheit				Abi	messungen (r	nm)			
	d	D	В	c	S	S ₁	G	D _s	F
UC201D1	12	47	31	17	12,7	18,3	4,8	M6x1	4,3
UC20201	15	47	31	17	12,7	18,3	4,8	M6x1	4,3
UC203D1	17	47	31	17	12,7	18,3	4,8	M6x1	4,3
UC204D1	20	47	31	17	12,7	18,3	4,8	M6x1	4,3
UC205D1	25	52	34,1	17	14,3	19,8	5	M6x1	4,3
UC206D1	30	62	38,1	19	15,9	22,2	5	M6x1	5,2
UC20701	35	72	42,9	20	17,5	25,4	7	M8x1	5,7
UC208D1	40	80	49,2	21	19	30,2	8	M8x1	6,2
UC209D1	45	85	49,2	22	19	30,2	8	M8x1	6,6
UC210D1	50	90	51,6	24	19	32,6	10	M10x1	6,5
UC21101	55	100	55,6	25	22,2	33,4	10	M10x1	7,1
UC212D1	60	110	65,1	27	25,4	39,7	10	M10x1	7,9
UC213D1	65	120	65,1	28	25,4	39,7	10	M10x1	8,0
UC214D1	70	125	74,6	29	30,2	44,4	12	M12x1,5	8,3
UC215D1	75	130	77,8	30	33,3	44,5	12	M12x1,5	8,6
UC21601	80	140	82,6	32	33,3	49,3	12	M12x1,5	9,0
UC21701	85	150	85,7	34	34,1	51,6	12	M12x1,5	9,8
UC21801	90	160	96	36	39,7	56,3	12	M12x1,5	10,8

Dynamische Tragzahl (N) C _r	Statische Tragzahl (N) C _{or}	Gewicht (kg)
12800	6600	0,20
12800	6600	0,19
12800	6600	0,18
12800	6600	0,16
14000	7850	0,19
19450	11250	0,30
25700	15200	0,45
29500	18100	0,60
32700	20900	0,65
35000	23200	0,75
43300	29200	0,99
47700	32800	1,32
57200	40000	1,70
62100	44800	1,94
66200	49300	2,16
72600	53300	2,65
83300	63700	3,29
96000	71100	4,04

Lagereinsatz UEL2

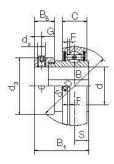




Kurzzeichen Einheit					Abm	essungen	(mm)				
	d	D	B,	В	c	S	d,	G	B _s	d ₃	F
UEL204D1	20	47	43,7	34,2	17	17,1	M6x1	4,8	13,5	33,3	3,4
UEL205D1	25	52	44,4	34,9	17	17,5	M6x1	4,8	13,5	38,1	4,3
UEL206D1	30	62	48,4	36,5	19	18,3	M8x1	6	15,9	44,5	5,2
UEL207D1	35	72	51,1	37,6	20	18,8	M8x1	6,8	17,5	55,6	5,7
UEL208D1	40	80	56,3	42,8	21	21,4	M8x1	6,8	18,3	60,3	6,2
UEL209D1	45	85	56,3	42,8	22	21,4	M8x1	6,8	18,3	63,5	6,6
UEL210D1	50	90	62,7	49,2	24	24,6	M8x1	6,8	18,3	69,9	6,5
UEL21101	55	100	71,4	55,5	25	27,8	M10x1	8	20,7	76,2	7,1
UEL212D1	60	110	77,8	61,9	27	31	M10x1	8	22,3	84,2	7,9
UEL213D1	65	120	85,7	68,6	28	34,1	M10x1	8,5	23,5	92	8,0
UEL214D1	70	125	85,7	68,6	29	34,1	M10x1	8,5	23,5	97	8,3
UEL21501	75	130	92,1	75	30	37,3	M10x1	8,5	23,5	102	8,6

Dynamische Tragzahl (N) C _r	Statische Tragzahl (N) C _{or}	Gewicht (kg)		
12800	6600	0,21		
14000	7850	0,25		
19450	11250	0,37		
25700	15200	0,58		
29500	18100	0,73		
32700	20900	0,78		
35000	23200	0,94		
43300	29200	1,26		
47700	32800	1,71		
57200	40000	2,24		
62100	44800	2,35		
66200	49300	2,64		

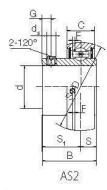
Lagereinsatz UK2



Kurzzeichen Einheit				Abr	nessungen (r	nm)			
	d,	d	D	В	c	B,	B ₂	d ₂	F
UK205D1+H2305	20	25	52	23	17	35	8	38	4,3
UK206D1+H2306	25	30	62	26	19	38	8	45	5,2
UK207D1+H2307	30	35	72	29	20	43	9	52	5,7
UK208D1+H2308	35	40	80	31	21	46	10	58	6,2
UK209D1+H2309	40	45	85	31	22	50	11	65	6,6
UK210D1+H2310	45	50	90	32	24	55	12	70	6,5
UK21101+H2311	50	55	100	35	25	59	12	75	7,1
UK212D1+H2312	55	60	110	38	27	62	13	80	7,9
UK213D1+H2313	60	65	120	40	28	65	14	85	8,0
UK21501+H2315	65	75	130	44	30	73	15	98	8,6
UK216D1+H2316	70	80	140	45	32	78	17	105	9
UK21701+H2317	75	85	150	46	34	82	18	110	9,8
UK218D1+H2318	80	90	160	47	36	86	18	120	10,8

Dynamische Tragzahl (N) C _r	Statische Tragzahl (N) C _{or}	Gewicht (kg)
14000	7850	0,24
19450	11250	0,36
25700	15200	0,52
29500	18100	0,67
32700	20900	0,77
35000	23200	0,92
43300	29200	1,15
47700	32800	1,47
57200	40000	1,81
66200	49300	2,55
72600	53300	3,08
83300	63700	3,70
96000	71100	4,34

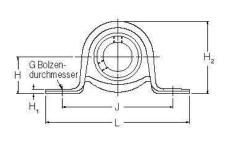
Lagereinsatz AEL2

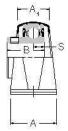


Kurzzeichen Einheit					Abmessu	ngen (mm)				
	d	D	B ₁	В	c	S	d _s	G	B 5	d_3
AEL201D1	12	40	28,6	19,1	12	6,5	M6X1	4,8	13,5	28,6
AEL202D1	15	40	28,6	19,1	12	6,5	M6X1	4,8	13,5	28,6
AEL203D1	17	40	28,6	19,1	12	6,5	M6X1	4,8	13,5	28,6
AEL204D1	20	47	31,0	21,5	14	7,5	M6X1	4,8	13,5	33,3
AEL205D1	25	52	31	21,5	15	7,5	M6X1	4,8	13,5	38,1
AEL206D1	30	62	35,7	23,8	16	9,0	M8X1	6	15,9	44,5
AEL207D1	35	72	38,9	25,4	17	9,5	M8X1	6,8	17,5	55,6
AEL208D1	40	80	43,7	30,2	18	11,0	M8X1	6,8	18,3	60,3
AEL209D1	45	85	43,7	30,2	19	11,0	M8X1	6,8	18,3	63,5
AEL210D1	50	90	43,7	30,2	20	11,0	M8X1	6,8	18,3	69,9
AEL211D1	55	100	48,4	32,5	21	12,0	M10X1	8	20,7	76,2
AEL21201	60	110	53,1	37,2	22	13,5	M10X1	8	22,3	84,2

Dynamische Tragzahl (N) C _r	Statische Tragzahl (N) C _{or}	Gewicht (kg)		
7360	4480	0,14		
7360	4480	0,12		
7360	4480	0,11		
12800	6600	0,17		
14000	7850	0,20		
19450	11250	0,30		
25700	15200	0,48		
29500	18100	0,63		
32700	20900	0,66		
35000	23200	0,75		
43300	29200	1,00		
47700	32800	1,34		

Lagereinsatz AS2

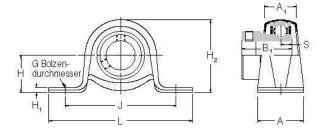




Kurzzeichen Einheit				Abmessur	ngen (mm)			
	d	D	В	C	S	S,	d _s	G
AS201D1	12	40	22,0	12	6,0	16,0	M5X0,8	4,5
AS202D1	15	40	22	12	6,0	16,0	M5X0,8	4,5
AS203D1	17	40	22,0	12	6,0	16,0	M5X0,8	4,5
AS204D1	20	47	25,0	14	7,0	18,0	M6X1	4,5
AS205D1	25	52	27	15	7,5	19,5	M6X1	5,5
AS206D1	30	.62	30	16	8,0	22,0	M6X1	6
AS207D1	35	72	32	17	8,5	23,5	M8X1	6,5
AS208D1	40	80	34	18	9,0	25,0	M8X1	7
AS209D1	45	85	41,2	19	10,2	31,0	M8X1	8,2
AS210D1	50	90	43,5	20	10,9	32,6	M10X1	9,2

Dynamische Tragzahl (N) C _r	Statische Tragzahl (N) C _{or}	Gewicht (kg)
7360	4480	0,11
7360	4480	0,10
7360	4480	0,09
12800	6600	0,14
14000	7850	0,17
19450	11250	0,26
25700	15200	0,38
29500	18100	0,48
32700	20900	0,57
35000	23200	0,65

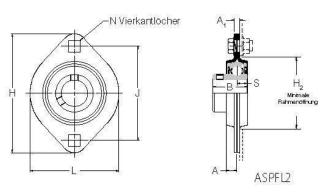
Stahlblech-Stehlagereinheiten (verzinktes Gehäuse) ASPP2



ASPP2

Kurzzeichen		Abmessungen (mm)											
Einheit	Wellendurchmesser	L	Н	Н,	H ₂	J	G	A	A,	В	S		
ASPP201	12	85,7	22,2	2,4	43,2	68,0	8	25,4	15,9	22	6,0		
ASPP202	15	85,7	22,2	2,4	43,2	68,0	8	25,4	15,9	22	6,0		
ASPP203	17	85,7	22,2	2,4	43,2	68,0	8	25,4	15,9	22	6,0		
ASPP204	20	98,4	25,4	2,4	49,9	76,0	8	31,7	21,6	25	7,0		
ASPP205	25	108,0	28,6	2,8	55,8	86,0	10	31,7	21,6	27	7,5		
ASPP206	30	117,5	33,3	3,6	65,7	95,0	10	37,5	25,5	30	8,0		
ASPP207	35	128,6	39,7	4,4	77,5	106,0	10	41,0	28,4	32	8,5		

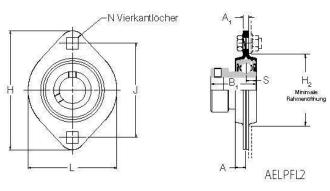
Kurzzeichen Lager	Kurzzeichen Gehäuse	Max, Radialgehäuselast (N)	Empf. max. Drehzahl (min-1)	Gewicht (ca.) (kg)
AS201	PP203	1330	3000	0,2
AS202	PP203	1330	3000	0,2
AS203	PP203	1330	3000	0,2
AS204	PP204	1570	3000	0,2
AS205	PP205	1780	2500	0,3
AS206	PP206	2670	2500	0,5
AS207	PP207	3560	2000	0,9


Stahlblech-Stehlagereinheiten (verzinktes Gehäuse) AELPP2

Kurzzeichen		Abmessungen (mm)											
Einheit	Wellendurchmesser	L	Н	Н,	H ₂	J	G	A	A,	B ₁	S		
AELPP201	12	85,7	22,2	2,4	43,2	68,0	8	25,4	15,9	28,6	6,5		
AELPP202	15	85,7	22,2	2,4	43,2	68,0	8	25,4	15,9	28,6	6,5		
AELPP203	17	85,7	22,2	2,4	43,2	68,0	8	25,4	15,9	28,6	6,5		
AELPP204	20	98,4	25,4	2,4	49,9	76,0	8	31,7	21,6	31,0	7,5		
AELPP205	25	108,0	28,6	2,8	55,8	86,0	10	31,7	21,6	31	7,5		
AELPP206	30	117,5	33,3	3,6	65,7	95,0	10	37,5	25,5	35,7	9,0		
AELPP207	35	128,6	39,7	4,4	77,5	106,0	10	41,0	28,4	38,9	9,5		

Kurzzeichen Lager	Kurzzeichen Gehäuse	Max, Radialgehäuselast (N)	Empf. max. Drehzahl (min-1)	Gewicht (ca.) (kg)
AEL201	PP203	1330	3000	0,2
AEL202	PP203	1330	3000	0,2
AEL203	PP203	1330	3000	0,2
AEL204	PP204	1570	3000	0,2
AEL205	PP205	1780	2500	0,3
AEL206	PP206	2670	2500	0,5
AEL207	PP207	3560	2000	0,9

Stahlblech-Flanschlagereinheiten (verzinktes Gehäuse) ASPFL2

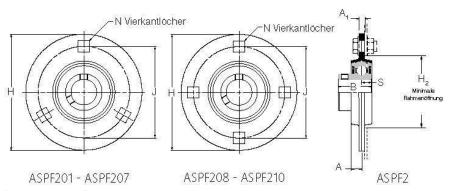


Kurzzeichen	Abmessungen (mm)											
Einheit	Wellendurchmesser	L	Н	H ₂	J	N	A	A,	В	S		
ASPFL201	12	58,7	81,0	49,0	63,5	7,1	6,7	4,0	22	6,0		
ASPFL202	15	58,7	81,0	49,0	63,5	7,1	6,7	4,0	22	6,0		
ASPFL203	17	58,7	81,0	49,0	63,5	7,1	6,7	4,0	22	6,0		
ASPFL204	20	66,7	90,5	55,0	71,5	8,7	7,7	4,0	25	7,0		
ASPFL205	25	71,0	95,3	60,0	76,0	8,7	8,7	4,0	27	7,5		
ASPFL206	30	84,1	112,7	71,0	90,5	10,5	9,0	5,0	30	8,0		
ASPFL207	35	93,6	122,6	81,0	100,0	10,5	10,0	5,0	32	8,5		

Kurzzeichen Lager	Kurzzeichen Gehäuse	Max, Radialgehäuselast (N)	Empf. max. Drehzahl (min-1)	Gewicht (ca.) (kg)
AS201	PFL203	2670	3000	0,2
AS202	PFL203	2670	3000	0,2
AS203	PFL203	2670	3000	0,2
AS204	PFL204	3110	3000	0,3
AS205	PFL205	3560	2500	0,3
AS206	PFL206	4890	2500	0,5
AS207	PFL207	6250	2000	0,7

J-LINE WÄLZLAGEREINHEITEN 233

Stahlblech-Flanschlagereinheiten (verzinktes Gehäuse) AELPFL2

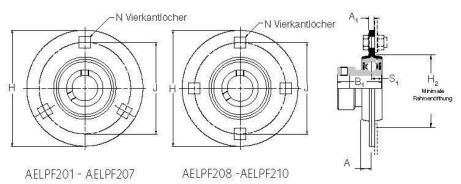


Kurzzeichen	Abmessungen (mm)									
Einheit	Wellendurchmesser	L	Н	H ₂	J	N	A	A,	В,	S
AELPFL201	12	58,7	81,0	49,0	63,5	7,1	6,7	4,0	28,6	6,5
AELPFL202	15	58,7	81,0	49,0	63,5	7,1	6,7	4,0	28,6	6,5
AELPFL203	17	58,7	81,0	49,0	63,5	7,1	6,7	4,0	28,6	6,5
AELPFL204	20	66,7	90,5	55,0	71,5	8,7	7,7	4,0	31,0	7,5
AELPFL205	25	71,0	95,3	60,0	76,0	8,7	8,7	4,0	31	7,5
AELPFL206	30	84,1	112,7	71,0	90,5	10,5	9,0	5,0	35,7	9,0
AELPFL207	35	93,6	122,6	81,0	100,0	10,5	10,0	5,0	38,9	9,5

Kurzzeichen Lager	Kurzzeichen Gehäuse	Max, Radialgehäuselast (N)	Empf. max. Drehzahl (min ⁻¹)	Gewicht (ca.) (kg)
AEL201	PFL203	2670	3000	0,2
AEL202	PFL203	2670	3000	0,2
AEL203	PFL203	2670	3000	0,2
AEL204	PFL204	3110	3000	0,3
AEL205	PFL205	3560	2500	0,3
AEL206	PFL206	4890	2500	0,5
AEL207	PFL207	6250	2000	0,7

J-LINE WÄLZLAGEREINHEITEN 235

Stahlblech-Flanschlagereinheiten (verzinktes Gehäuse) ASPF2



Kurzzeichen				Abmessu	essungen (mm)							
Einheit	Wellendurchmesser	н	H ₂	J	N	A	A,	В	S			
ASPF201	12	81,0	49,0	63,5	7,1	6,7	4,0	22	6,0			
ASPF202	15	81,0	49,0	63,5	7,1	6,7	4,0	22	6,0			
ASPF203	17	81,0	49,0	63,5	7,1	6,7	4,0	22	6,0			
ASPF204	20	90,5	55,0	71,5	8,7	7,7	4,0	25	7,0			
ASPF205	25	95,2	60,0	76,0	8,7	8,7	4,0	27	7,5			
ASPF206	30	112,7	71,0	90,5	10,5	9,0	5,0	30	8,0			
ASPF207	35	122,2	81,0	100,0	10,5	10,0	5,0	32	8,5			
ASPF208	40	147,8	91,0	119,0	13,5	10,0	7,0	34	9,0			
ASPF209	45	149,2	97,0	120,5	13,5	10,0	7,0	41,2	10,2			
ASPF210	50	155,6	102,0	127,0	13,5	10,5	8,0	43,5	10,9			

Kurzzeichen Lager	Kurzzeichen Gehäuse	Max, Radialgehäuselast (N)	Empf. max. Drehzahl (min-1)	Gewicht (ca.) (kg)
AS201	PF203	2670	3000	0,2
AS2 02	PF203	2670	3000	0,2
AS203	PF203	2670	3000	0,2
AS204	PF204	3110	3000	0,3
AS205	PF205	3560	2500	0,4
A\$206	PF206	4890	2500	0,7
AS207	PF207	6250	2000	0,9
AS208	PF208	7550	2000	1,5
AS209	PF209	7550	2000	1,6
AS210	PF210	8450	1500	1,8

J-LINE WÄLZLAGEREINHEITEN 237

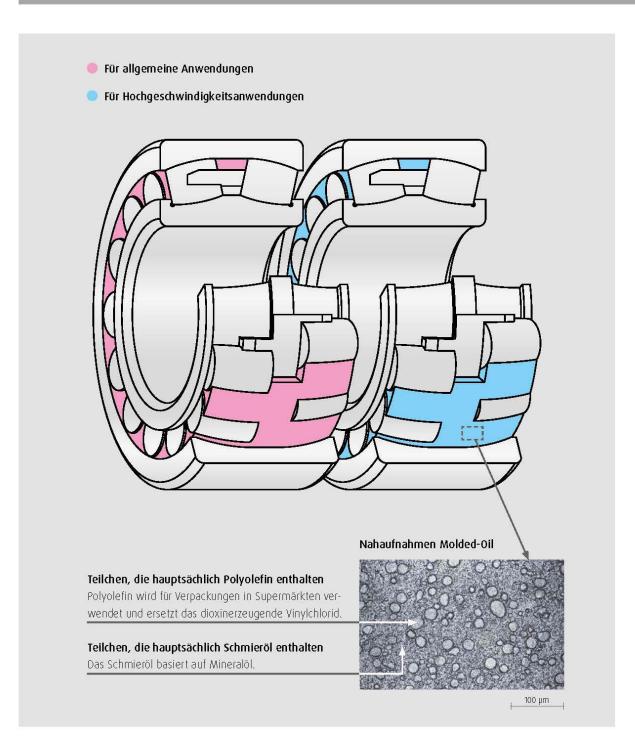
Stahlblech-Flanschlagereinheiten (verzinktes Gehäuse) AELPF2

Kurzzeichen				Abmessu	ngen (mm)				
Einheit	Wellendurchmesser	Н	H2	J	N	A	A1	B1	S
AELPF201	12	81,0	49,0	63,5	7,1	6,7	4,0	28,6	6,5
AELPF202	15	81,0	49,0	63,5	7,1	6,7	4,0	28,6	6,5
AELPF203	17	81,0	49,0	63,5	7,1	6,7	4,0	28,6	6,5
AELPF204	20	90,5	55,0	71,5	8,7	7,7	4,0	31,0	7,5
AELPF205	25	95,2	60,0	76,0	8,7	8,7	4,0	31,0	7,5
AELPF206	30	112,7	71,0	90,5	10,5	9,0	5,0	35,7	9,0
AELPF207	35	122,2	81,0	100,0	10,5	10,0	5,0	38,9	9,5
AELPF208	40	147,8	91,0	119,0	13,5	10,0	7,0	43,7	11,0
AELPF209	45	149,2	97,0	120,5	13,5	10,0	7,0	43,7	11,0
AELPF210	50	155,6	102,0	127,0	13,5	10,5	8,0	43,7	11,0

Kurzzeichen Lager	Kurzzeichen Gehäuse	Max, Radialgehäuselast (N)	Empf. max. Drehzahl (min-1)	Gewicht (ca.) (kg)
AEL201	PF203	2670	3000	0,2
AEL202	PF203	2670	3000	0,2
AEL203	PF203	2670	3000	0,2
AEL204	PF204	3110	3000	0,3
AEL205	PF205	3560	2500	0,4
AEL206	PF206	4890	2500	0,7
AEL207	PF207	6250	2000	0,9
AEL208	PF208	7550	2000	1,5
AEL209	PF209	7550	2000	1,6
AEL210	PF210	8450	1500	1,8

J-LINE WÄLZLAGEREINHEITEN 239

Produktkatalog


Molded-Oil Lager

+MOLDED-OIL LAGER

Molded-Oil Lager – Merkmale

1

Molded-Oil Lager sind mit einem NSK eigenen, ölimprägnierten Material – Molded-Oil – geschmiert, das aus Schmieröl und ölverwandtem Polyolefinharz besteht. Das Schmiermittel, das von diesem Material langsam abgegeben wird, bietet über lange Zeiträume eine ausreichende Schmierung des Lagers.

Merkmale der Molded-Oil Lager

Hervorragende Eigenschaften in wasser- und staubbelasteten Umgebungen

Die Lager sind so konzipiert, dass Flüssigkeiten wie Wasser (dass das Schmieröl auswaschen kann) und Staub nicht in die Lager eindringen können. In wasserund staubbelasteten Umgebungen können Lager mit Dichtungen verwendet werden.*

Umweltfreundlich

Da diese Lager mit einem Minimum an Öl geschmiert werden können, das vom Molded-Oil abgegeben wird, werden Ölleckagen minimiert.

Niedriges Drehmoment

Durch die Molded-Oil-Füllung und eine Spezialbehandlung der Laufbahnen wird die Drehbewegung der Rollkörper leichtgängig.

 Optimale Zusammensetzung und Pressformverfahren ermöglichen die Verwendung der Molded-Oil Lager in Hochgeschwindigkeits-anwendungen

Die Optimierung der Zusammensetzung und Pressformverfahren des Molded-Oil erhöht die Festigkeit und ermöglicht die Verwendung von Molded-Oil Lagern in Hochgeschwindigkeitsanwendungen.

Anwendungen

- > Flüssigkristallanzeigen- und Halbleiterherstellung
- Fördergeräte
- Landmaschinen
- > Nahrungsmittelindustrie
- Papierherstellung
- Reinigungsgeräte und -linien
- Walzwerke/Stahlwerke

^{*} Wasser und Staub beschleunigen Lagerschäden drastisch. Für einen stabilen Betrieb wird daher empfohlen, Dichtungen zu verwenden, um das Eindringen von Wasser und Staub ins Lagerinnere zu verhindern.

Molded-Oil Lager

Pendelrollenlager 22311L12CAM

› Für Hochgeschwindigkeitsanwendungen

Rillenkugellager* 6206L12DDU

› Für Hochgeschwindigkeitsanwendungen

Pendelrollenlager 22311L11CAM

› Für allgemeine Anwendungen

Rillenkugellager* 6206L11DDU

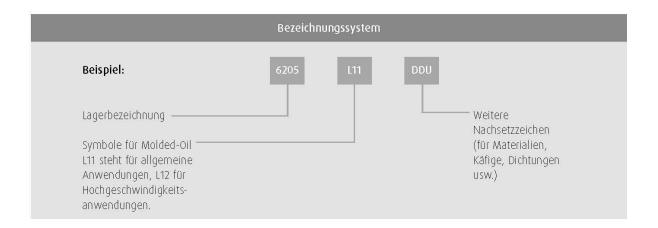
> Für allgemeine Anwendungen

Rillenkugellager* 6000L11-H-20DD

> Für allgemeine Anwendungen

Kegelrollenlager HR32013XJL11

> Für allgemeine Anwendungen


^{*} Die Lager verfügen beidseitig über Dichtungen.

Lagerbezeichnung

Sicherheitshinweise zur Handhabung

Um die hervorragende langfristige Schmierfähigkeit der Molded-Oil Lager zu erhalten, sollten folgende Sicherheitshinweise berücksichtigt werden:

- Molded-Oil schmilzt bei ca. 120°C. Daher dürfen die Lager nicht mittels einer Induktionsheizung auf über 100°C erhitzt werden. Außerdem dürfen die Lager nicht im Ölbad erhitzt werden.
- Die Lager dürfen nicht in Umgebungen mit Entfettungsmitteln wie organischen Lösungsmitteln verwendet werden, die das Molded-Oil angreifen können. Die Lager dürfen auch nicht in Umgebungen mit ätzenden Flüssigkeiten oder Gasen verwendet werden, die die Lagerteile beschädigen können.

Samples of model numbers

Lagerarten		Molded-Oil-Modelle	Bestellnummern	Anmerkungen
		·	22311L11CAM	Machined brass cage
Pendelrollenlager	•	For general use	22311L11EA	Pressed steel cage
		For high-speed operation	22311L12CAM	Machined brass cage
		For general use	6205L11DDU	Ψ.
Rillenkugellager		roi general use	6001L11-H-2000U	Stainless-steel bearing
		For high-speed operation	6205L12DDU	*
Kegelrollenlager		For general use	HR32024XJL11	-

8

Pendelrollenlager

		Lagerabmessu	ingen (mm)		Tragza	hlen (N)	
Lagerbezeichnung	Bohrungs- durchmesser	Außen- durchmesser	Breite (min.)	Kantenkürzung (min.)	C _r	C _{Or}	Molded-0i Variante*
21307L12CAM	35	80	21	1.5	71,000	76,000	0
21308L11A CAM	40	90	23	1.5	82,000	93,000	
22308L11CAM	40	90	33	1.5	122,000	129,000	
22209L11CAM	45	85	23	1.1	78,000	88,000	0
22309L12CAM	45	100	36	1.5	148,000	167,000	
22210L11CAM	50	90	23	1.1	82,000	93,000	0
22311L12CAM	55	120	43	2.0	209,000	241,000	0
22212L12CAM	60	110	28	1.5	127,000	154,000	
22213L111CAM	65	120	31	1.5	152,000	190,000	0
22313L111CAM	65	140	48	2.1	265,000	315,000	0
22313L12CAM	65	140	48	2.1	265,000	315,000	0
22214L11CAM	70	125	31	1.5	163,000	205,000	0
22315L12CAM	75	160	55	2.1	340,000	415,000	
22216L11CAM	80	140	33	2.0	181,000	232,000	0
22217L12CAM	85	150	36	2.0	215,000	276,000	
22218L12CAM	90	160	40	2.0	256,000	340,000	
22219L12CAM	95	170	43	2.1	296,000	395,000	0
23120L11CAM	100	165	52	2.0	345,000	530,000	0
22320L11CAM	100	215	73	3.0	600,000	785,000	0
22222L12CAM	110	200	53	2.1	425,000	585,000	
23024L11CAM	120	180	46	2.0	315,000	525,000	
23124L12CAM	120	200	62	2.0	465,000	720,000	
22226L11CAM	130	230	64	3.0	565,000	815,000	
23932L11CAM	160	220	45	2.0	360,000	675,000	

^{* 🌕 =} Für allgemeine Anwendungen, 🌕 = Für Hochgeschwindigkeitsanwendungen

Rillenkugellager

Wälzlagerstahl

La	gerbezeichnung			Lagerabmessu	ingen (mm)		Tragzal	hlen (N)	Molded-Oil
	Mit Staubschutz	Mit Dichtung	Bohrungs- durchmesser	Außen- durchmesser	Breite (min.)	Kantenkürzung (min.)	c _r	c _{or}	Molded-Oil Variante®
6900L11	ZZ1	001	10	22	6	0.3	2,700	1,270	
6000L11	ZZ	00	10	26	8	0.3	4,550	1,970	0
6200L11	ZZ	DOU	10	30	9	0.6	5,100	2,390	
6901L11	ZZZ	001	12	24	6	0.3	2,890	1,460	0
6001L11	ZZ	DOU	12	28	8	0.3	5,100	2,370	
6201L11	ZZ	DOU	12	32	10	0.6	6,800	3,050	0
6902L11	ZZ1	001	15	28	7	0.3	4,350	2,260	
6002L11	ZZ	000	15	32	9	0.3	5,600	2,830	
6202L11	ZZ	DDU	15	35	.11	0.6	7,650	3,750	
6903L11	ZZ	000	17	30	7	0.3	4,600	2,550	0
6003L11	ZZ	000	17	35	10	0.3	6,000	3,250	
6203L11	ZZ	DOU	17	40	12	0.6	9,550	4,800	
6904L11	ZZ	000	20	37	9	0.3	6,400	3,700	
6004L11	ZZ	000	20	42	12	0.6	9,400	5,000	
6204L11	ZZ	DOU	20	47	14	1.0	12,800	6,600	
6905L11	ZZ	000	25	42	9	0.3	7,050	4,550	0
6005L11	ZZ	000	25	47	12	0.6	10,100	5,850	0
6205L11	ZZ	000	25	52	15	1.0	14,000	7,850	
6906L11	ZZ	000	30	47	9	0.3	7,250	5,000	0
6006L11	ZZ	000	30	55	13	1.0	13,200	8,300	0
6206L11	ZZ	DOU	30	62	16	1.0	19,500	11,300	0
6907L11	ZZ	000	35	55	10	0.6	10,600	7,250	0
6007L11	ZZ	000	35	62	14	1.0	16,000	10,300	0
6207L11	ZZ	000	35	72	17	1,1	25,700	15,300	0
6908L11	ZZ	000	40	62	12	0.6	13,700	10,000	0
6008L11	ZZ	000	40	68	15	1.0	16,800	11,500	
6208L11	ZZ	000	40	80	18	1.1	29,100	17,900	0
6909L11	ZZ	DOU	45	68	12	0.6	14,100	10,900	0
6009L11	ZZ	DOU	45	75	16	1.0	20,900	15,200	6
6209L11	ZZ	DOU	45	85	19	1,1	31,500	20,400	0
6010111	ZZ	000	50	80	16	1.0	21,800	16,600	0
6210L11	ZZ	000	50	90	20	1.1	35,000	23,200	

* = Für allgemeine Anwendungen, = Für Hochgeschwindigkeitsanwendungen

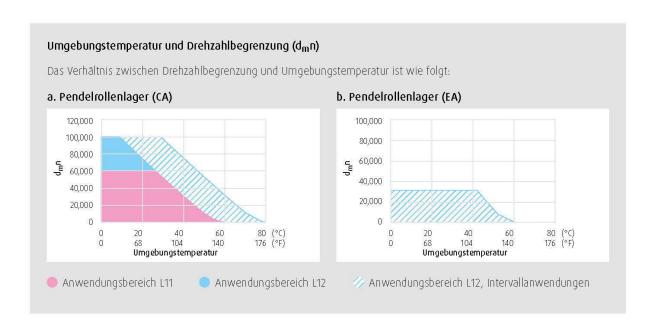
Anm.: Auf Wunsch können auch Sonderanfertigungen außerhalb der in der Tabelle angegebenen Bestellnummern hergestellt werden. Dies gilt nicht für Rillenkugellager mit Kunststoffkäfigen.

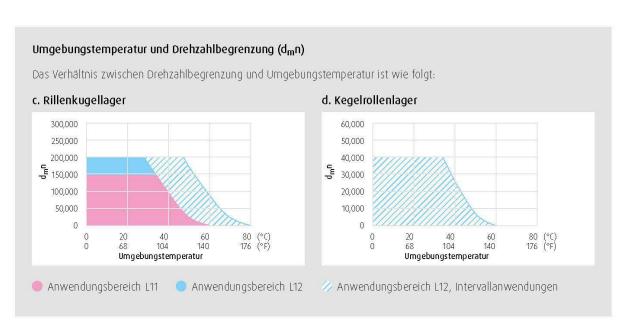
Rillenkugellager

Rostfreier Stahl

Lag	erbezeichnung			Lagerabmessu	ingen (mm)		Tragzah	rlen (N)	Molded-Oil
	Mit Staubschutz Mit Dichtung		Bohrungs- durchmes <i>s</i> er	Außen- durchmesser	Breite (min.)	Kantenkürzung (min.)	C _r	c _{or}	Moided-0 Variante
6900L11-H-20	ZZ1	001	10	22	6	0.3	2,290	1,020	
6000L11-H-20	ZZ	00	10	26	8	0.3	3,900	1,580	
6200L11-H-20	ZZ	DOU	10	30	9	0.6	4,350	1,910	
6901L11-H-20	ZZ2	001	12	24	6	0.3	2,460	1,170	
6001L11-H-20	ZZ	DDU	12	28	8	0.3	4,350	1,890	
6201L11-H-20	ZZ	000	12	32	10	0.6	5,800	2,440	
6902L11-H-20	ZZ1	001	15	28	7	0.3	3,700	1,810	
6002L11-H-20	ZZ	DDU	15	32	9	0.3	4,750	2,270	
6202L11-H-20	ZZ	000	15	35	11	0.6	6,500	2,980	
6903L11-H-20	ZZ	DOU	17	30	7	0.3	3,900	2,040	
6003L11-H-20	ZZ	000	17	35	10	0.3	5,100	2,600	
6203L11-H-20	ZZ	000	17	40	12	0.6	8,150	3,850	•
6904L11-H-20	ZZ	000	20	37	9	0.3	5,400	2,940	
6004L11-H-20	ZZ	000	20	42	12	0.6	7,950	4,000	
6204L11-H-20	ZZ	000	20	47	14	1.0	10,900	5,250	
6905L11-H-20	ZZ	000	25	42	9	0.3	5,950	3,600	
6005L11-H-20	ZZ	000	25	47	12	0.6	8,550	4,650	
6205L11-H-20	ZZ	000	25	52	15	1.0	11,900	6,300	
6906L11-H-20	ZZ	000	30	47	9	0.3	6,150	4,000	
6006L11-H-20	ZZ	000	30	55	13	1.0	11,300	6,600	0
6206L11-H-20	ZZ	DOU	30	62	16	1.0	16,500	9,050	0
6907L11-H-20	ZZ	000	35	55	10	0.6	9,000	5,800	
6007L11-H-20	ZZ	DOU	35	62	14	1.0	13,600	8,200	
6207L11-H-20	ZZ	000	35	72	17	1,1	21,800	12,200	
6908L11-H-20	ZZ	000	40	62	12	0.6	11,600	8,000	
6008L11-H-20	ZZ	000	40	68	15	1.0	14,200	9,250	
6208L11-H-20	ZZ	000	40	80	18	1.1	24,800	14,300	
6909L11-H-20	ZZ	000	45	68	12	0.6	12,000	8,700	
6009L11-H-20	ZZ	DOU	45	75	16	1.0	17,800	12,200	
6209L11-H-20	ZZ	000	45	85	19	1.1	26,600	16,300	
6910L11-H-20	ZZ	000	50	72	12	0.6	12,400	9,400	
6010L11-H-20	ZZ	000	50	80	16	1.0	18,500	13,300	
6210L11-H-20	ZZ	000	50	90	20	1.1	29,800	18,600	

^{* =} Für allgemeine Anwendungen, = Für Hochgeschwindigkeitsanwendungen


Anm.: Auf Wunsch können auch Sonderanfertigungen außerhalb der in der Tabelle angegebenen Bestellnummern hergestellt werden. Dies gilt nicht für Rillenkugellager mit Kunststoffkäfigen.


Lagertypen und Ausführungen

Lager mit Molded-Oil, Käfig, Drehzahlbegrenzung und Größe (Außendurchmesser, mm)

Lagerarten		Molded-Oil	Käfigarten	Drehzahlbegrenzung (d _m n)	Größen (Außendurchmesser, mm)	
		Für allgemeine Anwendungen	Messing (CAM)	< 60.000	70 ≤ AD ≤ 250	
Pendelrollenlager		(L11)	Gepresster Stahl (EA)	< 30.000	70 ≤ AD ≤ 215	
	•	Für Hochgeschwindigkeits- anwendungen (L12)	Gepresster Stahl (EA)	60.000 - 100.000	70 ≤ AO ≤ 215	
O.H. I II.		Für allgemeine Anwendungen (L11)	Gepresster Stahl	< 150.000	19 ≤ AD ≤ 250	
Rillenkugellager	•	Für Hochgeschwindigkeits- anwendungen (L12)	Gepresster Stahl	150.000 - 200.000	19 ≤ AD ≤ 215	
Kegelrollenlager		Für allgemeine Anwendungen (L11)	Gepresster Stahl	< 40.000	80 ≤ AD ≤ 215	

- → d_mn = [(Innendurchmesser Lager, mm + Außendurchmesser Lager, mm) ÷ 2] x Drehzahl Innenring, min⁻¹
- > Verfügbarkeit bei großen Pendelrollenlagern auf Anfrage
- > Bei Kegelrollenlagern müssen die Bedingungen einschließlich Widerlager- und Hohlkehlenabmessungen berücksichtigt werden
- Für Kegelrollenlager und Pendelrollenlager mit formgepressten Stahlkäfigen (EA) sind keine Molded-Oil Lager für Hochgeschwindigkeitsanwendungen (L12) erhältlich
- > Für Anwendungen bei niedrigen Geschwindigkeiten und niedrigen Temperaturen werden Molded-Oil Lager für allgemeine Anwendungen (L11) empfohlen

Die oben dargestellten Drehzahlbegrenzungen (d_mn) von "a" bis "d" sind Beispiele für allgemeine Gehäuse. Befindet sich in der Nähe der Lager eine Wärmequelle oder ist ein Kühleffekt durch Abstrahlung oder Wärmeübertragung vorhanden, ist aufgrund der Anwendung die o.g. Drehzahlbegrenzung nicht zu erwarten.

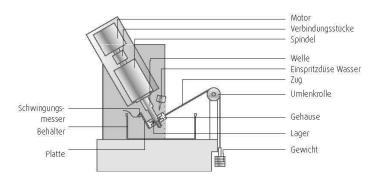
Hinweise zur Lagerauswahl

Folgende Sicherheitshinweise sollten unbedingt berücksichtigt werden, um die hervorragenden Eigenschaften der Molded-Oil Lager zu erhalten:

- Für Anwendungen mit niedrigen Temperaturen werden Molded-Oil Lager für allgemeine Anwendungen (L11) empfohlen.
- Für hohe Umgebungstemperaturen werden Molded-Oil Lager für Hochgeschwindigkeitsanwendungen (L12) empfohlen.
- Damit die Lager einwandfrei drehen, muss eine Radialbelastung vorhanden sein. Als Standard wird eine Radialbelastung von mehr als 1% der grundlegenden dynamischen Belastung empfohlen.
- → Da Molded-Oil Lager mittels des vom Molded-Oil abgegebenen Öls geschmiert werden, können diese Lager nicht eingesetzt werden, wenn sie Wasser direkt und über längere Zeiträume hinweg ausgesetzt sind (das Öl könnte ausgewaschen werden). Lässt sich bei der Anwendung eine solche Exposition nicht vermeiden, sollte die Verwendung zusätzlicher Dichtungen in Betracht gezogen werden.

Leistungsprüfung

Molded-Oil Lager verfügen über eine Reihe hervorragender Eigenschaften. Umfangreiche Prüfdaten und Feldergebnisse belegen die außerordentlichen Eigenschaften von Molded-Oil Lagern.

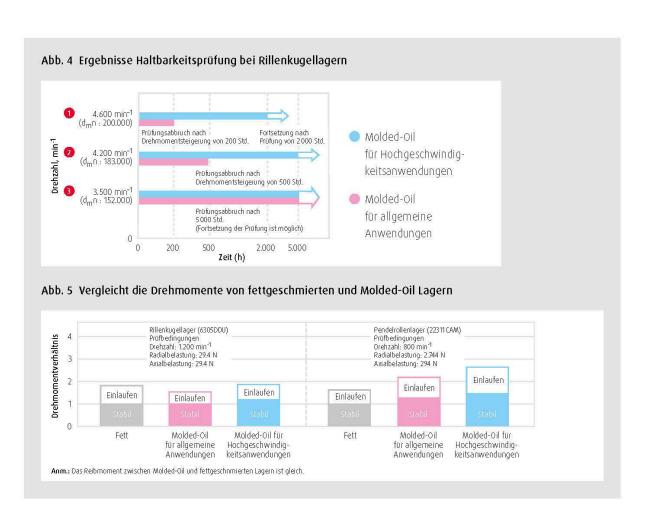

Haltbarkeitsprüfung bei Wasserexposition

Fettschmierung ermöglicht den langfristigen Betrieb auch bei Nebelexposition oder Unterwasseranwendungen. Dauerbetrieb bei Fettschmierung: ca. 20 Tage; bei Molded-Oil Lagern: min. 50 Tage oder länger; Molded-Oil Lager können länger betrieben werden als fettgeschmierte Lager, selbst bei Nebelexposition oder Unterwasseranwendungen.

	Umgebungen mit Wassi z.B. Reinigungsa	
Prüf- bedingungen	Prüflager	6000-H-DD (rostfreier Stahl mit Dichtung)
	Drehzahl	1.000 min ⁻¹
	Radialbelastung	79,4 N
	Axialb elastung	29,4 N
	Wasserexposition	0,8 cm3/min
	Sprühdruck	0,2 MPa

Umgebung mit Unterwasserbedingungen – z. B. Unterwasserfahrzeuge und -anlagen		
Prüf- bedingungen	Prüflager	6000-H-DD (rostfreier Stahl mit Dichtung)
	Drehzahl	1.000 min ⁻¹
	Radialbelastung	79,4 N
	Axialb elastung	29,4 N

Abb. 1 Prüfaufbau bei Wasserexposition



Haltbarkeits- und Leistungsprüfung

Die langsame Abgabe des Schmiermittels vom Molded-Oil bietet über längere Zeiträume ausgezeichnete Schmiereigenschaften. Molded-Oil Lager für allgemeine Anwendungen sind nicht geeignet für Hochgeschwindigkeitsanwendungen. Hierfür sind Molded-Oil Lager für Hochgeschwindigkeitsanwendungen mit ausgezeichneten Haltbarkeitseigenschaften erhältlich.

	Haltbarkeits- und Leis	stungsprüfung
Prüf- bedingungen	Prüflager	6305DDU
	Axialbelastung	98 N
	Radialb elastung	245 N
	Drehzəhl	3.500 min ⁻¹ (d _m n : 152.000)
		2 4.200 min ⁻¹ (d _m n : 183.000)
		3 4.600 min ⁻¹ (d _m n : 200.000)

NSK VERTRIEBSNIEDERLASSUNGEN – EUROPA, MITTLERER OSTEN UND AFRIKA

Deutschland, Benelux, Österreich, Schweiz, Skandinavien

NSK Deutschland GmbH Harkortstraße 15 40880 Ratingen Tel. +49 (0) 2102 4810 Fax +49 (0) 2102 4812290 info-de@nsk.com

Frankreich

NSK France S.A.S. Quartier de l'Europe 2, rue Georges Guynemer 78283 Guyancourt Cedex Tel. +33 (0) 1 30573939 Fax +33 (0) 1 30570001 info-fr@nsk.com

Großbritannien

NSK UK LTD. Northern Road, Newark, Nottinghamshire NG24 2JF Tel. +44 (0) 1636 605123 Fax +44 (0) 1636 643276 info-uk@nsk.com

Italien

NSK Italia S.p.A. Via Garibaldi, 215 20024 Garbagnate Milanese (MI) Tel. +39 02 995 191 Fax +39 02 990 25 778 info-it@nsk.com

Mittlerer Osten

NSK Bearings Gulf Trading Co. JAFZA View 19, Floor 24 Office 2/3 Jebel Ali Downtown, PO Box 262163 Dubai, UAE Tel. +971 (0) 4 804 8205 Fax +971 (0) 4 884 7227

Polen & CEE

info-me@nsk.com

NSK Polska Sp. z o.o. Warsaw Branch Ul. Migdałowa 4/73 02-796 Warszawa Tel. +48 22 645 15 25 Fax +48 22 645 15 29 info-pl@nsk.com

Russland

NSK Polska Sp. z o.o.
Russian Branch
Office I 703, Bldg 29,
18th Line of Vasilievskiy Ostrov,
Saint-Petersburg, 199178
Tel. +7 812 3325071
Fax +7 812 3325072
info-ru@nsk.com

Spanien

NSK Spain, S.A. C/ Tarragona, 161 Cuerpo Bajo 2a Planta, 08014 Barcelona Tel. +34 932 89 27 63 Fax +34 934 33 57 76 info-es@nsk.com

Südafrika

NSK South Africa (Pty) Ltd. 25 Galaxy Avenue Linbro Business Park Sandton 2146 Tel. +27 (011) 458 3600 Fax +27 (011) 458 3608 nsk-sa@nsk.com

Türkei

NSK Rulmanları Orta Doğu Tic. Ltd. Şti. Cevizli Mah. D-100 Güney Yan Yol Kuriş Kule İş Merkezi No:2 Kat:4 Kartal - Istanbul Tel. +90 216 5000 675 Fax +90 216 5000 676 turkey@nsk.com

Bitte besuchen Sie auch unsere Website: www.nskeurope.de NSK weltweit: www.nsk.com

© Copyright NSK 2020 / Ref: SB-FB/A/D/11.20